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Many rtemarkable conjectures have been made recently concerning the
explicit enumeraticen of certain classes of tablezux. Most of these are
due to or arise from the work of W. Mills, D. Robbins, and H. Rumsey.
Here we will survey the most prominent of these conjectures (omitting
some rather techmical refinements). We will for the most part not dis-
cuss the background of these conjectures and their connections with
symmetric functions and representation theory. We will alsc for the
most part ignore a host of known results which are very similar to many
‘of the conjectures and which make the conjectures considerably more
tantalizing. The reader should consult the references cited below for
further information.

We begin with the necessary definitions. A plane partition u is

an array 7@ = (“ij)i,j31 of nonnegative integers “ij with finite sum
n| =2 Tiy which is weakly decreasing in rows and columnrs [10]. The
nenzero ﬂij are called the parts of n , and normally when writing exam-

ples only the parts are displayed. Such terminology as "number of rows

of v refers only to the parts of » . Thus, for example,
443211
43311
321
22
1
is a plane partition v with |v] = 38, and with 17 parts, 5 rows, and 6

columns. We now list some special classes of plane partitioms.
column-strict: the parts strictly decrease in each column.

row-strict: the parts strictly decrease in each row.
symmetric: “ij = ﬂji for all i,j.
cyclically symmetric: the i-th row of m, regarded as an ordinary

partition, is conjugate (in the sense of [4, p. 21]) to the i-th column,
for all i .

totally symmetric: symmetric and cyclically symmetric.
(r,s,t)-self-complementary: 7 has < r rows, < s columns, largest

part < t, and w.. +
h ij

Troi+l,s-§41 " t for all 1 < i <71, 123 <s.
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Example. Consider the three plane partitions

4431 4432 14321

3321 4331 4222

%21 332 321
21

The first is cyclically but mot totally symmetric, while the second is
totally symmetric. Moreover, the third is (3,5,4) - self-complementary.
A Gelfand pattern (see [3]) is a triangular array

a11 #12'°" @
822 "%

In

2na
of nonnegative integers aii which weakly increase in rows and such that
ai-l,j—liaijiai—l,j for all 2 < i < j < n. A Gelfand pattern 1s
strict if the rows stricly increase. A strict Gelfand pattern with
first row 1,2,...,n is called a menotone triangle of length n

An nxn alternating sign matrix is an nxn matrix whose entries are

0, ¥1 , whose row and column sums are all equal to 1 , and such that
the nonzero entries of every row and column alternate in sign. An ele-

ment 254 of a strict Gelfand pattern T is special if 2<i < j < n and
4 1,5-1 < aij < a;.1,j -
ments of T . There is a simple bijection [6] between monotone triangles

Let s(T) dencte the anumber of special ele-

T of length n and alterniting sign matrices A of length n , for which
s(T) is the number of -1's in A . There is also a simple bijection
(e.g-, [2]) between Gelfand patterns with first row An i-kn-l o< 11
and column-strict plane partitions of shape % = (kl,lz,...,kn} (i.e.,
Ai parts in row i) and largest part < n

Example. The seven monotone triangles T of length 3 are given by

123 123 123 123 123 123 123
12 iz2 13 13 13 23 23
1 A 1 2 3 2 3

ALl of them satisfy s{T) = 0 except the fourth, for which s(T) = 1.
A shifted plane partition is defined analogcously to plane vartition,

except that the array (wij) is defined only for 1 < i < j. Such ter-
minology as “column-strict" and "number of rows" is carried over in an
obvious way to shifted plane partitions. For example,

554331

4322
11
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is a column-strict shifted plane partition with 3 rows and 6 columns.
Let ¢ be an integer. A column-strict shifted plane partition
{CSSPP) is of class u if the first emtry of each row exceeds the row

length by precisely 2y . There is a simple bijection [8] between
CSSPP's of class 1 with < n columns and descending plane partitions
(as defined by G. Andrews [1]) with largest part < n+l . There is

also a simple bijection between CSSPP's of class 0 with < n columns
and cyclically symmetric plane partitions with largest part < n (see
[8]). A part “ij of a CSSPP of class u is special if u < “ij < j-itu ,

and we write s(T) for the number of special parts of T .

Example. The seven CSSPP's of class 1 with < Z ceolumns are given
by

o 3 41 42 43 44 44
3

A1l of these satisfy s{T) = 0 except the fifth, for which s(T) = 1 .
We now are ready to list the conjectures (as of November, 1985),
together with some related theorems.

Theorem {equivalent to [1, Thm. 7]). The number of CSSPP's of
class 1 and < n-1 celumns is equal to

n-1
A = T

n i

f3i+1)!
n+l1)!

0

Conjecture 1 [6]. The number of nxn alternating sign matrices is
equal to An

Conjecture Z [7, Conj. 1][11, Case 10]. The numbér of totally
symmetric (2n,2n,2n)-self-complementary plane partitions is equal to
An

Note. One can give a bijection [7] between totally symmetric {2n,

2n,2n)-self-complementary plane partitions and shifted plane

partitions 7w = (nij} of shape (n-1,n-2,...,1) such that

n-1 < 5 < n for all parts mij of 7 .

Note. It is not known whether the number of nxn alternating sign
matrices is equal to the number of totally symmetric (2n,2n,2n)-self-
complementary plane partitions.

Conjecture 3 [6, Conj. Z]. The number of monotone triangles of
length n with bottom entry a. =T {equivalently, the number of nxn
alternating sign matrices (uij) with oy = 1) is ecual to



Note. One easily deduces Conjecture 1 from Conjecture 3

. T
Conjecture 4 [6, Conjs. 4 and 5]. Define An(x) = L XS( )
T

where T ranges over all monotone triangles of length n . Define

BZn+1CX) = I xS(T), where T ranges over all strict Gelfand patterns
T

with first row 1,3,5,...,2n-1, Then there exist polynomials an(x] for
which

B (x)B (x} , n odd
An{X) :{ n n+l

2 Bn[ijn+1(x] , N even

Note. For a conjectured explicit value of BZH+1[1],see'dw note
following Conjecture 9.

Note. Conjecture 1 is equivalent to the assertion Antl) = A
n

It is not difficult to show [6, Cor. on p. 358] that A (2)y = 2 2 . In fact,
much more can be said concerning the weight 2s(T) of a strict Gelfand

n

pattern T , and there are strong connections with the theory of symme-
tric functions. For instance, if UifT) denctes the i-th row sum of T ,
then it can be shown that

IERURAOICACRRONENEN .
X verx
T 2 n
Sy (XX )y g g (X Fxg )

where T ranges over all strict Gelfand patterns with {irst row

(kn,xn_1+l,...,xl+n—lj , and where Sy denotes the Schur function (as

defined, e.g., in [4] or [10]) corresponding to the partition

A D)

3t(n)Hn, where

Conjecture 5 [6, Conji. 6]. An{3)

m{m-1} , n = 2Zm
t{n} =

m , = Zmtl |

amd where H 1s determined by the recurrence



H 3n 3In
ool el (n) Hy i.( ™
0 Hzn (211) H2n~1 3 (2;1)
Conjecture & [8, Conj. in Sect. 4]. Define Zn[x,u] = g x5(M)
T
where T ranges over all CSSPP of class p and tows of length < n . Then

Zn{Z,u) is determined by the recurrence 21(2,u) =2,

Lo (Z50) T wame2i-1

Zom-1 2 4) 1 ™
Loy 224 gl peme2iol
Zym(Zh) = ™1

Note. A strengthening of Conjecture 1 is given by Zn(x,lj = An(x) .

where An(x) is defined in Conjecture 4 (see [8, Sect. 4]).

Conjecture 7. (see [11, Case 4]). The number of totally symmetric
plane partitions with largest part < n is equal to

o= O irjrkel .
n 1<i<j<k<n i+j+k-2

Note. It is not hard to show that the number of totally symmetric
plane partitions with largest part < n is alse equal to
a) the number of row-strict shifted plane wartitions with
largest part < n ,
b) the number of order ideals of the poset L(3,n) of
Ferrers diagrams fitting in a 3xn rectangle, ordered by inclusion,
c) the sum of the minors of all orders (including the
void.minor equal te 1) of the matrix whose (i,j)-entry is (;) for
0<i, j<n-1.
Note. All quantities arising in connection with Conjecture 7 have
natural g-analogues. The q-analogue of Tn is

Citiek-1
1

1<i<j<k<n 1—qi+j+k—2

T (q) =
The g-analogue of the number of totally symmetric mlane nartitions with
largest part < n is the polynomial Né{B;q] defined in [11], where
B = B(n,n,n) and G = S3 - The g-analogue of (a) is just Zq11T1
summed over all 7 satisfying (a). The g-analogue of (b) 1is Zqil‘,

summed over all order ideals I of L(3,n) . Finally, the g-analogue of
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i+1+ (le) .
(c) corresponds to the matrix with (i,j)-eatry q ;

0 <i, j<n-1. As in Conjecture 7, the last four quantitles are known

to be equal, and are conjectured to equal Tn(q)

Conjecture 8 {D. Robbins, et al.; see [11, Case 9]). The number of
cyclically symmetric (Zmn,2n,2Zn}-seif-complementary nlane nartitions is

2
equal to An'

Note. It is not known whether the number of cyclically symmetric
{2n,Zn,2n)-self-complementary plane martitions is the square of the
number which are also symmetric (Conjecture 2). Perhaps there is a bi-
jection which shows the equivalence of Conjectures 2 and 8 without
nroving either one.

Conjecture 9 {implicit in [8]). The number Fn of nxp alternating
sign matrices which are invariant under a reflection about a2 vertical

axis is given by the recurrence

on-2
F. =1. F. =0 Fane1 =[ 2n )
» 7 - *
1 2n FZu-l z[lgnl)
Note. It is easy to see that F2n+1 = B2n+1{1] , as defined in

Conjecture 4. MHoreover, the number of strict Gelfand patterns (aij)
with first row 1,3,...2Zn-1 which are "flin-symmetric"”, in the sense
as

that aij + a. = 2n for all 1 < i < j <£n , is equal to F

i,n+i-j Zn+l?*

defined in Conjecture 12,

Conjecture 10 [7, Conj. 5]. The number of nxn alternating sign

matrices which are invariant under a 180° rotation is equal te the
quantity Hn of Conjecture 5.

Note. [t is not known whether Conjectures § and 10 are equivalent,
i.e., whether S-t(n}An(SJ is equal to the number of nxn altermating

sign matrices invariant under a 180° rotation.

Conjecture 11 (D. Robbins; see [9, Sect. 3.5]). The number Qn of
nxn alternating sign matrices which are invariant under a 90° rotation

is given by the recurrence
Sn+1 2
Upas _Cq)

H Q 2
An+1 (%?)

Ql =1 ’ Q4n+2 =
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2 n-1
Q4n+5 — 3(3n;2) Q4r1 _ 2( n )
h + ) + z Q - ) Zn
An+3 (Znnl] in-1 (n)

Conjecture 12 (W.H. Mills; see [9, Sect. 4.2]). The number Pn

of nxn alternating sign matrices which are invariant under reflections
in both a horizontal axis and a vertical axis is given by the recurrence

P =1,p, =0,
6n-3
6n (3n-1)(,, 72

Pansy _ U GR) | Panar Inoit
Pan1 ety 20 Panar (R0

Conjecture 13 (D. Robbins; see [9, Sect. 3.7]). The number Xn

of nxn alternating sign matrices which are invariant under reflections

in both diagonals satisfies Xl =1,
3N

Xon+1 - (nJ

Xm-1 (304

Note. There are no conjectures at present for the cardinalities of
two additional symmetry classes of nxn altermating sign matrices, viz.,
those that are symmetric matrices (i.e., invariant under a reflection
in the main diagonal), and those that are invariant under the full sym-
metry group of the square. Call these cardinalities Sn and Kn , res-
pectively. Moreover, no conjecture is known for x2n as defined by Con-
jecture 13.

Note. There are a total of ten symmetry classes of plane partitions
with < r rows, < s columns, and largest part < t [11]. Seven of these
classes have been successfully counted, while the remaining three cor-
respond to Conjectures 2, 7, and 8.

Note. In [9] many of the above conjectures related to symmetry
classes of alternating sign matrices are strengthened by considering
various weights on the &lternating sign matrices under consideration.
There also appear some surprising comnections between different symmetry
classes (which follow from the conjectures themselves, but which
perhaps can be proved independently). For instance, it feol-

Llows from Conjecture 5 above that HZn = anl,D)An (a special case of
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[9, Conj. 3.3.1]), and from Conjectures 1,5, and 11 above that
2 _ a2
Qn = Aplzgs Qans1 = ApH
Conj. 3.5.1]).
We conclude with a table listing some of the values of the functions
discussed above. Many of these values are taken from [9]. An entry

marked * denotes a number of eight digits or more whose value we omit.

2n+l’? an-l = AnHZn-l {(a special case of [9,

n_ 1 2 3 4 5 6 7 8
An T 2 7 42 429 7436 215348 *
H 1 2 3 10 25 140 588 5544
T, 2 5 16 66 352 2431 21760 252586
(1,0 2 5 20 132 1452 26741 826540 *
By 11 03 26 646 45885 9304650 *
Q, i 0 1 2 3 0 12 40
Ppy 1 1 1 2 6 33 286 4420
X 1 2 3 8 15 52 126 568
s, 1 2 5 16 67 368 2630 24376
Kp, 1 1 1 2 4 13 46 248

Moreover: Qg 100, Qlﬂ =0, Qll = 1225, le = 6860,

10436, xll = 42471, X12 = 323144, X13 = 1706562,

Xg = 1782, Xl

Xy4 = 16866856

0

Ky, = 1516
Bl(x) = Bz(x) = Bs(x) =1, B4(x) = H+X, Bs(x) = 2+x,

Bg(x) = 60+70x+12x2ex>, B,(x) = 6+13x+6x2ex>, Bg(x) = 840+

3080x + 3038x2 + 1224x% + 105x% + 2045 + x5, By(x) = 24 + 136x + 234x% +

176:(3 + 63x4 * 12x5 + x6

Z)(2.u) = 2, 2,(2,0) = 2u+3), Zy(2,) = 4Gu+D)E, 2,20) -
3D F@es) ), 2520 = EarnZpenlaen?.
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