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A Cohen—Macaulay complex is said to be balanced of type a=(a, a3, --., as} if its vertices
can be colored using s colors so that every maximal face pets exactly a; vertices of the i:th color.
For b=(b,, bs, ..., bs), O0=b=e, let £, denote the number of faces having b, vertices of the i:th
color. Our main result gives a characterization of the f-vectors f=(ftlo=p=s or equivalently the
h-vectors, which can arise in this way from balanced Cohen—Macaulay complexes. As part of the
proof we establish a generalization of Macaulay’s compression theorem to colored multicomplexes.
Finally, a combinatorial shifting technique for muiticomplexes is nsed to give a new simple proof
of the original Macaulay theorem and another closely related result.

1. Introduction

The purpose of this paper is to obtain information about the number of faces
of finite simplicial complexes satisfying certain algebraic or combinatorial conditions.
These so called “Cohen—Macaulay” and “shellable” complexes have previously
been studied from this point of view by Stanley [8. 10]. The main contribution of this
paper is the achievement of a2 complete characterization of the number arrays which
can occur in a refined face number count of so called “balanced” such complexes.
The necessity of this characterization was already proved in [10] using methods from
commutative algebra. To prove the sufficiency we develop some combinatorial tools,
matnly a generalization of the compression method of Macaulay to colored multi-
complexes. We now proceed to give a statement of the main result followed by a
discussion of the relevant definitions and background in Section 2.

Theorem 1. Let a=(ay, as, ..., a)€Z5, and suppose that g={(g)o<p<a 15 an
array of integers. The following are equivalent: o

(1) g is the h-vector of a balanced Cohen—Macaulay complex,

(2) g is the h-vector of a balanced shellable complex,

(3) g is the f~vector of a colored nulticomplex,

(4) g is the f-vector of a compressed colored multi-complex.

In Sections 4 and 5 below we will prove the implications (3)~(4) and (4)~(2),
respectively. The implication (2)—(1) is trivial (since all shellable complexes are
Cohen—Macaulay) and (1)—(3) is the main result of [10].
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For the case s=1 this result was previously known: the equivalence of (1),
{(2) and (3) is then a theorem of Stanley [8] (although a.proof of the implication
(3)—~(2) appears here for the first time}, and the equivalence of (3) and (4) is Maca-
ulay’s theorem [7]. In Section 3 we will give a new proof of this original Macanlay
theorem and with the same method establish another closely related result. A differ-
ent generalization of the Macaulay theorem was given by Clements and Lindstrém
[12].

Some corollaries and remarks are gathered in the final Section.

2. Preliminaries

Definition 2.1. A family ¥ of subsets of a finite set V is called a simplicial complex if
(i) FS F’¢¥ implies Fc¥, forall F,F'EV, and
(i) {v}c¥, for all vcV.

The members F of € are called faces, and € is said to be pure if all its maximal faces
have the same cardinality. The dimension of a face is one less than its cardinality.

Let a=(a, @, ..., a)€Z5, be a sequence of positive integers. A balanced
complex of type a is a simplicial complex € together with an ordered partition
V=v,UV,U...U¥, of its vertex set such that |FNV;|=a; for all maximal faces
Fandall 1=/=s. It follows that a balanced complex 1s always pure. If b=(b,, b,, ...
s B)EZ® and 0=b=gq, define f, to be the number of faces F’ of € such that
iF'NVi=b; for all 1=i=s. The integer array (f,)pss<q.>» called the f-wvector of
the balanced complex ¥, is a principal object of study i this paper. Let us note two
important, and in a sense opposite, special cases. If s=1, which we informally call
the “unbalanced” case, the situation specializes to the study of ordinary f-vectors
of pure (a—1)-dimensional complexes. The case when a,=1, I=i=s5, the “com-
pletely balanced” case, covers several important examples, some of which will be
mentioned later in this section.

Suppose that € is a balanced complex of type a with f~vector ( f,)y<p<,. Define

2.1) = 21 ,-Q(‘”’“"“[;i:zi]'

The integer array (h,), <52, 15 called the h-vector of €. It is easy to see that the trans-
formation (2.1} is invertible, so that knowledge of the A-vector is equivalent to knowl-
edge of the f~vector. Experience has shown that characterizations of f-vectors for
some classes of simplicial complexes are most conveniently expressed in terms of
the h-vectors. The integers h, may in general be negative as well as positive, see e.g.
Example 3.4 (b) of [10].

Definition 2.2. Suppose that € is a simplicial complex on vertex set V= {x,, x,, ...
..., Xz}. Let k be a field. Define the face ring k[#] of % (over k) to be the quotient ring
k{xy, ..., x,]/1y, where Iy is the ideal generated by all square-free monomials Xy Xiy e
%, such that {x;, x;, ..., x, }¢¥, 1=i<...<i=n. The complex ¥ is said to
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be Cohen—Macaulay (over k) if k[%] is a Cohen—Macanlay ring. For a detailed
discussion of this concept and its significance, see [11].

Now, suppose that € is a balanced complex of type acZ’ , with ordered
partition V=¥,U...U¥,. The ring k[#] can be made into an N*-graded k-algebra
by defining the degree of each vertex x€¥; to be the i-th unit coordinate vector,
1=i=s. The Hilbert series of k[¥) is an N*-graded algebra, F(k[%]), )= 2> {7 (k[¥],
b)AP: b€N®}, is rational as a formal power series in the indeterminates A=(4, 2,, ...
..oy Ag). Here H(k[¥], b} is the dimension of the h-homogeneous part of k[¥] as
a vector space over k (the “Hilbert function”). A computation [10, Proposition 3.3)
shows that

> hp#
. Fk®], A) = == |
2.2) (k1%1, ) IR

This formula gives an algebraic interpretation to the h-vector of %, and can alterna-
tively (as in [10]) be taken as its definition. When ¢ is a Cohen—Macaulay complex
the numerator in (2.2) is itself the Hilbert series of an N°-graded algebra. This fact is
the basis for the proof in [10] of the implication (1)—(3) of Theorem 1. Incidentally,
this proof also uses one form of the Macaulay theorem.

Definition 2.3. Suppose that € is a pure simplicial complex. A shelling of € is an
ordering F;, F,, ..., F, of its maximal faces so that F; intersects the subcomplex
generated by Fj, ..., F;_; in a nonempty union of maximal proper faces, for i=

=2, ..., L Equwalently, for j<i there exists k<i and x€F; such that F;(1F,S
c FkﬂF Fi—{x}. € is said to be shellable if it admits a shellmg Shellable com-
plexes are known to be Cohen-—Macaulay {1, 2, 8]. Given a shelling of %, define the
restriction of maximal face F; to be its subface Z(F;)={x¢ F,|F,.— {x}C F; for some
- j=i}. The restriction map #: Max%é—~% characterizes shellings (cf. [2, PrOposmon
1.2)): Given an ordering F,, F,, ..., F,of Max ¢ and a map %#: Max ¥ —¢ the follow-
ing are equivalent:

(1} the ordering is a shelling and & its restriction map,
(n} if FCF;, then FRRA(F)e=FCSF;, for some j<i.

The h-vector of a shellable complex bas a combinatorial interpretation which
is of importance in this paper. Suppose that % is a shellable complex which is balanced
of type a€Zs., with ordered partition V=V,U...U¥V, and h-vector (Bplo<pa-
It is shown in [10, Proposition 3.6] that %, equals the number of maximal faces F,
such that |Z(F)NV;|=b;, for 1=j=s.

Several classes of pure simplicial complexes arising in combinatorics and
algebra are known to be shellable and completely balanced. Let it suffice here to
mention on the one hand vartous central classes of lattices and partially ordered sets
(surveyed in [3]) and on the other Tits buildings [2] and some related geometric
incidence systems.

Definition 2.4. Let X be a finite set of indeterminates. If .# is a family of monomials
in these indeterminates, define its shadow 8 (#) to be the set of all non-zero monomials
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occurring in

CIp

The family .# is said to be a rudticomplex (or sometimes just “complex”)
if 3(A)S.#. Equivalently, .4 is a multicomplex if m|m'¢.# implies mc.#,
for all monomials m and #'. Let ¢ denote the set of all monomials in .# of degree
d. The f-vector of a multicomplex . is the sequence (fy, /1, fa» --.) Where fi=|4#7],
Jj=0,1,2, ...

Given an underlying linear ordering of X={x, x;, ..., x,}, which we take
to be x;<xy«<...<x,, there is an induced lexicographic ordering of the monomials
of any fixed degree d :xPxjr ... x%<xfixs  xf if for some j one has o;<f,
and o;=f; for all 7=j. (This is sometimes called “reverse lexicographic order”.)
A multicomplex .# is said to be compressed if #* forms an initial segment in the
lexicographic ordering of degree d monomials for all d=0 (ie., if m<m'¢M?,
then mecM?). The significance of compressed multicomplexes was first discovered
by Macaulay [7], and later by Lindstrom et al. [6], [12] and others. See the survey
[5] or [14] for more facts and references concerning compression.

Given a subset YCSX and a monomial m= JJ{x*®: x€X} define my=
= []{x*=: x€Y}. Let a=(a,as, ...,a)€Z . A colored multicomplex of type a

is a multicomplex .4 together with an ordered partition X=X,UX,U .. UX of its
mdeterminates such that degmy =a; for all mC.# and all 1=i=s. Deﬁne the
multidegree of a monomial mec.# as the vector DEG m=(deg My, deg my,, ...
., deg my JEN°. Then the f~vector of the colored multicomplex .# is the integer
array { ﬁ,)ogbgm where f, is the number of mé.# such that DEG m=5. This
definition is clearly consistent with our earlier definitions of f-vectors for balanced
complexes and general multicomplexes in the areas of overlap. Notice that a colored
multicomplex of type (1, 1, ..., 1) is in fact a simplicial complex, however not nec-
essarily pure.
Suppose that .# is a colored multicomplex of type a as above. For each block
X; of the ordered partition of X, 1=j=s, fix a linear ordering of its elements x; <
<Xjy< . Thisinduces a part:a! ordering on the monomials of any fixed mult:degree
m=m' if and only if my=m}, in the lexicographic ordering for each 1=i=s.
A colored multicomplex . is said to be compressed if its monomials of any fixed
multidegree form an order ideal in this partial ordering (i.c., m=m'€.# implies
mé.#). This definition specializes to the usual notion of compression for the s=1
case. Notice that, in distinction to the s=1 case, there may in general exist several
compressed colored multi-complexes having the same f-vector.
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3. The Macaulay Theorem

Given a sequence of non-negative integers f=(f;, fi,...) let ¥, be the
family consisting of the first f; monomials of degree 7 in the lexicographic ordering
for i=0,1,.... Also, define the d-representation of a number m as the unique

way of writing
(s ag a,
m = [dl]+[d—]]+"'+[d—}‘+l]

with gy= > ...>a,=d—r+1=1.

Theorem 2. (Macaulay [7]). Given a sequence f=(f,, f1, ...) of non-negative integers,
the following are equivalent:

(2) fis the fwvector of a multicomplex,

(b) £, is a multicomplex,

©) if fi= [ ]+ +[d - + 1] is the d-represeniation of fy, then

1 1 ~1
fir = [‘f.j 1]+[i‘f 2]+...+[‘:;_r], dz 1, and fy=1.

The following analogue of Macaulay’s theorem has the advantage of avoid-
ing the sometimes cumbersome d-representation of numbers. It is similar to Lovasz’s
analogue of the Kruskal—Katona theorem {cf. [4]).

Theorem 3. Suppose (fy, f1, ...) is the f-vector of some multicomplex. If fy= [;],
-1
where x is a real number, x=d=1, then f,_,= [ d— 1]

Before giving the proofs we define a useful shifting technique for multicomplex-
es. Let .# be a multicomplex on indeterminates x;, x,, ..., x,. For SE[1, n] denote
by #(S) the subcomplex of all .#-monomials in variables x;, x;,, ..., X; such

that iy, i, .. ,r €S. Given 1“:1-:;511 set H (i))= A (1, n}—{i, j}). For pEAH ()

plp” implies .j{(p)D./ﬁ’(p) since J( is a complex:

Let us study the complex .#(p) more carefully Suppose that (gy, 21, .--)
is its f~vector. For given d, the degree d monomials in .4 (p) are of the form x{x§-°.
Each of these have two maximal divisors except x{ and x4, and a degree d—1 mono-
mial has only 2 multiples of degree d. This 1mplles easily that gi—1=g;—1, and even
gi_1=gy unless gy,=d+1 (and g, _,=d). Let L? be the collection of the first (in
lexicographic order) g, monomials of degree d, i.e., L= {x{, x{~%x;, ..., x{~%*1x8a~1},
It follows from the preceding that | J{L4: d=0} is a complex. Set. S; J(ﬂ (»)= U e

We can now define shifting:
Sy (M) = U__ {pquSij(M(P))}-

pEM (i}

By the above discussion it should be clear that S;;(.#) is a multicomplex having the
same f-vector as 4.



28 A.BIORNER, P. FRANKL, R. STANLEY

Iterated shifting for all pairs 1=i<j=n leads to a multicomplex M satisfying
S,-j(.,@’?);/ﬁ’? for all 1=i<j=n. (Actually, one can show that [g] shiftings are
sufficient to produce such a stable complex if we proceed in the order that S;; pre-

cedes S; ;. if i<i" or i=i and j>j’). Notice that the shifted complex . by defi-
nition satisfies the property:

if p=JIxncM and l=i<js=n o;=8>0,
=1
(3.1
8 -
then >3 pC.A.
xj:

Proof of Theorem 3. Suppose that .4 is a multicomplex having Jrvector (fo, f1, - 2

Without loss of generzality we may assume that 4 is shifted, i.e., 4 =.4#. We will
use induction on the number fi=n of indeterminates. The case n=1 is trivially
true.

Let us consider for given d the classes of monomials #{~={pc#([2, n])
|xip€ A7}, O0=i=j=d. From (3.1) it follows that

(32) DAIHI) S MUID-G+D, 0mi=j<d.
Let m,=|.#¢-|. We shall use (3.2) to show that my= [x;' 1] holds.

Suppose to the contrary that mu}[x; 1]. The induction hypothesis and

(3.2) then yield successively mp[j;:f], m2>[j:§], veey Py ["‘Id], and of
course my;=1, Adding up these inequalities gives

d d 1
d] . x—l—!]=[XJ= d
BEED-LE-| g B (4 BIFZ1
a contradiction.
g x -1 x=1
We have now that my+mg+t...+m=|—m=|yl-1" 7 |=la-1|

Therefore the proof will be complete if we show that f,_y=m,+my+...4+m,. How-
ever, this is already clear since for the degree d monomials p=x81x3? ... x* with
a:l—dé 1, which are counted by the right hand side, the map p+p/x, i3 injective into
VA |

Proof of Theorem 2, To show the implication (a)—~(c) we can argue just as in the
preceding proof. It is sufficient to prove that m,= [QIE 1] +..+ [ dﬁ :_E_l 1] . Suppose

the contrary. Itt hen follows by induction, using (3.2), that m, = [Z‘: 12] +. 4 [‘;‘{: f] ,
and in general:

- [a1—1-] a,—1—j .
mj:[ d—j ]++[d—rl‘+1"] s ]=1,2,...,d.
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In interpreting and verifying these inequalities some care has to be taken with regard

to degenerate binomial coefficients : recall that by definition [';] =0 unless a=b=0.
These inequalities lead to the contradiction

il = Fmy 3 3 AT o (% =
AT A& ld-iv1—j) T A ld-itd ’

The implication (b)—(a} is trivial, since f'is the f~vector of ¥ ;. To show that
.. -1 —
(¢)—~(b) one observes that 3.Zf has cardinality [431_ 1 ] +...+ [3'“_ i] and forms an
initial segment in the lexicographic ordering of degree d—1 monomials. |j

For some additional aspects on Macaulay’s theorem and further references,
see [5] and [9].

4. Proof of the implication (3) —~(4)

We will show in this Section that if .4 is a colored multicomplex of type
a=(a, ..., a;), then there exists a compressed multicomplex .4" of type ¢ with the
same f~vector.

Supposethat X=X,U...UX; is an ordered partition of a finite set X of
indeterminates. For 1=j=s fix a linear ordering x;<x;~<... of the elements
of X;. For [, i=0 denote by LU, i) the first / monomials of degree i in the lexicog-
raphic order with variables from X.

Suppose now that .# is a multicomplex over X. For YCX, define #,=
= {my|lme.#}. Fix 1=j=s and consider the partition

M= | {meMH|mg_x =}
e ..»“I_,Xi
We are going to compress each set in this partition individually. Let f;(#7) denote
the number of m¢.# with my_x =7 and deg m{m=i. Define

M, = {mm* | m*c LD(f,(), i)} and
MNP = U

My x
The f-vector of .4} is by construction the same as that of .#. We claim that
MWD is a complex.
To see this, suppose that p is a2 monomial and for some x€X, p’=pxc.#W
holds. We must show that pc.#Y. There are two cases to consider.

Case I: x¢X—X;. Set g=pPx-x,»4 =px-x,, and i=degpjg=degp’/q’. Note
that g'=gx. If mc# and my_y =¢’, then “m/xc.# and (m/x)y_x,=q- Hence,
JAgY=f(q). Therefore LV fiq'), Y LI filq), ), which yields pl.#D.

Case 2: xCX;. Set again g=px—x,. Then also g=px—x, holds. Since # is a com-

plex, so is #fq={m/qlmec M, my_y,=~q}. Now the Macaulay theorem says that
Mg is a complex, in particular pé.#D.
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We have shown that £ is a2 multicomplex whose f-vector (as a colored
multicomplex of type a) is the same as the f~vector of .#. The construction can now
be repeated for other values of ;.

Given a monomial m define o,(m) as the position of my, in the linear order.
It is clear that

5

2 2oam= > 2o(m),
me M i=1 me AU =1
with equality if and only if . =.#%. Thus, iterating the above operation for all
1=j=s, finally we obtain a colored multicomplex .#" with the same f~vector which
is invariant for all f under the operation. This means that for all 1=j=s, all A¢A% x,
and all =0, the set {n/AjncA, ny_x,=#, deg n{fi=i} is initial in the lexicog-
raphic ordering. Equivalently, if m=ntA4, then meAN, ie, A& is compressed.

5. Proof of the implication (4) —(2)

The argument will first be carried out for the case s=1 and then; using this
special case, in general.

Let X={x;, Xz, ..., x,} and V={v,v,,...,%,4,}. We start by defining a
canonical bijection between the monomials in X of degree =a and the a-subsets of
V. Let m=xyx;, ... x;, 1=L=i,=.. =i =n. Define

6(m) = {731, Ugy nvy va—k}"
cr(m) = {va—k+i1+1’ Vaktiz+2s s vﬂ—k+ik+k}’
@(m) = 6(m)Uao(m).

It is easily checked that for 0=k=ga, the mapping ¢ sets up a bijection between the
monomials in X of degree k and those a-subsets of ¥ which contain v, v,, ..., and
Va_z, DUt ROt Dy _pyq-

Now let .# be a compressed multicomplex on X with f~vector (go, 21, ---» o)
gi=n. Define a simplicial complex ¥ on ¥ by letting the maximal faces of € be
the sets @(m), mc#. Thus ¥ is pure of dimension a—1. Let my<my=...<m,
(t=2'g:) be any total ordering of .# satisfying i=j=degm;=degm;.

and finally set

Claim: (), @(ons), -... @(m) is a shelling of € with restriction map R(p(m))=
:a(mi)’ léi_E_ ta

It follows from the claim that [#(e (m;))|=deg m;, and hence that (g, g1, ...
..-» 85) 15 the h-vector of the shellable complex %, which completes the proof for
the case s=1.

To prove the claim we must show:
(a) If i<j, then a(m}Eo(m), and
(b) If o(mpEFSo(m;), then FCo(m) for some i<j.

Proof of (a): Suppose i=j and o(m;)Se(m;). Since degm=degm; we must
have 3(m)Sd(m)s @(m). Thus, @(m)=3(mIUs(m)Se(m), so i=J.
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Proof of (b): 1t suffices to consider the case that F is maximal, i.e., F=g@(m)— {v,},
for some v €0(m;). Suppose that my=x{x; , X; . . ... X, 1<z,+1~zr+2< LELER
In the sequel for simplicity subsets of ¥ will be denoted by the string of subscripts
of their elements. Thus, for instance,

om) ={1,2, ..., a—k}U{a—k+2,a-k+3, .., a—k+r+1U
Ufa—k+i 1 +r+l,a—k+i o tr+2, ..., a—k+i+k}.

Case 1: a—k+2=z=a—k+r+1. (Void if r=0). Set u=z—a+k-1, so 1=u=r.
Let my=xi"%x; * ., ...X;, so mE#A and i<j. Then

41" ir s i

olm) = {1,2, ..,a—k+ujUfa—k+u+2,..,a—k+r+1}U
U{ﬂ—k+i,+1+?‘+1, a-ey a_k+ik+k},
so F=o(m)—{v,}So(m;), as desired.

Case 2: z=a—k+i,+y for some r+l1=y=k Let F'=(¢(m)— L)V {rersd
1.e., in terms of subscripts:

F={1,2.,a-k+r+1}U{g—k+i, . +r+1, ..,a—k+i,_,+

+y—la—k+ij,+y+L ., a—k+i+k)
Then

hl(Fr) =X g —1%i -1 - iy-l“lxly-u fyrn o K
5 in lexicographic order. Since the
right hand side divides m; and i compressed it follows that @ YF)c#, so
F'=¢(m;) for some i. Moreover i<j since degm<degm;. The proof of the

s=1 case is now complete.

=1
Now, ¢ (F )— Xy axNi gy ven Xiy_ xiy*‘l Eyez oo Xi

For the general case, suppose that X is a finite set of indeterminates and
X=X,U...UX, is an ordered partition. Fix some linear ordering x; <x;<...<x;

F2

of the elcments within each class X;, 1=j=s5. Given a= (al, U 1Y /A we
introduce a set of vertices ¥ with an ordered partition V=V, UV,, such that
|V;l=n;+a; and give a fixed linear ordering »;<v;<...<v; 1 to each class

Vi, 15_}{.5' For each j, let @;(-)=6;(-)Ua;(- ) denote the bijectmn previously
deﬁned between. monomials in X; of degree =a; and a;-element subsets of V.
Now, if m is a monomial in X such that deg my }{a 1=j=s, define

3(m) = {J 8,(my.),
F
U(m) = U aj(ij 3
)
p(m) = d(m)Ua(m) = U ¢;(mx).
F)
It is clear from the construction that ¢ gives a bijection between monomials m in
X such that degmy =a;, 1=j=s, and (Sa;)clement subsets S of ¥ such that
ISOV;|=a;, 1=j==s.

3
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Suppose that # is a compressed colored multicomplex of type a=(a,, ..., a;}
over the indeterminates X=X, U...UX,. Also, suppose that g:(gi,)pg,,é? is the
f-vector of #. Construct a simplicial complex € on vertices V=V U...U¥V, by
letting @ (m), me .#, be its maximal faces. Then € is a balanced complex of type a.
Let my<my=<...<m, be a total ordering of .# such that i=j=-deg m;=deg m;.

Claim: ¢(my), o(my), ..., o(m)) is a shelling of € with restriction map #(g (m))=
=a(my), 1=i=t.

Since then |R(@(m))NV,|=|e;((mx,)|=deg (m)y,, it follows that g is
the h-vector of €, and the proof 13 complete.

To prove the claim we must show the same assertions (a) and (b) that were
stated above for the s=1 case.

Proof of (a): Suppose i=j and o(m;)Se@(m;). Then, in fact, 6(m;)So(m;) and
d(m) S 6(m;). If the second inclusion were strict, then degmy;=>degm;, which would
violate i=j. Hence, 6(m)=2d(m;), so o(m)=oc(m;), thus @(m)=¢e(m;), and
therefore i=j.

Proof of (b): Suppose that F=o(m;)—{v}, v€o(m;)"V,. When proving part (b)
for the s=1 case we showed that there exist m’, m”¢.#y, such that ¢, ((m;)x,)—
—{v}S @, (m’), where m"=m” in lexicographic order and m” is a proper divisor
of (m;)y, . Now, let m*=m"-(m;)x_y,. Then m*c.#, since # is compressed,
deg m*<deg m;, since degm’=deg(m;}y,, and o(m)—{v}S o). §

6. Comments

6.1. Let ¥ be a finite set and let z={V;, V., ..., V,} and o={V{, Vi, ...
...; V) be two unordered partitions of ¥ into disjoint subsets (called blocks).
Then = is said to be a refinement of ¢, written =g, if for each 1=i=/ there exist
1=j=m such that ¥V;SV]. Asis well known, the refinement partial ordering of the
partitions of ¥ is a lattice, meaning that meets (greatest lower bounds) and joins
(least upper bounds) exist for all pairs of partitions.

Suppose that € is a Cohen—Macaulay complex over the vertex set V. Let an
unordered partition of V' be called ¢-balancing if ¥ is a balanced complex with
respect to some (and hence every) permatation of its blocks. If = and ¢ are %-balanc-
ing partitions and m-<¢, then Theorem 1 shows that = imposes stricter require-
ments on the f~vector of 4 thav does 6. Hence, it is of interest to seek a minimal -
balancing partition. It turns out that there is in fact a unique minimal %-balancing
partition of V. More generally the following can be proven.

Let € be a pure simplicial complex which is sirongly comnected, in the sense
that any two maximal faces F and F’ can be connected by a sequence of maximal
faces F=Fy, Fy, ..., F,=F’ such that successively F;_, and F, intersect in a maxi-
mal proper face, i=1,2, ..., r. If = and ¢ are two ¥-balancing partitions of ¥, then
so 1s their meet nAc. Hence, the %-balancing partitions form a lattice under the
refinement ordering.

It is known that Cohen—Macaulay complexes are strongly connected. For
shellable complexes this is a direct consequence of the definition, whereas for general
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Cohen-—Macaulay complexes a more involved proof (e.g., using rankselection for
the two top levels in the face-lattice) seems unavoidable.

6.2. In the s=1 case, conditicns {3) and (4) of Theorem 1 correspond exactly
to conditions (a) and (b) of Theorem 2. In this case, the original Macaulay theorem
also has a third equivalent condition (¢), namely the purely numerical condition in
terms of d-representations of numbers. When s=2 we do not know of any similar
numerical formulation. Part of the difficulty seems to lie in the non-uniqueness of
compressed multicomplexes with a given f~vector, when s=2. In this connection
it would be of interest to seek a numerical characterization of f-vectors (f;)yss<a
of colored multicomplexes of type acZ%, when s=2.

6.3. In the completely balanced case, i.e. when a=(1,1, ..., 1), it is possible
to prove the implication (3)—(2) directly without passing through (4), i.e. without
first compressing the multicomplex. In all other cases compression seems indispen-
sable.

6.4. Let us call a simplicial complex k-chromatic if its 1-skeleton is k-chromatic
in the sense of graph theory, ie., if its vertices can be colored using at most k colors
so that every face receives distinct colors at all its vertices. Viewing a completely
balanced complex temporarily as unbalanced we derive the following characteriza-
tion of ordinary h-vectors of completely balanced Cohen—-—Macaulay complexes.

Corollary. Let g=(g, &1» ...» &) be a string of integers. The following are equivalent:

(1) g is the (ordinary) h-vector of a completely balanced (k— 1)-dimensional Cohen—
Macaulay {or shellable) complex,

(2) g is the f-vector of a k-chromatic simplicial complex.

A numerical characterization of the f~vectors of general simplicial complexes
is known from the Kruskal—Katona theorem (see [4, 5]). Being k~chromatic is clearly
a considerable constraint, and it would be of interest to have a numerical characteriza-
tion of the f~vectors of k-chromatic simplicial complexes. A necessary condition is
given by the following result of the second author, Fiiredi and Kalai [13]: If
={fos fis - f3) 18 the fvector of a k-chromatic (d— 1)-dimensional simplicial

complex and fd=[§] x? for some real x, then fig[?] x* for O0=i=d-1.

6.5. A special class of completely balanced Cohen—Macaulay complexes is
given by the order complexes of Cohen—Macaulay posets. See {1, 3, 10] for defini-
tions and further details. It is easily seen by direct construction or from the preced-
ing Corollary, that (1, 3, 3, 0) is the h-vector of a completely balanced 2-dimensional
Cohen—Macaulay complex. However, (1, 3, 3, 0) is not the h-vector of any Cohen—
Macaulay poset. Hence, the question remains open to characterize the h-vectors of
Cohen—Macaulay posets, either viewed as unbalanced or as completely balanced
complexes. We remark that in the latter case the h-vector of a Cohen—Macaulay
poset P coincides with the “rank-selected Mobius invariant” (P, S) as discussed
in [3] and {10].

6.6. Suppose that € is a completely balanced (k—1)-dimensional shellable
complex. We know that its A-vector is realized on the one hand as the f-vector of
some k-chromatic simplicial complex, and on the other hand as the f-vector of the

3‘
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of restrictions 4 (F) of maximal faces FEMax € for any shelling. This raises

the question: Can always some shelling be found for which {#(F)FecMax €}
forms a simplicial complex? For the class of shellable posets which admit an “SL-

labelin

g” in the sense of [I] we can prove an affirmative answer. This includes all

semimodular and supersolvable finite lattices.

6.7. It is mistakenly claimed in {10, p. 152] that the implication (3)—+(2) of

Theorem 1 is not generally true. The claim is based on an incorrect counterexample:
the bipartite graph would have 9 (and not 6) vertices and 10 edges.

Note added in proof. In the very recent work {13] the numerical characterization
problem of h-vectors of completely balanced Cohen—Macaulay complexes is solved.

[1] A.
2] A.
[3] A.
{4] P.
(51 C.
is] B.
[7] F.
[8] R.

[9] R.
[10] R.

(11l R.
[12] G.

{13 P.
{14] P.
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