Erratum

Volume 43, Number 1 (1986), in the article "Symmetries of Plane Partitions," by Richard P. Stanley, pages $103-113$; F. Brenti has pointed out that parts (b) and (c) of Theorem 3.4, page 111, are stated incorrectly. Rather than permuting the coordinates so that in the box $B\left(r^{\prime}, s^{\prime}, t^{\prime}\right)$ we have $t^{\prime}=2 t$, it is instead necessary that $r^{\prime}+t^{\prime}$ be even. We define $d=\frac{1}{2}\left(r^{\prime}+t^{\prime}\right)$ and $w(\pi)=x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{d}^{m_{d}}$ as before. Theorem 3.4 then becomes
3.4. Theorem. Let $r^{\prime}+t^{\prime}$ be even and set $d=\frac{1}{2}\left(r^{\prime}+t^{\prime}\right)$. Define

$$
F\left(r^{\prime}, s^{\prime}, t^{\prime} ; x\right)=F\left(r^{\prime}, s^{\prime}, t^{\prime} ; x_{1}, \ldots, x_{d}\right)=\sum_{\pi} w(\pi)
$$

where π ranges over all self-complementary plane partitions contained in the box $B\left(r^{\prime}, s^{\prime}, t^{\prime}\right)$. Then:
(a) $F(2 r, 2 s, 2 t ; x)=s_{\alpha}\left(x_{1}, \ldots, x_{d}\right)^{2}$, where $\alpha=\left\langle s^{r}\right\rangle$.
(b) $F(2 r, 2 s+1,2 t ; x)=s_{\alpha}\left(x_{1}, \ldots, x_{d}\right) s_{\beta}\left(x_{1}, \ldots, x_{d}\right)$, where $\alpha=\left\langle s^{r}\right\rangle$, $\beta=\left\langle(s+1)^{r}\right\rangle$.
(c) $F(2 r|1,2 s, 2 t| 1 ; x)=s_{\alpha}\left(x_{1}, \ldots, x_{d}\right) s_{\gamma}\left(x_{1}, \ldots, x_{d}\right)$, where $\alpha=\left\langle s^{r}\right\rangle$, $\gamma=\left\langle s^{r+1}\right\rangle$.

The proofs of (b) and (c) are now exactly analogous to the proof given for (a), and Eqs. (3a)-(3c) remain valid (though coordinates are now written in an order different from that of Theorem 3.4).

