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1. INTRODUCTION 

We use throughout this paper notation and terminology related to 
partitions and symmetric functions from [Ml]. Let 1” = (A,, &, . ..) be a 
partition and 1’ = (1”;) &, . ..) the conjugate partition to A. The number 2; 
of parts of 1 is denoted I(i), called the length of 1. Set 

b(A)=C (i-l)&=1 ; . 
0 

(Macdonald [M i] uses n(A) for our b(1), but using n( 3L) here would lead 
to confusion with other uses of the letter n.) 

We will identify a partition ,J with its diagram 

A= ((i,j): 1 <iGl(A), l<j<A,}. 

If 1, + L, + = n, then write 2+-n or 1% = n. If p is another partition, 
then write p c J. if pi 6 %, for all i (i.e., if the diagram of 1. contains the 
diagram of p), If IpL/ = Ii.1 then write p 2 1. (reverse lexicographic order) if 
either /J = i or the first nonvanishing difference E.,--pi is positive. For 
instance (writing 2,1, . ..I.. for (Ai, I.,, . . . . /it)), 5 5 41 : 32 5 311 : 221 : 
2111 : 11111. Finally write p<i if Ipl=lAl and p1+pL2+ ... +pLi< 
A1 + A2 + . . . li for all i. Macdonald [M,, p. 63 call the partial ordering < 
the “natural ordering,” but we will call it the dominance ordering 

Let x=(x,, x2, . ..) be an infinite set of indeterminates. As in [MI], we 
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use the following notation for certain symmetric functions a, =a,(.~) 
indexed by partitions A: 

m j,, monomial symmetric function; 

ej.. elementary symmetric function; 
h j,, complete homogeneous symmetric function; 
p;, power-sum symmetric function; 
Sj., Schur function. 

If A has m,=nr,(%) parts equal to i, then write 

;,=(1”‘2”“...)m,!“lz!.“. (2) 

Let CI be a parameter (indeterminate), and let Q(a) denote the field of all 
rational functions of c1 with rational coefficients. Define a (bilinear) scalar 
product ( , ) on the vector space A @Q(a) of all symmetric functions of 
bounded degree over the field Q(cY) by the condition 

(pj.$ p,> = fij.~czj.X"*'> (3) 

where 6,, = 0 if 1 #p and 6,, = 1. When CI = 1, (3) coincides with the usual 
scalar product [M i, p. 351 on symmetric functions. We also let Ak 0 Q(cx) 
denote the vector space of all homogeneous symmetric functions of degree 
k over the field Q(N). Thus 

AOc?(CI)= LI A”c3cyu) (vector space direct sum). 
k>O 

The following fundamental result is due to Macdonald [M3, Chap. VI, 
(4.5)] and will not be proved here. 

1.1. THEOREM. There are unique s*ymmetric functions Jj. = Jj.(.x; FX) E 
A@ Q(a), where 2 ranges over all partitions of all nonnegative integers, 
satisfying the following three conditions.. 

(Pl ) (orthogonality ) (J;, J,, ) = 0 if I. # p, where the scalar product is 
given by (3). 

(P2) (triangularity) Write 

Then v2,(c() = 0 unless p 6 A. 

(P3) (normalization) [f 121 = n, then the coefficient v .. ,. ," of x,x, x, 
in J, is equal to n!. 
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Though we do not prove Theorem 1.1 here, let us point out where the 
difficulty lies. (See also the note after the proof of Theorem 3.1.) If the 
dominance order were a total order, then Theorem 1.1 would follow easily 
from Gram-Schmidt orthogonalization. Since dominance order is only a 
partial order, we must take some compatible total order (such as % ) 
before applying Gram-Schmidt. Then Theorem 1.1 amounts essentially to 
saying that whatever total order we take compatible with 6, we wind up 
with the same basis. 

We call the symmetric functions J; Jack symmetric functions (for a 
reason explained after the proof of Proposition 1.2). If we set all but finitely 
many variables equal to 0 (say X, + , = X, + z = = 0) in J,, then we 
obtain a polynomial J,(x ,, . . . . x,; r) (with coefftcients in Q(a)). 

Two specializations of Jack symmetric functions are immediate from the 
definition. Given .X = (i, j) E 1, define h(s) = 1; + I., ~ i-j + 1, the hook- 
length of i at .Y [M,, p. 91. Set 

H;. = n 4.x), 
.XE n 

the product of all hook-lengths of 1.. 

1.2. PROPOSITION. (a) J,(x; 1) = H,s,(x). 

(b) J,(.u; 2) = Z,(x), the zonal symmetric function indexed by /, (nor- 
malized as in [Jamz], so rhe coefficient of .x1 x, is n!). 

Proof: It is well-known that Schur funtions sA satisfy (Pl ) (with c( = 1) 
and (P2) [M,, ChapI, (4.8) and (6.5)]. Hence they must agree with 
J,(.u; 1) up to a scalar multiple. But the coefficient of X, . . ..Y. in sA is n!/H, 
CM,, Ex. 2, p. 431, so (a) follows. 

Similarly it is well-known that zonal polynomials Z, satisfy (Pl ) (with 
c1= 2), (P2), and (P3), so (b) follows. [ 

Two additional specializations of Jj.(.u; LX) are given in Proposition 7.6. 
Jack symmetric functions were first defined by H. Jack [Jac] (using the 

total order 2 in (P2) instead of 6 ). He established Proposition 1.2(a) and 
conjectured Proposition 1.2(b), but did not pursue their properties much 
further. Foulkes [IF, pp. 90-911 raised the problem of obtaining a com- 
binatorial interpretation of Jack symmetric functions. I. G. Macdonald, in 
unpublished work, established some fundamental properties of Jack sym- 
metric functions and made several conjectures concerning them. We have 
already appealed to one of Macdonald’s results (Theorem 1.1 ), and in Sec- 
tion 3 we will consider further results of Macdonald which will play an 
essential role in our work. Subsequently Macdonald [Mj] has extended 
Jack symmetric functions to an even more general class of symmetric func- 
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tions P,.(x; q, t) to which almost all the results and techniques concerning 
Jack symmetric functions can be carried over. (Macdonald [MS] uses a 
normalization of Jack symmetric functions different from ours.) Before 
turning to Macdonald’s results in Section 3, we will first establish some 
elementary properties of Jack symmetric functions in Section 2. 

2. ELEMENTARY PROPERTIES 

Properties (P2) and (P3 ) of Jack symmetric functions immediately yield 

I J,!, = Il.117,” = II. “,,. 1 (5) 

We also seek an expression for J,,, which will be deduced from the following 
result. We henceforth use the notation 

2.1. PROPOSITION. Let x = (.I-, , x2, ) arzd .I- = ( y, , ?‘2r ) he tw’o sets qf 
indeternzinates. Then 

c J;(x) J;(y,j, ’ = n (1 -.Y,Jp~, (6) X i. , 
sumn7ed ouer all partitions i 

Proof. The proof parallels the x = 1 case in [M, , (4.3). p. 331. First one 
checks, just as in [M,, (4.1), p. 331, that 

c z; ‘r~““‘p,(,~)p,,(~)=n (1 -.u,?,j)m’ I. 
I 1. I 

It then follows, just as in [M,, (4.6), p. 343, that if (u;) and (U,) are bases 
for the space Afl 0 Q(U) of homogeneous symmetric functions of degree n 
over Q(a), then the following conditions are equivalent: 

(a) (u;., or) = 6;,, for all A, p; 
(b) ~l~j.(~)~~j,(?‘)=~i,i(l-.~,,;)~“,. 

Then (6) follows from (Pl ) after setting uj, = .I>. and v, = J;/j,.. 1 

2.2. PROPOSITION. For any n b 0, tl7e Jack synzmetric function J, (short 
,for Jfn,, where (n) denotes the partition (n, 0, 0, . ..)) has the ,following 
expansions : 

607 77 I-6 
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n 

( > 

n! 
i,,R,,... =%,!A,!- 

(multinomial coefficient), 

P,(cc)=l~(I+LY)(l+2a)...(l+(k-l)cc). 

(b) Jn=Cltn sr”~“~‘n!,-,‘pj.. 
(c) J,=C;&&l)“-J cc”~“~“n!P,(j.,(a)(m,(~)! m,(A)! . ..)-‘e.,, 

shere 3. has mi(i) parts equal to i. 

(d) fn=C;,+-n~n ““n!P,,,,(-cr)(m,(%)! ~~z(A)!.*.)-‘hj.. 

(e) Jn=CjtnfAllIl(,,,)~,i (1 + (.Fi)~)lSi9 
where f, = n !/HA, the number of standard tableaux [M , , p. 51 of shape A. 

ProoJ (a) Set )‘I = t, ~2~ = y3 = ... = 0 in (6). By property (P2) of 
Jack symmetric functions, we have for %+n, 

Jj,( t, 0, ...) 0) = VA@) 
i. 

o 

where v,(a) E Q(u). Hence writing 

w,(a) = u,( a 

we get from (6) that 

1 3 A=(n), 

R # (n), 

‘~ 1 
J, > 

2 J,(x)M’,(a)tn=n (1 -x;t)-“1 
PI>0 i 

=? z. (-:‘“> 

=c ii&! ;,c, (A, 
n 

(7) 

This determines J,, up to normalization, and property (P3) then yields (a). 

Note. We now get from (8) that u>,(a) = l/cr”n!. By definition, ~~(a) is 
the coeficient of x; (or m,) in J,,, which by (a) is given by 

v,(a)=P,(cr)=(l+cc)(l+2cr)...(l+(n-1)x). 
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Thus by (7), we get 

j,,=(J,,J,,)=r”n!(l+sr)(l+2a)~~~(l+(n-l)~). 

In Theorem 5.8 we will determine ,j, for any 3.. 

(b) We have shown above that 

c J,,(s) f’/d’n! = n (1 - .\‘,?I ’ x. 
II20 1 

(9) 

But 

as in [M,, p. 171. Comparing with (9) yields (b). 

(c) We have 

Comparing with (9) yields (c). 

(d) Analogous to (c), using 
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(e) A well-known identity in the theory of symmetric functions 
[L, Sect. 7.2; M, , Ex.1, p. 361 asserts that 

where (in the notation of [M,, Ex. 4, pp. 28-291 

Putting p = l/c~ and comparing with (9) yields (e). 1 

The next result gives a further interesting consequence of Proposition 2.1. 

2.3. PROPOSITION. We have 

Jy=(.Y, +.x2+ . ..)“=cPn! c J,j,F’. 
i + n 

(The value of j, ’ is given by Theorem 5.8.) 

Proof Take the coefficient of J, .rz. . JJ~ on both sides of (6). On the 
left-hand side we obtain (by property (P3)) 

n ! 1 J, j,; I. 

On the right-hand side we get a-“J’f, and the proof follows. 1 

The previous proposition may be generalized as follows. Given a 
partition p, define 

Also set ~!=~,!~2!...r and 

2.4. PROPOSITION. We have 

u. (a) fPp! = q :(a) j: w p, I) 

where v,,(a) is given bj> (4). 
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Proof: From (9) we have 

as in [M, , Chap. 1, proof of (4.2)]. Hence by the proof of Proposition 2.1, 
we have 

( p,., 111 ) =6 P ‘/‘ r”“/l!. 

Thus from (4) we get 

while from (Pl ) and ( lo), 

(J,. 7 &, > = q,,; ( a 1 .i;. 3 

and the proof follows. 1 

Proposition 2.4 reduces to Proposition 2.3 when p = (l”), since by (P3) 
we have D;,,,,(X) = n!. The case when CL = 1 is due to Kostka (see, e.g., 
[M, , Chap. I, (6.7)(vii)] ). 

It is clear from properties (Pl) and (P2) that the J,‘s with 3. I--H form 
a basis for the space A”@ Q(E) of homogeneous symmetric functions of 
degree II with coefficients in Q(a). The next result considers the dependen- 
cies which result when we set all but r variables equal to 0. 

2.5. PROPOSITION. Let r 3 0. The Jack poiworniuls J,(.r, . . . . . s,) uunish 
ftir r < I( 1,) and are hear!,I independent othern~ise. 

Pro& Suppose r < 1(J). Let 1~1 = II.1 and 11 d i.. Then WZ~(.Y,, .._, x,) = 0, 
so by property (P2) we have J,.( .Y , , . . . . x,) = 0. If on the other hand A’. A’, . . . 
are distinct partitions all of length 6r, then the monomial symmetric 
functions nz j,(s, , . . . . x,) are linearly independent. Hence by (Pl ) and (P2) 
the J,,(.r,, . . . . .Y,)‘s are linearly independent. 1 

3. DUALITY 

The results in this section are due to I. G. Macdonald, and I am grateful 
to him for communicating them to me. They will play an essential role in 
the derivation of our later results. 
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A. James [Jam,] used the fact that zonal polynomials are spherical func- 
tions for the pair (G,!.,(R), O,(R)) to deduce that they are eigenfunctions 
of a certain partial differential operator, the Laplace-Beltrami operator. We 
first give a formal generalization of this result for Jack polynomials. Fix a 
positive integer n. Define the operator &cc): A 0 Q(a) + A@ Q(E) by 

(11) 

It is easy to see that if f E n @Q(a), then D(cr)f~ il @Q(a). Moreover, if 
f is homogeneous of degree n, then so is D(a)f: When CI = 2, (11) reduces 
to the LaplaceeBeltrami operator of James. For general tl, there no longer 
seems to be a group-theoretic interpretation of (11). 

3.1. THEOREM. The Jack pol~~nornials J,(x,, . . . . s,; cx), where l(i) 6 n, are 
eigenfunctions of D(U). The eigenvalue ej.(cc) corresponding to J, is given by 

4j,(C()=!Xh(3.‘)-h(i)+(H-1) 121 

There are no further eigenfunctions linearly independent from the J;‘s. 

Sketch of proof: One shows by direct computation that 

D(a)Pi=~Pj, 1 (a&(&- 1)+&(2n-1,--l) 
k 

+a c 
1,&p;.,,, i, &-’ 

PjPlk-j . 
r#, Pr, P;, “F P, C I ,=I 1 

From this it is easy to deduce that D(U) is self-aaljoint, i.e.! 

<D(a)f. s> = <f, D(a)g) 

for all A gg A 0 Q, by checking the cases J‘= pi, g =pp. It follows that 
D(a) has a set of orthogonal eigenfunctions which form a basis of 
n 0 Q(a). One also checks that for any partition 2, 

D(a)m, = 1 b;.,(a)m, 
p<i 

(12) 

for certain scalars b;,(a) E Q(a), where b,,(E) = ej,(a) # 0. It then follows 
from Theorem 1.1 (using only p 8 i in (P2) instead of p < A) that 
D(a) Jj.(S; a) = e;.(a) J;.(x; x). 1 
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Note. It follows easily from (12) that for any partition i. there exists an 
eigenfunction Kj.(.~; E) of D(E) of the form 

If all the eigenvalues of D(a) were distinct, it would follow using p 2 n in 
(P2) instead of p G i that K,(.u; G() is a scalar multiple of J,(.Y; Y), Hence 
Theorem 1.1 would be proved. Unfortunately the eigenvalues of D(a) are 
not distinct, i.e., we can have i,#p but e;,(a) =e,,(c() (as well as Ii.1 = 1~1). 
Macdonald [M3, Chap. VI] circumvents this difficulty in two ways. For 
the first way, he defines more general symmetric functions P,(s; y, t) 
(mentioned in Section I ) and a more general operator Dy” such that the 
P,.(.u: 4, r)‘s are eigenfunctions of Dy” with distinct eigenvalues. For the 
second way, he defines a class 0:’ of operators (where D\“‘= D(s)) which 
separates the eigenfunctions J,(.Y; a). In what follows we can circumvent 
the problem of repeated eigenvalues with the following simple lemma, 
whose proof is omitted. (We do not see, however, how to use this lemma 
to prove Theorem 1.1. Our primary purpose for including Theorem 3. I 
here is its use in the proof of Proposition 5.1.) 

3.2. LEMMA. Jf lE.1 = (p(( und e;.(u) = e,,(u), thrtl i uttd /I ore ittcotnpuruhie 
itI dominance order. 

TO state a second fundamental result of Macdonald, define for 
0 # p E Q(a) a Q(r)-algebra automorphism cob: A @Q(a) -+ A @ Q(E) by 
the condition wpp, = flp,, r 3 1. Thus the usual involution tc): ‘4 --t A 
defmedin[M,]isgivenbywf=(-l)“w _, .L where ,f’ is homogeneous of 
degree II. 

3.3. THEOREM. Let 

j.(,. a) = (- 1 )‘“I (,I A 3 , J;,(s; l/a). (13) 

Then j.(x. a) = r+‘J~(r. 2) I 3 1. 7 . 

Sketch of prooj One shows that o-,J,(a) is an eigenfunction of D( I/cc) 
corresponding to the eigenvalue e(i’, l/r). It follows that D(a) j,(.~: c() = 
e(/,‘, l/cc) j,(.~; c(). Moreover, by (11) we have that D(c1) J^,(.u; CI) is a linear 
combination of monomial symmetric functions m, with p d i.. Hence by 
Theorem 3.1 and Lemma 3.2. .?,(c,) = u,(a) J,(Cr) for some z~,(x). 

If we expand Jj. in terms of the power-sums p,,, then by property (P3) 
we have 

J; (s; 2) = p; + other terms. 
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Similarly, 

w l!3Jj.‘(x; l/x)=w-I/x(p?+ “‘1 

=(-1)“ct -“p; + other terms. 

Comparing with (13) completes the proof. 1 

Since w m,Ia, as well as the map sending f~ Ak@ Q(U) to (- l/c~)~f, is a 
Q-algebra automorphism, we immediately obtain the following useful 
corollary of Theorem 3.3. 

3.4. COROLLARY. The Q(a)-linear map A @ Q(E) + A 0 Q(M) defined by 

Jj(X; c1) H J;.‘(S; l/Cc) 

is an algebra automorphism of A @ Q( tl). In particular, 

(J,,J,,, Jj,) #Oe (Jlr’J\m,‘J;.,) #O. 

An alternative statement of Theorem 3.3 is the following. 

3.5. COROLLARY. Let 

Jj =C cj.pta) Pp. (14) 

Then 

J;,=c (-2)‘“’ “P’c;,,,(l/cc)p,,. 1 

We conclude this section with a further consequence of Theorem 3.3. 

3.6. PROPOSITION. Using the notation (4), we have 

jj. : = (J;, Jj ) = Clli’l’j~j,(a) O,.,j.‘( l/~), 

Proof Let ( , ), denote the ordinary scalar product on symmetric 
functions (the case c( = 1 of (3)), and let o denote the usual involution 
(satisfying o(~~,)=(-l)‘“l~“‘)p,) [M,, Chap. I, (2.13)]. Note that 

(P;., o-l,,(P,)) = (P,? (- lla)““‘P,,) 

=tel)‘“’ (Pj.>“~Pp)I. 

Hence for any J g E n 0 Q(a), we have 

CL 0 -I:,(g)) = CL w(g)),. 
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Let .f=J;(s; x) and g== J,,,(x; l/x). Then (13) yields 

(J;,, jj)= (J,,(.~; r), OJj.‘(S; l/~)),. 

By property (P2) of J, and of Schur functions .s/‘. when we expand J, in 
terms of Schur functions (using also the fact that the coefficient of w,, is s,, 
is 1) we obtain 

J, = u,,,(cI)s,. + lower order terms (in dominance order). 

Since OS,, = .sI,. [M , , Chap. I, (3.8)] and conjugation is an anti- 
automorphism of dominance order [M,, Chap. I, (1.1 1 )], we also have 

tUJ,‘(.u; !/cI) = 11;. j..( I/cc)s; + higher order terms. 

Since (s,., s,,), =ij,.+ [M,, Chap. I, (4.8)], it follows that 

(J,, jj)=~jj.(,) ~‘j,‘j’(lla). (15) 

On the other hand, by Theorem 3.3 we have 

Comparing 

The skew 

(J;,.jj)=ap”‘(J,. J,)=rmiL’.j,~. 

15) and (16) completes the proof. 1 

(16) 

4. SKEW JACK SYMMETRIC FUNCTIONS 

Schur functions s;.,~‘, besides being of intrinsic interest in 
themselves, play a basic role in developing properties of the ordinary 
Schur functions Sj, [M, , Sect. 51. Similarly we need to develop a theory of 
skew Jack symmetric functions. If 3. and p are any partitions, then define 
the skew Jack symmetric function J; II E A @ Q(x) by the rule 

<J>.!pr Jv> = (Jj.3 JpJv>. (17) 

for all partitions V. Hence the linear transformation dp: A @Q(X) -+ 
A @Q(a) defined by d,,(J,.) = Jlflr is adjoint (with respect to the scalar 
product (3)) to multiplication by J,,. 

Define rational functions K;,,(N) by 

g;v=g;,.W= (J,,J,, J,.). 

Equivalently, 

J,,J’.=c j;‘g;,.(a) J,. (18) 



88 RICHARD P. STANLEY 

It then follows from the definition (17) of JAI, that 

J;.ir = C j,~ ‘gt,( a) J,. (19) 

Clearly g;,.(a) = 0 unless Ihl = 1.~1 + ]vI. The Littletilood-Richardson co& 
ficients ciV are defined by 

s,s,. = c c;,,s;: 
Since J,(s; l)= H,s,, we have 

g,“,,.(l)= H,,H,.H,y’c’ . ,rr, 

The Littlewood-Richardson rule [M, , Sect. I.91 gives a combinatorial 
interpretation of ci,,, and one of our main concerns here will be to 
generalize it as far as possible to g:,(a) (see Theorem 6.1 and Proposition 
8.6). 

If A= (1., . A,, . ..) and ,U = (pi, ,u*, . ..) are partitions, then define A + p by 
(A + p), = i, + pi, and define A u p to be the partition whose parts are the 
parts of i and the parts of p, rearranged in decreasing order [M, , p. 51. 
It follows that (A + p)’ = II’ u p’ and (1. u p)’ = A’ + $. 

4.1. PROPOSITION. Zfgi,,(a)# 0 then 

Proof. Write 
m,m,, = 1 t:,,m,. 

It is easily seen that if tb,, #O then 26~ + v. Hence by property (P2) of 
Jack symmetric functions, if g:,(u) # 0 then ;1< ,u + v. Now apply Corollary 
3.4 to get 

But if g;:,.(a) # 0 then A’ <p’ + v’, which is equivalent to p u v Q A. 1 

Later (Corollary 6.4) we will obtain a stronger result than Proposition 4.1, 
but for the present Proposition 4.1 will suffice. 

Now let x = (xi, x2, . ..) and y = (v,, >I~, . ..) be two sets of variables. 

4.2. PROPOSITION. We have 

J,,,( X, J’; c() = 1 J,/p(s; a) Jj./,(Y; a)i; ‘. (20) 
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In particular (taking p = @ ), 

Jj,(S, ?‘; 2, = C J,.(.U; a) Jj.~,.(p; r)j,~‘. 

Proof: The proof parallels exactly the corresponding argument [M, , 
(5.10), p. 4 I ] for Schur functions. Namely, let z = (z, , z7, . ..) be a third set 
of variables. Extend the scalar product (3) to functions symmetric in 
variables .Y and : separately by the rule (J,(.u)J,,(z), J,(.u)JT(;)) = 
(J,, J,)(J,,, J,). NOW for fixed ,u, 

,y J;.,,,(x) J,(-).i;. ’ = jy J,,(z) J,.(.u) JJ:)j, ‘, 

since the scalar product of the left-hand side with J,.(s) Jj.(:) is (Jj.,u, J,.), 
while that of the right-hand side is (J,,J,, J,,). Hence by Proposition 2.1, 

1 J,.,,(.“)Jj(=)J,,(I’)jII 'jj. ’ = c J,,(J) J,,(z) J,.(-y) J,.(r) j,, ‘j, ’ 
1.P ,‘. i’ 

=n (1 -.r,z,) 1,s.n (1 -y,zk) ‘II 
r.h /.A 

= C Jj(S, ?‘) J;(=),i, ‘. 

Comparing coefficients of Ji(z) yields 

J,(s, y) = 1 J,.,,(x) J,,(.r1 jl; ‘. 
0 

Substituting (x, ~1) for s and z for .I’ gives 

C J ,.,, A-T .v) J,,(=)jl:’ = J,.h ~1, =) 

(21) 

= 1 J j , , , . ( . " )  J,,! lc(l.) J , , ( z )  j,:'j,', 

I ' .  I  

again by (21). Taking the coefficients of J,,(z) at each end of this chain of 
equalities yields (20). 1 

5. FURTHER PROPERTIES OF JACK SYMMETRIC FUNCTIONS 

In this section we derive a number of properties of Jack symmetric 
functions, some of interest in their own right and some of which will be 
used in the proofs of the main results in the next section. 
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5.1. PROPOSITION. Let I( A) = n, and kvrite 2 - I = A - I, = (A, - 1, 
A2 - 1, . ..) I,- 1). Then there exists a rational function c,.(c()E Q(u) for 
which 

Jj.(-K, 3 ...1 X,)=Cj,(E)X, “.XnJ,&,(Sl, . ..) .K,). (22) 

Prooj Write L =x, . . x,Jnp,(x,, . . . . xn). We have 

Now for any homogeneous function f(x,, . . . . x,) of degree m we have 

Moreover, since 

we have 

c Xi n -= 0 rzjXi-xj 2 . 

Hence by Theorem 3.1 and the fact the fact that 1-i = n, we have 

D(a)L= nb((&I)‘)-h(LZ)+(n-1) Ii-Z/ +a Ii-Z1 + l 
[ ( >I 

L 

= 
[ 

M c (i-2)1.1- c ; 
0 

+(n-1114 
ia ,a2 

-n(n- l)+sr 13.1 --an+ 
n ( >I 2 

L 

3’ 
= 

[ 
c( 1 (i-l);Ii- C ;’ +(n-l)lil L 

is 1 ,dl 0 I 
=ej.(a)L. 
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It follows from Theorem 3.1 that L is a linear combination of 
J,,b, , . . . . .Y,)‘s for which e,(cc)=e,(x) and /A) = (~1. Now by (P2) every 
monomial symmetric function ln,, appearing in L satisfies I’ < 1.. It follows 
that 

for certain c,,(cc)EQ(c(). Since c,,(cc)=O unless e,(cc)=e,,(cc), it follows 
from Lemma 3.2 that L is a multiple c.~(cY) of J,(.u, , . . . . x,). 1 

Given a partition A, let HZ = i, By property (P2) we have 

J,(-U) = .U;tfj.(S’) + g;,(-U), 

where f,(Y) is a symmetric function in the variables x’ = (x1, .yj, . ..). and 
where no monomial appearing in g,(.u) is divisible by xy. Write 

f;,(s’) = [.Kyj Jj,(X). 

the coefficienf of .uy in J,(r). 

5.2. PROPOSITION. Let YYI = 2, us ahoue, and write 2 = (AZ, 2, ,... ). Then 
there exists a rational function d,(a) for which 

[OK;‘] J;.(.~) = d,(cC) J,~(.U’). (23) 

ProoJ: By Proposition 4.2, 

Jj,(+Y)= J;(-Y,, x’)=C J,(x,) J,,,,(s’)~~~‘. (24) 

By property (P2) we have J,(.u, ) # 0 if and only if p consists of a single 
part r, in which case J,,(.u,)= J,(x,) =u,,(x)x;. It follows from (24) that 

Thus, writing 

Jn.,&‘) = c d,,(a) J,,(Y), 
I’ 

we have 

dj.p(~)+O~ (J,, J,J,,) #O. (25) 
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For any p with m > p,, consider the product e,J,, . When we restrict to 
the variables x1 , . . . . x,, we obtain by Proposition 5.1, 

x1 . ..x.,,J,.(x,, . . . . x,) = c~.+,(cI)-’ J,., ,(x1, . . . . x,), 

where ~1’ + I = (p’, + 1, . . . . pi, + 1). Hence by Proposition 2.5, 

mb,u, and (e,J,,.,J;,)#O=A’=p’+Ior I(A’)>m. (26) 

Assuming m > pI, the condition I’ = p’ + Z is equivalent to i = p u (m) (i.e., 
p = I.- ). Moreover 1(%‘) = ,I, = m, so /(,I’) > m is impossible. Thus dualizing 
(26) (i.e., applying Corollary 3.4), we obtain 

map, and (J,J,,, Ji)#O+p=A . (27) 

But if (.Z, J,, Jj,) # 0 then by Proposition 4.1 we have p u m 6 3, so 
p1 < ,I1 = m. Thus the condition m > p1 is superfluous in (27), so by (25) 
the proof is complete. 1 

If p c_ 2 then [M 1, p. 41 the skew shape A/p (regarded as a difference 
,I - p of diagrams) is called a horizontal strip if no two distinct points of L/p 
lie in the same column. Call a horizontal strip A/p an n-strip if IL/PI = n. 
The next result, well-known for Schur functions [TM,, (5.16), p. 421, will be 
quantitatively improved in the next section (Theorem 6.1). 

5.3. PROPOSITION. (J,J,, J).) # 0 if and only if p G 1. and l/p is a 
horizontal n-strip. 

Proof The “if” part follows from the corresponding result mentioned 
above for Schur functions (the case CI = 1, except for irrelevant scalar 
factors). The “only if” part is proved by induction on 1~1, the proof being 
clear for 1~1 = 0. 

Put v= (n) in (18) to get 

JpJ,,=c j;‘gt,J,. 

Since (J, J,, Jn ) # 0 * p u (n) < I by Proposition 4.1, we may assume 
l(jL)2l(p) in (28). 

Case 1. 1(1)=1(p) = 1. Restrict (28) to the variables x1, . . . . x,. By 
Propositions 2.5 and 5.1, we obtain 

cpxl . ..x.J,,~,(.x,, . . . . .x1) Jn(x,, . . . . xl) 

= 1 j;‘ge,c,x, . ..x.J,_,(x,, . . . . x,), (29) 
/(d)=l 
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where I= Z,. By induction, if g;, #O then (p-Z) E (E.-Z) and 
(A- Z)/(p - I) is a horizontal n-strip. But then p&i and I./p is also a 
horizontal n-strip. 

Case 2. Z(I.)>Z(ZL)=Z. Apply Corollary 3.4 to (28) to get 

J,, Jl”=c (liii,)s;,J,5 (30) 

where we use the notation S(U) =,f(r-‘). The largest power of x, dividing 
any monomial appearing in .Z,,JIn is .x$ + ’ = .Y{+ I, so this is also the largest 
power of x1 dividing any Jj.’ appearing in (30). (By property (P2), these 
largest powers cannot “cancel out” of the right-hand side of (30).) Hence 
if gi, #O then A’, <pi + 1. Thus either Z(L) = I (which was Case 1) or 
/(I,)=/+ I. 

Now apply [.Y:“] to (30). If Z(E.)=l then [x:“]J,..=O. Thus by 
Proposition 5.2, we obtain 

Now apply Corollary 3.4 to get 

(32) 
f(i)=/+ I 

By induction (~--Z,)G(J~-Z,+,) and (A-Z1+,)/(p-Z,) is a horizontal 
(n - 1)-strip. But then ,u L L and E./,u is a horizontal n-strip, and the proof 
is complete. 1 

We are now ready to prove a series of explicit formulas involving Jack 
symmetric functions. The first of these formulas is well-known in the case 
of Schur functions [M,, Ex. 4, p. 281 and (in an equivalent form) zonal 
polynomials [C; T, p. 50, Thm. 21. It was independently conjectured for 
Jack symmetric functions by I. G. Macdonald and this writer. We write 
Ji( 1”) for the Jack symmetric function J,(x; tl) evaluated at 

.Y1=.x~= ‘.. =X,=1, .I-,+, = .Y “+2= ... = 0. 

5.4. THEOREM. We haue 

Ji(l”)= n (n-(i-l)+cc(j-1)). 
(i, , I E 2 

Proof: Induction on 12) and for fixed JE.1 on reverse dominance order. 
The initial conditions consist of the case E, = (I’)- and here we have 
J,,(l”)=r!e,(l”)=r! (r)=n(rz-i)...(n-r+l), as desired. 
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It is easily seen that 

m;,( 1”) = n ( >( 
4/z 1 

10) m,U), m2(A), . . . > 
(33) 

It follows from property (P3) that J,( 1”) is a polynomial function of n of 
degree IAl and leading coeficient 1. 

Now from Proposition 4.2 (with p = @) we have 

J;.( 1”) = C J,,( 1”- ‘) Jj,,~( 1 )j,~ ‘. (34) 

NowJj.,,.(l)#Oif and only if (Ji,,,,J,)#O, where ~I=)A) -Iv]. Hence by 
Proposition 5.3, VGA and A/v is a horizontal strip. This means that v 
(regarded as a diagram) must contain every element of 1. which is not the 
bottom element of a column. In symbols, 

J,,,.( 1 ) # 0 =2 ((i, j) E k i # $1 z v. 

Hence by induction, every term on the right-hand side of (34) is divisible 
(as a polynomial in n ) by 

n (n-l-(i-1 )+cc(j-1))= n (n-(i-l)+a(j-1)). (35) 
(i.j)el (i, j)El 
i f i; i> 1 

Thus the polynomial J,(l”) is divisible by (35). 
Now let p = R- = (A,, A3, . ..). let WZ= R,, and consider as in (18) the 

product 

=j,‘ge,(a) Jj.(l”) + 1 j,F'gl;,(a) J,(l"). (36) 
“<i 

By properties (Pl) and (P2) the coefficient U~j.(~) #O in (4), and it follows 
again from (PI) and (P2) that g$,Jcr)#O. By Proposition 4.1 or by 
Proposition 5.3, if g);,(a) # 0 then v, >, m. Hence by induction, if v < 1 and 
g;,(a) #O, then J,( 1”) is divisibie by 

m 

n (fi+a(j-1)). 
/=I 

(37) 
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Now by (9). 

c J,,( 1”) t”‘/CPnz! = (1 - t) n’X 
m>,O 

= ,I,) ( -$) ( - 1 1”’ t”‘, 

from which it follows that 

J,,,(l”)= fi (n+a(j- 1)). 
.I= I 

Hence the left-hand side of (36) is also divisible by (37), so J;.( 1”) is also. 
The polynomials (35) and (37) are relatively prime (since the zeros 

(i- 1)-cr(j- l), i> 1, and -e(j- I) are distinct), and we have shown 
that Jl(l”) is divisible by both (35) and (37). Hence Jj,(l”) is divisible by 
their product. But their product has degree 111 = deg J,( l”), so J,.( 1”) is a 
multiple of their product. Since Ji( 1”) is manic, it is equal exactly to the 
product of (35) and (37), and the proof follows by induction. 1 

Note. Even if one is interested in Theorem 5.4 only for a particular 
value of c( (such as the zonal polynomial case r = 2), it is necessary to work 
with general cx since otherwise one cannot conclude that the polynomials 
(35) and (37) are relatively prime. Thus the more general viewpoint of Jack 
polynomials can lead to simpler and more elementary proofs than might be 
otherwise possible. 

If (i, j) E A, then recall from Section 1 that the quantity hj,(i, j) = h(i, j) = 
i., + i,! - i-j + 1 is called the hook-length at (i, j). We define two 
“cc-refinements” of Ir ,( i, j) as follows : 

h,*(i,j)=h*(i,j) =r.;- ifC((A,-j+ 1) 
h”,(i, j) = h,(i, j) = 3.1 - i+ 1 + a(j., -,j). 

We call h*(i, j) the upper hook-length and h,(i, j) the lower hook-length at 
(i, j). Regard the diagram of 2% as consisting of juxtaposed unit squares; e.g., 
Fig. 1 shows the diagram of A = (4, 3, 1, 1). The set A ,.(.Y) of squares 
directly to the right of x= (i, j)~j” is the arm of X, of size a,(.~)= 
#A,(x)= 2,-j. Similarly the set L;.(x) of squares directly below XE 1 is 
the leg of X, of size I,(X) = #L,(X) = i,’ - i. Thus 

h,(_u) = I,(x) + cc(a,(x) + 1) 

~Z’,(S) = I , (S)  + 1 + srU,(.u). 

607 77:,-7 
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FIGURE 1 

It is as if we are unable to decide whether the square x belongs to the arm 
or to the leg, so it is necessary to consider both possibilities. Figure 2 show 
the upper and lower hook-lengths of the partition (4, 3, 1, 1). 

5.5 PROPOSITION. Let /(,I) = n. Then 

c;.(a) = i h:(i, 1 ), 
i=l 

ulhere cA(m) is defined by Proposition 5.1 

Proof Put x, = . . . = x, = 1 in (22). By Theorem 5.4, 

FI,,,j)ti (a-(i- l)+dj- 1)) 
c”(a)=n,,,,.;.&,(~-(i-l)+x(j-l)) 

= fl (n-(i- l)+cr(j- 1)) 
( i, , ) E i 
, = i, 

= fi h’,(i, 1). 1 
,= I 

3+4Q lt3a lt2a a 
4t3a 2t2Q 2ta I 

2t3a 2Q a 

3+2a 1-t-a I 

l+Q 

2 

FIGURE 2 
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5.6. THEOREM. The coefficient u,,(%) ofm, in J,. (see (4)) is given hi 

U;.;.(E) = n h”,(s). ,t/ 
Proof, Induction on 111, the case 121 = 0 being trivial. Let H =/(A) and 

I=Z,=(I, l,..., l)(ntimes). and set .Y,.+,=.Y,+~= . . . =0 in (4). We get 
by Proposition 5.1, 

C~(X)X, “‘X,JIP,(,X,, . ..) .v,)= c L:j.lr(‘~)mjJ.Y,, . ..) s,). 
,c < 7. 

If ~6 I, then m,,(s,, . . . . .x,)=x, . . ..Y..Hz,, ,(x,, . . . . x,) (which equals 0 
unless I(p) = I(A)), so 

Thus in particular, 

and the proof follows using Proposition 5.5 and induction. 1 

5.7. PROPOSITION. Ler A, = m. Then 

d,(a) = fj /I’,( 1, j), 
,= I 

where d,(r) is defined h-v Proposition 5.2. 

Proox By definition of d,(a) and ~,.,,(a) it is clear that 

l’;.;.(a) = d>.(a) upp(a ), 

where p = /z = (AZ, A3 , . ..). The proof follows from Theorem 5.6. 1 

5.8. THEOREM. We haue 

.ij,= (Jj.3 J/.> = n h”,(s) h,*(s). 

ProoJ Immediate from Proposition 3.6 and Theorem 5.6. 1 
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6. PIERI'S RULE AND THE EVALUATION OF u,,,(cI) 

Pieri’s rule is the name given to the formula [M,. (5.16) p. 421 

s,st, = c s;., 

where i ranges over all partitions for which p G 1. and 2,‘~ is a horizontal 
n-strip. Equivalently, 

<s,sn3 si>l = 
i 

1, if p c 1. and 1/p is a horizontal n-strip 
0, otherwise, 

where the scalar product is given by (3) with a = I. 
In this section we extend this rule to Jack symmetric functions, and we 

use this extension to give a (rather messy) combinatorial interpretation of 
z),.,(a) analogous to what is done in [M ,] for Schur functions. A result 
equivalent to Theorem 6.1 in the case IX = 2 (i.e., for zonal polynomials) is 
due to Kushner [K]. 

Our main result is the following: 

6.1. THEOREM. Let p E I., and let ;1/p be a horizontal n-strip. Then 

<JpJn> Jz)=( n AiQ(s))(,sg, hZ(s))(ci Bj.,(sI)~ 
Y E ,L 

(38) 

where 

h:(s), if’A/p does not contain a square 

A,,(s) = in the same column as s 

h,*(s), otherwise 

i 

hR(sL ifl/p does not contain a square 

B,p(s) = in the same column us s 

h”*(s), otheruise. (39) 

Before turning to the proof, let us make a few observations concerning 
the form of (38). Theorem 6.1 shows that (J,J,, Jj) is obtained by 
choosing either h*(s) or h,(s) for every element s of p, (n). and 2, and then 
multiplying these expressions together. Moreover, we choose h*(s) and 
h,(s) exactly 121 times each. Note also that the middle product in (38) has 
the explicit evaluation 

fl h,*(s) = n!a”. 
.AE,n, 
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EXAMPLE. (Jj2J4, J,,,) is the product of all the entries of the three 
diagrams in Fig. 3. 

Proof of Theorenz 6.1. Induction on 1~1, the proof being clear for 
1~1 = 0. The argument closely parallels the proof of Proposition 5.3, but 
now we know the values of the quantities j,. c;(r), n;(a) which appear 
there. 

As in (28), write 

JJ, = c j,:‘&(w,: (40) 

As in the proof of Proposition 5.3 (or by Proposition 5.3 itself), we may 
assume I(n) = I(p) or I(A) = 1(/l) + 1 in (40). 

Case 1. f(L) = I(p) = 1. Restrict (40) to the variables x,, . . . . x,, and let 
Z=Z,. By (29) we have 

Hence 

gfi=j,..i;L,cI,c;. ‘&ii,,,. (41) 

We know all the factors on the right-hand side of (41) by Proposition 
5.5, Theorem 5.8, and induction, so it is simply a matter of checking how 
they cancel. The last factor in (41) consists of all factors in (38) except 
those of the form s = (i, 1) E p and s = (i, 1) E i.. Since 2,‘~ has an empty first 
column, we need to show that 

n h”,(t 1 ) n hT(i, 1) =.jj. j;.I',c,,(z) c;.(a) '. 
Il. 1 1 t p (f.l)~I. I 

3t4a lt4a 2+2a Ita I w 2+2a 2a 
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But it is immediate from Proposition 5.5 and Theorem 5.8 that 

n h,*(i, l)=j,jy!,c;.(a)v’, (t,l)ti 
so g:,,(K) has the desired form. 

&se 2. /(A)= 1 +1(p)=!+ 1. Now from (32), 

$J,-,J, -I = C jT’&dj.,J;.-I,+,. 
I(i)=/+ 1 

Hence 

gin = j,jj’,,+,dJ l/d;..) g”,:y,+;. (42) 

Again the last factor in (42) consists of all factors in (38) except those of 
the form s = (i, 1) E p and s = (i, 1) E i. Since L/p has a nonempty first 
column, we need to show that 

But 

n h,*(i, l)=cc’d,. 
(l,llEP 

and the proof follows. 1 

We next obtain a combinatorial interpretation of the coefficients 
uiv = u+(a) of (4). More generally, set 

Ji,p=c ui,p.vJv. 

We will obtain a combinatorial interpretation of u~.,,,~ analogous to 
[M 1, (5.12), p. 421. Following [M,, p. 41, define a tableau (or “column- 
strict plane partition”) of shape n/p to be a sequence of partitions 

p = i(O) & A(‘) c . . . E 1,“’ = A, - 

such that each skew diagram eCi) = A(” - I-(‘- ‘) (1 f i< v) is a horizontal 
strip. We may represent T graphically by numbering each square of the 
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skew diagram 0”’ with the number i (1 < i 6 v), and we often think of a 
tableau as a numbered skew diagram in this way. For instance, the tableau 

(2)~(3, 1)~(5, 1, 1)~(5, 1, l)z(6,4, l)c(6. $2) 

is represented by the diagram 

1224 
14445 
2 5. 

If a,= ltYi’l, then the sequence (u,, . . . . a,) is called the type (or Mxeight) 
of T. Define the monomial -yyT associated with a tableau T to be 

Thus the above tableau T has type (2, 3,0,4, 2), and X’ =x:.Y~.Y~s~. 
The combinatorial interpretation of Sj.~‘lc takes the form [M,, (5.12), 

P. 421 

(43 1 

summed over all tableaux T of shape j-/p. Thus 

J,(.u; 1 ) = H, C sT, 
T 

We will give a combinatorial interpretation of Jj.;{, of the form 

J,,;,, = c w( 7-1 x7; 

summed over the same set as in (43), where #l(T) E CP(cr) is a certain weight 
associated with T. 

6.2. LEMMA. Write Jj.jw(t) for J,!,,(x) evaluated at x, = t. x2 = xj = 
. . = 0. Then 

Jj-~~(t)=g,i;ntn/~nn!, 

HIhere II = 1 A/p 1. 

Proof: By property (P2) we have 

if l’=(n) 
if I(V)> 1. 
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Hence by (19), 

J+(t) = j;-‘b&. 

Since j;- Iv,, = l/or%!, the proof follows. 1 

6.3. THEOREM. We have 

Jill, = c w( T) x ‘, 

summed over all tableaux 

of shape A/p, where 

(44) 

(45) 

Here B,,,(s) is given by (39). while we define C,,(s) (where vJa is a 
horizontal strip) blj 

h,*(s), if v/a does not contain 

C,.,(s) = a square in the same column as s 

h”,(s), otherwise. 

EXAMPLE. Let T be the skew tableau 

1124 
2234 
3 4 4. 

Then w(T) is equal to the product of all entries appearing in Fig. 4, divided 
by the product of all entries appearing in Fig. 5. (Disregard for now the 
fact that some entries are circled.) 

Proof of Theorem 6.3. By Proposition 4.2 and Lemma 6.2, we have 
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3+4o 

2+2a 

- 

I 

2t6a 3t4a 3t3a 2$2a 2a 2t6a 3t4a 3t3a 2$2a 2a I I 

lt4a 2+2a 2+a I lt4a 2+2a 2+a I 

3a 3a 1-t-a 1-t-a I I 
- - 

20 
Q, 0 I+a I 
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Now apply [X-T] to this equation and continue. If u1 + a, + . + a, = 
/%/pi, then we obtain 

where the sum ranges over all tableaux p = 1.‘~ i’ G . . . c A” = i of type 
(a i, . . . . a,). Now by Theorems 5.8 and 6.1, we have 

and the proof follows. 1 

The formula (45) for MI(T) can be slightly simplified, since in certain 
circumstances we will have 

This will occur if s belongs to a column containing zero or two squares of 
I.‘+ i/lip ‘. We have circled in Figs. 4 and 5 those entries which are 
cancelled in this way. One can concoct certain additional cancellation rules 
which hold under rather specialized conditions, but in any event w(T) will 
in general be a messy rational function of ~1. 

An important corollary of Theorem 6.3 is the following strengthening of 
Propositions 4.1 and 5.3. An elegant proof based directly on Proposition 
5.3 appears in [M3, Chap. VI, (6.6)]. 

6.4. COROLLARY. If Jj.,r # 0 then p c A. Equivalently, if (J,, J,J,,) # 0 
then ,u E 2 and v c A. 

Proof: The tableau T of (44) will not exist unless p c 1”. 1 

7. CONSEQUENCES 

Many explicit formulas involving special Jack polynomials or special 
coefficients of Jack polynomials can be deduced from our previous results. 
Without attempting to be comprehensive, we give in this section a 
sampling of some of the more interesting results in this direction. We will 
express many of our formulas in terms of quantities like cI, dj,, v,,;,, and j,, 
which already have been explicitly evaluated. 

7.1. PROPOSITION. Let ,! = (A,, . . . . I.,), with A, > 0. Let 1 <j < I, and 
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define p = (i”, , ...l ij, l,..., l), kr#zere 13-1=ipl (so I(p)=j+I.,+,+ ... +i.,). 
Theta 

1’;,,=d;.,dj.?...d,,(3.,+,+ ... +A/)!, 

where j,‘= (i.,, i,+ ,, . . . . i.,). 

Proqf: We have 

D ,.,, = [x;’ . . .YJ.‘X,+ , x,,,,,] Jj. 

= d,,[.Y;” ..Y:‘.Y,+, .-.Y,,,,,]J;’ (by (23 )) 

=d,.,d,z...d,[s,+, '..S,(~,l]Jj~+l (by iterating (23 )) 

= d,, . djj(i.j+ , + . + i.,)!, 

by property (P3). 1 

7.2. PROPOSITION. The Jack symmetric jiincfion J?,,, has the folIowGng 
expansion in terms of ttlonomial symmetric funcriotis, 

J2,1,= i (i), (r+i+j), (2(i-r)+j)!nt2r,Z,i~r,~~, (46) 
r=O 

where (a),=a(a- i)...(a-b+ I) (with (a),= 1, even for a=O). 

Proof: By property (P2) the only monomial symmetric functions 
appearing in Jlz,, are nl,,,~, ,I4 /, 0 <r 6 i. By Proposition 7.1, 

~~,,,,~,,~~,~~~+,=d,,,,d,,~,,,~~~ci,,~,+~,,(2(i-r)+,~)!. 

From Proposition 5.7, one sees that 

d 
i 

a(a+b+a), a#0 
y,” = 

b, a = 0, 

from which (46) follows. j 

We conjecture that Jz,,, has the following expansion in terms of Schur 
functions: 

JzS,,= i (i),(a+i+j),(i-r-cc),~,(i+j-r)!s,~,~~~--~l+,. (47) 
s-=0 

It is easy to expand the Schur function s~,,z~,-,~+, in terms of monomial 
symmetric functions. Substituting into (47) and comparing with (46) leaves 
a combinatorial identity to be verified, which should not be too difficult. 
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7.3. PROPOSITION. Let 111 = m. Then 

u, zlm-2(cc) = (m - 2)! 
m 

K 1 2 
-b(L) + ah(i’) 1 ) 

where h(p) is defined by (1). 

Proof Write (n)[ = n(n - 1) . . . (n - I + 1) as above, and set z,(a) = 
u~,~,~~+z(x). From (33) it follows that 

=nm-((‘r)-a).- -‘+O(n”-‘), (48) 

since only the partition ,n = (1”) of m has m parts, and only p = (21” 2, 
has m - 1 parts. (Here m,(n) denotes the number of parts of p equal to i,) 

On the other hand, by Theorem 5.4 we have 

J,(l”;r)=n”+ c (-(i-l)+a(j-1) nm ‘+O(n” ?) 
(1.j) E i. > 

=n”- [h(n)-ctb(A’)]n”-’ + O(nrn 2). (49) 

Comparing coefficients of nm ’ in (48) and (49) completes the proof. 1 

A similar argument applies with power sum symmetric functions 
replacing monomial symmetric functions. 

7.4. PROPOSITION. Let 11.1 =m, and define c,Jc() by (14). Then 

C;. .  lm(@+) = 1 

Cj,,Z,m-'(C() = ab(i') -h(i). 

Proof Since p,( 1”) = m”p’, we get from (14), as in the proof of 
Proposition 7.3, that 

nm -[b(A)-ab(i’)]n”-‘+ I.. =CiIm(s()nm+c;.,,,~~(cc)n"~'+ ‘f’. 

Equate coefficients of nm and nm+ r to complete the proof. 1 

When a= 1, we have by [M,, Chap. I, (7.5)] that 

(50) 
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where x’.(p) is the irreducible character xi of the symmetric group S, 
evaluated at a conjugacy class of type p. There is a well-known com- 
binatorial method due to Littlewood and Richardson (equivalent to the 
“Murnagham-Nakayama rule”) [M , , Chap. I, Ex. 7.51 for evaluating the 
characters X”(U) of S,,,. The basis for this rule is a formula for expanding 
s,.p, in terms of Schur functions [M,, Chap I, Ex. 3.111. It is natural to 
ask whether these results extend to Jack symmetric functions. The answer 
seems to be negative; at any rate, it is false that if (JILpr, J,) #O, then 
A -p is a border strip (as is the case when r = 1 by [M,, Chap. I. 
Ex. 3.111). For instance, (J, p?, Jz, ) = 2c(‘(~ - I ). 

It is also natural to ask whether the coefficients cl+,(~) have a group- 
theoretic significance, as they do -for z = 1. For a = 2, the theory of zonal 
polynomials [Jam,, Thm. 41 provides an affirmative answer, and a similar 
result holds for c( = 4 CM,]. In general, however, the question remains open. 
For a general conjecture involving c’,,,(cc), see [H, p. 603. 

Following [M, , p. 31, write (r 1 s) for the hook partition (r + 1, 1’). Our 
next result gives an explicit formula for C,,,(U) when jW is the hook 
(n-1 Iii). 

7.5. PROPOSITION. Let 

(Hence by (50) we have d,,,( 1 )=x”(p).) Then 

~k+‘(k+n)d,.-~,,,,.,,(a) 

=i 
/=o 

(-lF’(j+(n+k-j)c~) 1 
[ 

n 
‘C, I 

mh) 
( )I m,(v) El, 

n*here E,. = (- l)‘-““’ (and bchere H,, z~,, rn, are as in Section 1). 

ProojI Letting p = ( Ik) in (38), we obtain 

(52) 

Now Ho- ,,k, = (n+k)!/(n- l)!li! and H(,,,-,,=(n+k)!/n!(k- l)!. 
Moreover, by Proposition 2.2(b) and Corollary 3.5 (or by [M, , Chap. I, 
(2.14’)], we have 

Jlk =k!e, =k! C E,z;‘~~. 
3 t h- 

(53) 
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Hence from (52), (53), and Proposition 2.2(b), 

+ c d,,,k-,,.n+k-~(p)~J lpp 
ptn+k 1 

Equating coefficients of pp on both sides yields 

Now from the definition (2) of zj. we have 

(55) 

Regarding (54) as a recurrence relation for d,,-. , ,kj,p as a function of k 
with the initial condition d,, + k, ~-, I+ = 0, we easily deduce (51) from (54) 
and (55). 1 

Note that when o! = 1 in (51) the factor k + n can be cancelled from both 
sides, and also that ( - 1)” -js, = ( - 1 )kpOr) (independent of j). Hence 
d ,n-IlkJf) (i.e., x’“~“~‘(P)) is a polynomial function Xk(m,, nr2, . . . . nzk) 
of the variables mi(p), 1 < i 6 k. More generaly, for any partition 1” of k 
there is a polynomial X,(m,, m2, . . . . m,), called the character polynomial, 
such that xnun(p) = X,(m,(p), . . . . nrk(p)) (see [S], and for a table see 
[K-T, pp. 288-3121). Proposition 7.5 shows that this result does not 
extend to Jack polynomials, since d,,- ,,kj,p(~) is a function not only of 
fill(P), . . . . m&L), but also of n. (This fact was already apparent for zonal 
polynomials from [D-L].) Some small values of d,, ,,,,,,(N) are given by 

and,,,(cr) = na (i.e., d,.,(r) = 1) 

a*(n + 1) d,, _ lll,,pO)= -(n+ l)a+dl +na)m,(p) 

a’(n + 2) d,, ~ l,2,,,(~)=(n+2)~-~(1+(n+l)~)ml(~L) 

+ a’(2 + ncr) 
ml(P) ( 1 2 

- a(2 + ncr) m,(p). 
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Other formulas for J, when 3. is a hook appear in [M,, Chap. VI, 
Ex. 10.5 and 10.61. The second of these formulas was originally conjectured 
by Hanlon [H, Property 21. 

We conclude this section with two specializations of J;(x; ~1) in addition 
to those of Proposition 1.2. This result was earlier proved by Macdonald 
[M,, Chap. VI, (4.12)(v))(vi)]. (The expression J;.(.Y; 0) appearing in 
Proposition 7.6 makes no sense from the point of view of the definition of 
Jj.(.q a) provided by Theorem I. 1 (since the scalar product ( , ) is 
degenerate when CI =O). However, since the coefficients ui,,(c() of (4) are 
rational functions of r it makes sense to set J;(.u; 0) =C ~~;.,(O)m,,. Con- 
ceivably some U;.,(X) could become infinite when g = 0, but Proposition 7.6 
shows in particular that this is not the case.) 

7.6. PROPOSITION. Let /I.] = m. Thrn WY how 

Jj.(.K; 0) = n i;! e,.y(.u). (, 1 
x~‘+“~)J~,(.K; l/a) /XZ,=(‘E (&- I)!)( fl m,(l)!> nz,. (57) 

,=I 13 I 

Sketch of proof: Let D(a) be the differential operator of (11). One 
checks that 

D(0) e;.,(x) = ((n - 1 ) (i( -b(i)) e,.,(s). 

Hence by Theorem 3.1 we have that J,(x; 0) is a Q-linear combination of 
eJx)‘s, where 1~1 = (A and h(p) = h(k). It is easy to see (a slight refinement 
of Lemma 3.1) that if 1~1 = /AI and h(p)=h(A), then R and p are incom- 
parable in dominance order. Moreover, the monomial m, occurs in ep., 
and if m,, occurs then v d 11. From this and (P2) we conclude that J,(.x; 0) 
is a Q-multiple of e,(.u). The factor n (A,!!) can be obtained most easily by 
comparing coefficients of s, .Y] . . .Y,,, where Ii/ = M. This proves (56). 

To show (57), write w(T, SI) for the expression in (45). It is not difficult 
to verify that the degree of M’( T, a) as a rational function of cr. (i.e., the 
degree of the numerator minus the degree of the denominator) is given by 

deg M( T, r) = Ip() - l(p) + (i) - (the number of entries i of T such that 
if this entry i occurs in column j, 
then no i occurs in column j + 1). 

(Note also that 1~) -I(p)+ 111 =degj,, + IA/p/.) It follows that if rl=@ in 
(44), then 

a “-‘%(T, l/x) /X=o=O 
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unless the type of T is a permutation of the parts of 1”. Hence the left-hand 
side of (57) is a Q-multiple ~JLx) of mj.. The factor fj,(cc) can be obtained 
directly from (45), or more easily by noting that 

and applying Theorem 5.6. i 

8. OPEN PROBLEMS 

Many conjectures are suggested by our previous results and by empirical 
evidence. We collect the most attractive ones in this section. The first 
conjecture is due to I. G. Macdonald. 

8.1. CONJECTURE. Let 

rvhere olP(cl) is given by (4). Then Gn,(a) is u polynomial with nonnegative 
integer coefficients. 1 

It is not even known whether t7,,(a) (or U,,(a)) is a polynomial. Some 
special cases of Conjecture 8.1 follow from Theorem 5.6 and Propositions 
7.1-7.3. 

The following conjecture is a consequence of Conjecture 8.1. 

8.2. CONJECTURE. The coefficients c;,~(cY) of (14) ure polynomials tilith 
integer coefficients. 1 

Proposition 7.5 shows that Conjecture 8.2 is true when I is a hook. It 
should not be difficult to verify Conjecture 8.1 when A is a hook using 
Proposition 7.5. 

We have one additional conjecture analogous to the previous two. 

8.3. CONJECTURE. For fived I., p, and v, the quantity (J,, J,,, J, ) is a 
polynomial in u with nonnegative integer coefficients. 1 

It is not even known whether (J,J,. J;) is a polynomial in CI. Of course 
Theorem 6.1 implies Conjecture 8.3 when v = (n). The following conjecture 
is a consequence of Conjecture 8.3. 
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8.4. CONJECTURE. We haue 

<J,iJv> J,.> foe (S/A, SE), #CL 

where ( , ) , denotes the case c( = 1 of (3). u 
A. Garsia has shown (private communication) that if (J,, J,,, J,), =2 # 0, 

then ( sZlcs2., szi > , # 0. 
In view of Theorem 6.1 and the Littlewood-Richardson rule for Schur 

functions, it is natural to ask for a combinatorial interpretation of 
(J,,J,., J,,) in general. We have only been able to find a conjecture for this 
value in the following special case. 

8.5. CONJECTURE. If (s~,s,, s,), i I, then 

(J,,Jv* Jj,)=(G, A,z(r))(!l ~.c,)j(n Ki(s))~ (58) 

where g,(s) = h:(s) or h”,(s). Moreol:er, one chooses h:(s) and h”,(s) exact!, 
11.1 times each in (58). 1 

We do not have an explicit conjecture as to when to choose h,*(s) and 
h”,(s). One problem with coming up with an explicit conjecture from 
empirical data is that the possible choices for h,(s) are not unique. For 
instance, we have (computed by P. Hanlon) 

<J,,, Jx,, Jm, ) = 38437 1 + a)3 (4 + r)(5 + cl). 

Figure 6 shows the possible choices for E,(s) consistent with Conjecture 
8.5, for each square of 211, 211, and 22211. Of the 16 different squares, the 
choice for h”,(s) is uniquely determined for 10 of them. However, there are 

2+2a lora 

~ 

2 

lora 

2t2a Iora 

-t 

2 

I or a 

5-i-a 3 

4ta 2 1 2+2a lora 

2 

lora 

FIGURE 6 
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six squares s for which h,*(s) = a and h”,(s) = 1. We must choose i;,(s) = a 
for exactly live of these squares, but from the data alone there is no 
“correct” choice of these live squares. 

We can prove Conjecture 8.5 in a special case generalizing Theorem 6.1. 
To state this result, we use the description of the Littlewood-Richardson 
rule in [M,, Chap. I, (9.2)]; viz., c:,, := (s~~s,, s;.), is equal to the number 
of tableaux T of shape /? - ~1 and weight v such that K(T) is a lattice 
permutation. Let us call such a tableau T an L - R tableaux (of shape A - ~1 
and weight v). 

8.6. PROPOSITION. Suppose that c:,, = 1, and that in addition the unique 
L - R tableaus T of shape 1” -u and weight v has the property that every 
column C of T consists of the integers 1, 2, . . . . n, (,for some n, 2 0 depending 
on C). (Equivalently, for each i the number of columns of A-u of length i 
is equal to v, - vi+, .) Then Eq. (51) holds for the following values of i;,,(s): 

(a) Let s = (i, j) E A Let ri be the largest entry of T in row i of A- p, 
and let c, be the largest entry of T in column ,j qf 2 - p. Set rr = 0 (respec- 
tively, c, = 0) tf row i (respectively, column j) of I. -u is empty. Then 

h”,(s) = 
i 

h;(s), if r, 6 cj and c, > 0 

h?Y.y), if r,>cI, or ifr,=c,=O. 

(b) Let s = (i. j) E u. Then 

h,(s) = 
i 

h:(s), tf Z,(i+c,, j)=hJ”(i+c,, j) 

h,*(s), [f K,(i+c,,j)=hi(i+c,, j). 

(c ) Let s E v. Then 

K,,(s) = h,*(s). 

Sketch of proof: Let 1= l(v). Consider the product 

where X is defined preceding Proposition 2.4. Now from Proposition 2.4 
and (P2) we have that if (y,,, J,) #O then v< p. We also have from the 
hypothesis on p, v, and i that if (J, J,,, J;) # 0 then p < v. Hence if q,,V is 
defined by (lo), then 

<J/A, J,> =qv,.<JpJ,.r J;.>. (59) 

The left-hand side of (59) can be computed as follows. By the hypothesis 
on p, v, and 1.. there is only one way to adjoin to p a horizontal strip of 
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length v,, then of length v2, up to length \I,, which yields the shape 3.. Thus 
let A[i] be the unique partition satisfying 

and 

(J,,J,‘,‘.-J,,, J;,,,) fO, 

(J;,,,J,;+, .’ J,.,. J,. > f 0. 

Then it follows that 

Every factor appearing on the right-hand side of (60) can be computed 
using Theorems 5.8 and 6.1. Moreover, qvv from (59) can be computed by 
Proposition 2.4 and Theorem 5.8. Hence (J,,J,, Jj.) is expressed as a 
quotient of two products. By keeping careful track of cancellations, the 
desired result follows. 1 

Example. Let A = (7, 6, 6, 6, 5, 4, 2, 1, 1 ), p = (7, 5, 5. 3, 3, 2, 2) v = 
(5,4,2). Figure 7 shows the unique L - R tableau of shape /1- ~1 and 
weight V. Figure 8 shows in each square s of >. and p the letter U or L, 
depending on whether h”,(s) equals h,*(s) or h”,(s), respectively. 

FIGURE 7 
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L L L 

u L L P u L 

u L 

FIGURE 8 

There are some additional small cases for which we can verify Conjecture 
8.5. For instance, we can prove it whenever v = (2, 1) (provided of course 
ci,, = 1) using the formula 

<J,~J”‘J’>=(J,~~~J,,) ‘J2;; J3) (J,,J,, J,)]. 

The details are rather messy. 
We can try to extend Conjecture 8.5 to an)’ (J,J,, J;.). One possibility 

(consistent with the case (x = 1) is the following: (J, J,,, J,) can be written 
as a sum of ciV expressions of the form (58), each possibly multiplied by 
a power of CI. Unfortunately this conjecture is false for the case p = (2, l), 
v = (3, l), i, = (4, 2, 1). Here we have (computed by P. Hanlon) 

(J2, J,, , J421) = 8a5(9 + 97~ + 294~~ + 321~’ + 131~~ + 12~‘) 

= 8cc’f(cr), say. 

The polynomial ,f(a) has no rational zeros. Moreover, c;f!,, = 2. One can 
check that any two expressions (58), say fr(cr) and f2(a), have a common 
linear factor L(a) # c1 or a common integer factor L(cr) not dividing 8. 
Hence a’fi(cc) + asf2(a) is divisible by L(a) and so cannot equal 8c?f(ol). 

Nofa U/&J in proo/: Equation (47) has been proved by K. Koike. The result of Garsia 
mentioned after Conjecture 8.4 appears in A. M. Garsia and N. Bergeron, Zonal polynomials 
and domino tableaux, preprint. 



JACK SYMMETRIC FUNCTIONS 115 

ACKNOWLEDGMENTS 

1 am indebted to Persi Diatoms for introducing me to zonal symmetric functions and 
suggesting them as objects for further study from a combinatorial viewpoint. I am also 
grateful to Ian Macdonald for explaining to me much of his work and for many valuable 
suggestions. and to Phil Hanlon for many helpful discussions and computations. 

REFERENCES 

ICI A. G. CONSTANTINE, Some noncentral distribution problems in multivariate analysis, 
Ann. Math. Statist. 34 (1963), 127&1285. 

[D-L] P. DIAC~NIS AND E. LANIXER, Some formulas for zonal polynomials, in preparation. 
[Fl H. 0. FOULKES. A survey of some combinatorial aspects of symmetric functions, in 

“Permutations,” Gauthier-Villars, Paris, 1974. 
[HI P. HANLON. Jack symmetric functions and some combinatorial properties of Young 

symmetrizers. J. Combin. Theory Ser. A 47 ( 1988). 37-70. 
[Jac] H. JACK, A class of symmetric polynomials with a parameter. Proc. Roy. Sot. 

Edinburgh Sect. A 69 (1969-1970). l-17. 
[Jam,] A. T. JAMES. Zonal polynomials of the real positive definite symmetric matrices, Ann. 

qf Math. 74 (1961). 45&469. 
[Jam11 A. T. JAMES, Distributions of matrix variables and latent roots derived from normal 

samples, Ann. Math. Statist. 35 (1964). 475-501. 
[Jam,] A. T. JAMES, Calculation of zonal polynomial coefficients by use of the Laplace- 

[Kl 
[K-T1 

IL1 

CM,1 

lMz1 

[WI 
[Sl 

PI 

Beltrami operator, Ann. Math. Statht. 39 (1968) 1711-1718. 
H. B. KUSHNEX, The linearization of the product of two zonal polynomials, preprint. 
A. KERBER AND K.-J. TH~;‘RLINC;S, “Symmetrieklassen von Funktionen und ihre 
Abzahlungstheorie,” Teil 11, Bayreuther Mathematische Schriften, Heft 15. 1983. 
D. E. LITTLEWOOR “The Theory of Group Characters.” 2nd ed.. Oxford Univ. Press. 
Oxford, 1950. 
I. G. MACDOKALD. “Symmetric Functions and Hall Polynomials,” Oxford Univ. 
Press, Oxford, 1979. 
I. G. MACDONALD, Commuting differential equations and zonal spherical functions, 
in “Algebraic Groups, Utrecht 1986” (A. M. Cohen et al., Eds.), Lecture Notes in 
Math., Vol. 1271, pp. 189-200, Springer-Verlag. Berlin/Heidelberg/New York. 1987. 
I. G. MACDONALD, [M,, 2nd ed.], to appear. 
W. SPECHT, Die Characktere der symmetrichen Gruppe, Ma/h. Zrit. 73 (1960), 
312-329. 
A. TAKEMURA, “Zonal Polynomials.” Institute of Mathematical Statistics, Lecture 
Notes-Monograph Series (S. S. Gupta, Series Ed.). Vol. 4, Hayward, CA, 1984. 


