A Bound on the Spectral Radius of Graphs with e Edges

Richard P. Stanley*
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Submitted by Richard A. Brualdi

ABSTRACT

The spectral radius $\rho(A)$ of the adjacency matrix A of a graph G with e edges satisfies $\rho(A) \leqslant \frac{1}{2}(-1+\sqrt{1+8e})$. Equality occurs if and only if $e = \binom{k}{2}$ and G is a disjoint union of the complete graph K_k and isolated vertices.

Let A be a symmetric (0,1) matrix with zero trace (i.e., the adjacency matrix of a graph G). Let the number of 1's of A be $2\binom{k}{2}$ (so G has $\binom{k}{2}$ edges). R. A. Brualdi and A. J. Hoffmann [1, Theorem 2.2] showed that the spectral radius $\rho(A)$ satisfies $\rho(A) \leq k-1$, with equality if and only if there exists a permutation matrix P such that PAP^T has the form

$$\begin{bmatrix}
J_k^0 & 0 \\
0 & 0
\end{bmatrix},$$
(1)

where J_k^0 is the $k \times k$ matrix with 0's on the main diagonal and 1's elsewhere. (In other words, G is isomorphic to the disjoint union of the complete graph K_k and isolated vertices.) Here we obtain a bound on the spectral radius of any graph with e edges, which implies the Brualdi-Hoffman bound when $e = \binom{k}{2}$. We also obtain the conditions for equality. Our proofs are simpler than those of Brualdi and Hoffman.

LINEAR ALGEBRA AND ITS APPLICATIONS 87:267–269 (1987)

267

^{*}Partially supported by a grant from the National Science Foundation. The work was performed while the author was a Sherman Fairchild Distinguished Scholar at Caltech.

THEOREM. Let $A = (a_{ij})$ be a symmetric (0,1) matrix with zero trace. Let the number of 1's of A be 2e. Then

$$\rho(A) \le \frac{1}{2} (-1 + \sqrt{1 + 8e}). \tag{2}$$

Equality holds if and only if

$$e = \binom{k}{2}$$

and PAP^T has the form (1) for some permutation matrix P.

Proof. Let A_i denote the *i*th row of A, and r_i the *i*th row sum. Let $x = (x_1, \ldots, x_n)^T$ be an eigenvector of A of length one corresponding to the eigenvalue $\rho(A)$. Let x(i) denote the vector obtained from x by replacing x_i with 0. Since $Ax = \rho(A)x$, we have $A_ix = \rho(A)x_i$. Since the diagonal elements of A are 0, we have $A_ix = A_ix(i)$. Hence, by the Cauchy-Schwartz inequality,

$$\rho(A)^{2}x_{i}^{2} = |A_{i}x(i)|^{2} \le |A_{i}|^{2} \cdot |x(i)|^{2}$$
$$= r_{i}(1 - x_{i}^{2}).$$

Sum on i to obtain

$$\rho(A)^2 \le 2e - \sum r_i x_i^2. \tag{3}$$

Now

$$\sum r_i x_i^2 = \sum_{i,j} x_i^2 a_{ij}$$

$$= \sum_{i < j} \left(x_i^2 + x_j^2 \right) a_{ij}$$

$$\geqslant \sum_{i < j} 2x_i x_j a_{ij}$$

$$= \sum_{i,j} x_i a_{ij} x_j$$

$$= x^T A x$$

$$= \rho(A). \tag{4}$$

Hence, from (3),

$$\rho(A)^2 \le 2e - \rho(A),$$

which implies (2).

In order for equality to hold in (2), all inequalities in the above argument must be equalities. In particular, from (4) we have

$$\left(x_i^2 + x_j^2\right)a_{ij} = 2x_i x_j a_{ij}$$

for all i < j. Hence either $a_{ij} = 0$ or $x_i = x_j$. Thus, choosing P so that Px has the form

$$Px = (y_1, y_1, ..., y_1, y_2, y_2, ..., y_2, ..., y_j, y_j, ..., y_j)$$

where y_1, y_2, \dots, y_j are distinct, it follows that PAP^T has block diagonal form,

$$PAP^{T} = \begin{pmatrix} B_{1} & & & 0 \\ & B_{2} & & \\ & & \ddots & \\ 0 & & & B_{j} \end{pmatrix},$$

where each B_i has an eigenvector $(1,1,\ldots,1)^T$. Hence each B_i has equal row sums, so $\rho(A)$ is the maximum row sum of A. Therefore $\sqrt{1+8e}$ is an integer, so

$$e = \binom{k}{2}$$
.

Then $\rho(A) = k - 1$, and it follows easily that there is one nonzero block $B_1 = J_k^0$. This completes the proof.

REFERENCES

R. A. Brualdi and A. J. Hoffman, On the spectral radius of (0,1)-matrices, *Linear Algebra Appl.* 65:133-146 (1985).

Received 18 March 1986; revised 29 March 1986