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ABSTRACT 

The spectral radius p(A) of the adjacency matrix A of a graph G with e edges 
satisfiesp(A)<i(-l+~~).Equalityoccnrsifandonlyif e= i andGisa 
disjoint union of the complete graph K, and isolated vertices. 

0 

Let A be a symmetric (0,l) matrix with zero trace (i.e., the adjacency 

matrix of a graph G). Let the number of l’s of A be 2 (k) (so G has (i) 
edges). R. A. Brualdi and A. J. Hoffmann [l, Theorem 2.21 showed that the 
spectral radius p(A) satisfies p(A) I k - 1, with equality if and only if there 
exists a permutation matrix P such that PAPT has the form 

where .I: is the k X k matrix with O’s on the main diagonal and l’s elsewhere. 
(In other words, G is isomorphic to the disjoint union of the complete graph 
K, and isolated vertices.) Here we obtain a bound on the spectral radius of 
any graph with e edges, which implies the Brualdi-Hoffman bound when e 
= 

0 
2” . We also obtain the conditions for equality. Our proofs are simpler 

than those of Brualdi and Hoffman. 
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THEOREM. Let A = (ai j) be a symmetric (0,l) matrix with zero truce. 
Let the number of l’s of A be 2e. Then 

p(A) I+( -l+d=). (2) 

Equality holds if and only if 

k 
e= 0 2 

and PAPT has the form (1) for some permutation matrix P. 

Proof. Let Ai denote the ith row of A, and ri the ith row sum. Let 
x=(x,,..., x,,)~ be an eigenvector of A of length one corresponding to the 
eigenvahre p(A). Let x(i) denote the vector obtained from x by replacing xi 
with 0. Since Ax = p(A)x, we have Air = p(A)x,. Since the diagonal ele- 
ments of A are 0, we have Ajx = Air(i). Hence, by the Cauchy-Schwartz 
inequality, 

p(A)2~~=(Ai~(i)(2~(Ai~2~[~(i)(2 

= Ti( 1 - x;>. 

Sum on i to obtain 

p( A)2 2 2e - cr,xz. 

Now 

Cr,xF= Cxyaij 
i,j 

= c (rf+*;)aij 

i<j 

> c 2rixjaij 
iij 

= Cxiaijxj 
i,j 

(3) 

= xTAx 

= P(A). (4) 
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Hence, from (3), 
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which implies (2). 
In order for equality to hold in (2), all inequalities in the above argument 

must be equalities. In particular, from (4) we have 

( 1 xf + XT aii = 2xixjaij 

for all i < j. Hence either aij = 0 or xi = x j. Thus, choosing 
the form 

P so that Px has 

px = (Yl? Y l>..*> Yl, Y2, Y2,..*9 Y29’*‘7 YjYYj?“‘p Yj) 

dme y1,y2,..., yj are distinct, it follows that PAPT has block diagonal 

PAPT = 

Bl 0 

B2 

0 Bi 

where each B, has an eigenvector (1, 1, . . . , l)T. Hence each Bi has equal row 
sums, so p(A) is the maximum row sum of A. Therefore lm is an 
integer, so 

Then p(A) = k - 1, and it follows easily that there is one nonzero block 
B, = 1:. This completes the proof. n 

REFERENCES 

1. R. A. Brualdi and A. J. Hoffman, On the spectral radius of (0, l)-matrices, Linear 
Algebra Appl. 65:133-146 (1985). 

Received 18 March 1986; revised 29 March 1986 


