ON DIMER COVERINGS OF RECTANGLES OF FIXED WIDTH

Richard P. STANLEY*
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 10 July 1984
For fixed k let A_{n} denote the number of dimer coverings of a $k \times n$ rectangle. Various properties of the generating function $\sum A_{n} x^{n}$ are obtained, in particular answering questions of Klarner and Pollack and of Hock and McQuistan. An explicit expression for the molecular freedom for dimers on a saturated $k \times n$ lattice space is also obtained. The results are consequences of the explicit formula for A_{n} obtained by Kasteleyn and by Temperley and Fisher.

Let k be a fixed positive integer, and let $A_{n}=A_{n, k}$ denote the number of ways to tile a $k \times n$ rectangle with $n k / 2$ dimers (or dominoes). (Of course $A_{n}=0$ if $n k$ is odd.) Form the generating function

$$
F_{k}(x)=\sum_{n \geqq 0} A_{n} x^{n}
$$

It is well known (e.g., [5]) that $F_{k}(x)$ represents a rational function, say $F_{k}(x)=$ $P_{k}(x) / Q_{k}(x)$ with P_{k}, Q_{k} polynomials with integer coefficients, and $Q_{k}(0)=1$. We do not assume that $F_{k}(x)$ is reduced to lowest terms. If

$$
Q_{k}(x)=1-\alpha_{1} x-\cdots-\alpha_{q} x^{q}
$$

then it follows that

$$
\begin{equation*}
A_{n+q}=\alpha_{1} A_{n+q-1}+\cdots+\alpha_{q} A_{n} \tag{1}
\end{equation*}
$$

for all n sufficiently large (and for all $n \geqq 0$ if and only if $\operatorname{deg} P_{k}<\operatorname{deg} Q_{k}$; we will show below that $\operatorname{deg} Q_{k}-\operatorname{deg} P_{k}=2$). For the basic facts concerning rational generating functions, see [8]. The largest root of the polynomial $x^{q} Q_{k}(1 / x)$, when $F_{k}(x)$ is reduced to lowest terms, is denoted by μ_{k}; and the number $\lambda_{k}=\mu_{k}^{2 / k}$ is called the molecular freedom for dimers on a saturated $k \times n$ lattice space.

Recently Klarner and Pollack [5] computed $P_{k}(x)$ and $Q_{k}(x)$ for $1 \leqq k \leqq 8$, while Hock and McQuistan [3] computed $Q_{k}(x)$ for $1 \leqq k \leqq 10$. They also computed numerically the values of μ_{k} for $1 \leqq k \leqq 8$ and $1 \leqq k \leqq 10$, respectively. Both papers raised various questions about the properties of $P_{k}(x)$ and $Q_{k}(x)$. Here we will

[^0]answer these and other questions and will give an explicit formula for μ_{k}.
Our results are direct consequences of Kasteleyn's formula for A_{n} (also obtained by Temperley and Fisher [9] and later by Lieb [6]), which Kasteleyn shows [4, eqn. (15)] can be written in the form
\[

A_{n}= $$
\begin{cases}\prod_{j=1}^{[k / 2]} \frac{c_{j}^{n+1}-\bar{c}_{j}^{n+1}}{2 b_{j}}, & n k \text { even }, \tag{2}\\ 0, & n k \text { odd }\end{cases}
$$
\]

where

$$
\begin{aligned}
& c_{j}=\cos \frac{j \pi}{k+1}+\left(1+\cos ^{2} \frac{j \pi}{k+1}\right)^{1 / 2} \\
& \bar{c}_{j}=\cos \frac{j \pi}{k+1}-\left(1+\cos ^{2} \frac{j \pi}{k+1}\right)^{1 / 2}, \\
& b_{j}=\left(1+\cos ^{2} \frac{j \pi}{k+1}\right)^{1 / 2}
\end{aligned}
$$

Note that $c_{j} \bar{c}_{j}=-1$.
Write $l=[k / 2]$, and let S be any subset of $\{1, \ldots, l\}$ and $\bar{S}=\{1, \ldots, l\}-S$. Define

$$
c_{S}=\left(\prod_{j \in S} c_{j}\right)\left(\prod_{j \in S} \bar{c}_{j}\right)
$$

Then (2) shows that

$$
\begin{equation*}
A_{n}=\left[\prod_{j=1}^{\prime}\left(2 b_{j}\right)^{-1}\right] \sum_{S}(-1)^{|\bar{S}|} c_{S}^{n+1}, \tag{3}
\end{equation*}
$$

provided $n k$ is even, where S ranges over all subsets of $\{1, \ldots, l\}$.
Lemma. We have

$$
\prod_{j=1}^{l} b_{j}^{2}=d_{k} 2^{-k}
$$

where $d_{0}=1, d_{1}=2, d_{k}=2 d_{k-1}+d_{k-2}$. Explicitly,

$$
\begin{equation*}
d_{k}=\frac{(1+\sqrt{2})^{k+1}-(1-\sqrt{2})^{k+1}}{2 \sqrt{2}} \tag{4}
\end{equation*}
$$

Proof. When k is even, equation (4) is the case $u=1$ of a formula of Kasteleyn [4, eqn. (14)], and when k is odd, Kasteleyn's proof is also valid. The recurrence $d_{k}=$ $2 d_{k-1}+d_{k-2}$ follows from (4) since $1 \pm \sqrt{2}$ are roots of the polynomial $x^{2}-2 x-1$.

One can also view this lemma (as well as [4, eqn. (14)]) as a standard result on the Chebyshev polynomial

$$
U_{k}(x)=2^{k} \prod_{j=1}^{k}\left(x-\cos \frac{j \pi}{k+1}\right)
$$

after observing that

$$
\mathrm{i}^{k} 2^{k} \prod_{j=1}^{l} b_{j}^{2}=U_{k}(\mathrm{i}), \quad \text { where } \mathrm{i}^{2}=-1
$$

Theorem. (a) The polynomial $Q_{k}(x)$ can be taken to be

$$
Q_{k}(x)= \begin{cases}\prod_{S}\left(1-c_{S} x\right), & k \text { even } \tag{5}\\ \prod_{S}\left(1-c_{S}^{2} x^{2}\right), & k \text { odd }\end{cases}
$$

where S ranges over all subsets of $\{1, \ldots, l\}$. Hence A_{n} satisfies a linear recurrence (1) (which by (d) below will be valid for all $n \geqq 0$) of degree $q_{k}=\operatorname{deg} Q_{k}=2^{[(k+1) / 2]}$. Moreover, all the roots of $Q_{k}(x)$ are real and nonzero, and exactly half the roots are positive.
(b) The largest reciprocal root of $Q_{k}(x)$ is

$$
\begin{equation*}
\mu_{k}=\prod_{j=1}^{\prime} c_{j} \tag{6}
\end{equation*}
$$

which occurs with multiplicity one and which is not a reciprocal root of $P_{k}(x)=$ $Q_{k}(x) F_{k}(x)$. The molecular freedom $\lambda_{k}=\mu_{k}^{2 / k}$ satisfies

$$
\begin{equation*}
\lambda=\lim _{k \rightarrow \infty} \lambda_{k}=\mathrm{e}^{2 G / \pi}=1.79162 \cdots \tag{7}
\end{equation*}
$$

where $G=\sum_{s \geq 0}(-1)^{s}(2 s+1)^{-1}$ is Catalan's constant.
(c) Asymptotically we have

$$
\begin{equation*}
A_{n} \sim a_{k} \mu_{k}^{n+1}, \text { as } n \rightarrow \infty \text { with } n k \text { even, } \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k}=2^{\delta} d_{k} \tag{9}
\end{equation*}
$$

where d_{k} is given by (4) and where $\delta=0$ if k is even and $\delta=\frac{1}{2}$ if k is odd. Moreover,

$$
\lim _{k \rightarrow \infty} a_{k}^{2 / k}=1 /(\sqrt{2}+1)=\sqrt{2}-1
$$

(d) $P_{k}(x)$ has degree $p_{k}=2^{[(k+1) / 2]}-2=q_{k}-2$. Hence A_{n} satisfies (1) for all $n \geq 0$.
(e) If $k>1$, then $P_{k}(x)=-x^{p_{k}} P_{k}(1 / x)$. If k is odd or divisible by 4 , then $Q_{k}(x)=x^{q_{k}} Q_{k}(1 / x)$. If $k \equiv 2(\bmod 4)$, then $Q_{k}(x)=-x^{q_{k}} Q_{k}(1 / x)$. If k is odd, then $P_{k}(x)=P_{k}(-x)$ and $Q_{k}(-x)=Q_{k}(x)$. (The statements about $Q_{k}(x)$ are equivalent to property (d) of the roots observed by Hock and McQuistan [3, p. 104] for $k \leqq 10$.)
(f) For k odd write

$$
\begin{aligned}
Q_{k}(x) & =\beta_{0}-\beta_{1} x^{2}+\beta_{2} x^{4}-\cdots+\beta_{r} x^{2 r} \\
& =\gamma_{0}-\binom{r}{1} \gamma_{1} x^{2}+\binom{r}{2} \gamma_{2} x^{4}-\cdots+\gamma_{r} x^{2 r}
\end{aligned}
$$

where $r=2^{l}$. Then the numbers γ_{i} are positive and log-concave (i.e., $\gamma_{i}^{2} \geqq \gamma_{i-1} \gamma_{i+1}$). Thus they are also unimodal (i.e., increase monotonically to a maximum, and then decrease monotonically). (This implies that the β_{i} 's are also positive, log-concave, and unimodal.)
(g) Define

$$
\begin{aligned}
& T_{k}(x)= \begin{cases}\prod_{|S| \text { even }}\left(1-c_{S} x\right), & k \text { even }, \\
\prod_{|S| \text { even }}\left(1-c_{S}^{2} x^{2}\right), & k \text { odd },\end{cases} \\
& \bar{T}_{k}(x)= \begin{cases}\prod_{|S| \text { odd }}\left(1-c_{S} x\right), & k \text { even } \\
\prod_{|S| \text { odd }}\left(1-c_{S}^{2} x^{2}\right), & k \text { odd },\end{cases}
\end{aligned}
$$

so that $Q_{k}(x)=T_{k}(x) \bar{T}_{k}(x)$. Then the coefficients of $T_{k}(x)$ and $\bar{T}_{k}(x)$ lie in the field $\mathbb{Q}\left(d_{k}^{1 / 2}\right)$, where d_{k} is given by the Lemma, and if $d_{k}^{1 / 2} \oplus \mathbb{Q}$, then the coefficients of any monomial x^{j} in $T_{k}(x)$ and $\bar{T}_{k}(x)$ are conjugate in $\mathbb{Q}\left(d_{k}^{1 / 2}\right)$. If $d_{k}^{1 / 2} \in \mathbb{Q}$, then $T_{k}(x)$ and $\bar{T}_{k}(x)$ have rational coefficients (so $Q_{k}(x)$ is reducible over \mathbb{Q}). (J. Lagarias has shown me a proof that d_{k} is a square if and only if $k=0$ or $k=6$). When $k=6$ we have

$$
\begin{aligned}
& T_{6}(x)=(1-x)\left(1-6 x+5 x^{2}-x^{3}\right), \\
& \bar{T}_{6}(x)=(1+x)\left(1+5 x+6 x^{2}+x^{3}\right) .
\end{aligned}
$$

(The fact that ± 1 are roots of $Q_{6}(x)$ is equivalent to the surprising identity $c_{1}=c_{2} c_{3}$ for $k=6$.) Moreover, when k is even,

$$
P_{k}(x)=d_{k}^{-1 / 2}\left(T_{k}(x) \bar{T}_{k}^{\prime}(x)-T_{k}^{\prime}(x) \bar{T}_{k}(x)\right)
$$

Proof. (a) From (2) it follows that $F_{k}(x)=A_{k}(x) / B_{k}(x)$, where $B_{k}(x)=\Pi_{s}\left(1-c_{S} x\right)$ and where $A_{k}(x)$ is a polynomial. Hence to prove (5) it suffices to show that the coefficients of $C_{k}(x)$ are integers where

$$
C_{k}(x)= \begin{cases}B_{k}(x), & k \text { even }, \\ B_{k}(x) B_{k}(-x), & k \text { odd }\end{cases}
$$

Equivalently, if σ is an automorphism of the splitting field of the field $L=$ $\mathbb{Q}\left(c_{S} \mid S \subseteq\{1, \ldots, l\}\right)$ (actually, L is Galois extension of \mathbb{Q}, but this is irrelevant), and if t is a root of $C_{k}(x)$ of multiplicity m, then σt is also a root of $C_{k}(x)$ of multiplicity m. (Probably all roots of $C_{k}(x)$ have multiplicity one; see the conjecture below.)
Set $D=\prod_{j=1}^{l}\left(2 b_{j}\right)^{-1}$. By the Lemma D^{2} is a rational number, so $\sigma D= \pm D$. Applying σ to (3) yields (since A_{n} is rational)

$$
\begin{equation*}
A_{n}=\sigma A_{n}= \pm D \sum_{S}(-1)^{|\bar{S}|}\left(\sigma c_{S}\right)^{n+1}, \quad n k \text { even. } \tag{10}
\end{equation*}
$$

Suppose $t=c_{S}$, so that m is equal to the number of T for which $c_{S}=c_{T}$. Since $c_{j}>0$
and $\bar{c}_{j}<0$, it follows that $c_{S}>0$ if and only if $|\bar{S}|$ is even, and hence $(-1)^{|\bar{S}|}=(-1)^{|\boldsymbol{T}|}$ whenever $c_{S}=c_{T}$. Thus the coefficient of t^{n} in (3) when all equal expressions c_{X}^{n+1} are combined is equal to $(-1)^{\mid \bar{S}} \mathrm{Dtm}$.

Now all functions $f(n)=\sum_{r} a_{r} \gamma_{r}^{n}$, where the γ_{r}^{\prime} 's are distinct nonzero complex numbers and the a_{r} 's nonzero complex numbers, are different. It follows from (3) and (10) that when k is even the coefficient of $(\sigma t)^{n}$ in (3) when all equal expressions c_{X}^{n+1} are combined is equal to $\pm(-1)^{|S|} D(\sigma t) m$. Hence exactly m values of T satisfy $\sigma t=c_{T}$, so that σt is a root of $C_{k}(x)$ of multiplicity m as desired.

When k is odd (3) is valid only for n even. The above argument applied to $A_{n}^{\prime}=A_{2 n}$ shows that c_{S}^{2} and σc_{S}^{2} are roots of $C_{k}(\sqrt{x})$ of the same multiplicity, so that $\pm c_{S}$ and $\sigma\left(\pm c_{S}\right)$ are roots of $R_{k}(x)$ of the same multiplicity, completing the proof of (5).

Clearly the numbers c_{j} are real and, as already observed, satisfy $c_{j}>0, \bar{c}_{j}<0$. From this we immediately have that the roots (or reciprocal roots) of $Q_{k}(x)$ are real and nonzero, and that exactly half of the roots are positive. A different proof that the denominator of $F_{k}(x)$, when reduced to lowest terms, has real roots appears in [5, p. 47].
(b) Clearly $c_{j}>\left|\bar{c}_{j}\right|>0$, so the largest c_{S} is uniquely obtained by letting $S=$ $\{1, \ldots, l\}$, yielding (6). This largest reciprocal root μ_{k} cannot be a reciprocal root of $P_{k}(x)$ since the term μ_{k}^{n} appears in (3) with nonzero coefficient, so that μ_{k} must be a reciprocal root of the least denominator of $F_{k}(x)$. A different proof that the largest reciprocal root of the least denominator of $F_{k}(x)$ has multiplicity one appears in [1, p. 284].

One can compute $\lim _{k \rightarrow \infty} \lambda_{k}$ directly from (6) by expressing $\lim _{\mathrm{k} \rightarrow \infty} \log \mu_{k}^{2 / k}$ in terms of a Riemann integral in a standard way, yielding

$$
\log \lambda=\frac{2}{\pi} \int_{0}^{\pi / 2} \log \left(\cos x+\left(1+\cos ^{2} x\right)^{1 / 2}\right) \mathrm{d} x
$$

The above integral is essentially evaluated, e.g., in [4, p. 1216], and is equal to Catalan's constant G. Hence $\lambda=\mathrm{e}^{2 G / \pi}$.

Alternatively, Kasteleyn [4] and Temperley and Fisher [9] showed that

$$
\lim _{\substack{k, n \rightarrow \infty \\ k n \text { even }}} A_{n, k}^{2 / n k}=\mathrm{e}^{2 G / \pi} .
$$

But (always assuming $k n$ is even)

$$
\lim _{k, n \rightarrow \infty} A_{n, k}^{2 / n k}=\lim _{k \rightarrow \infty}\left(\lim _{n \rightarrow \infty} A_{n}^{1 / n}\right)^{2 / k}=\lim _{k \rightarrow \infty} \mu_{k}^{2 / k}
$$

and again (6) follows. This computation of λ_{k} is mentioned in [6, eqn. (7)].
(c) From (3) and (6), the coefficient a_{k} of μ_{k}^{n+1} in A_{n} is given by (9), so (8) follows.

From (9) and the explicit expression (4) for d_{k} it is clear that $\lim a_{k}^{2 / k}=(1+\sqrt{2})^{-1}$. (It is also possible to prove this result without explicitly evaluating d_{k}, by express-
ing $\lim (2 / k) \log \left(b_{1} \cdots b_{l}\right)$ as a Riemann integral.)
(d) It follows from the form (3) of A_{n} and basic facts about rational generating functions [8, Theorem 4.1] that $p_{k}<q_{k}$. Then by [7, Proposition 5.2], we have that $q_{k}-p_{k}$ is equal to the largest integer m for which $A_{-1}=A_{-2}=\cdots=A_{-m+1}=0$, where A_{-n} is defined by substituting $-n$ for n in (2) or (3). Clearly by (2) we have $A_{-1}=0$. On the other hand, since $c_{j} \bar{c}_{j}=-1$, it follows that $A_{-2}= \pm A_{0}= \pm 1$, and the proof follows.
(e) Since $c_{j} \bar{c}_{j}=-1$, we have $c_{S} \bar{c}_{S}=(-1)^{l}$. Hence if k is odd then the reciprocal roots $\pm c_{S}$ of $Q_{k}(x)$ come in groups of four of the form $c_{S},-c_{S}, c_{\bar{S}}= \pm c_{S}^{-1},-c_{\bar{S}}=$ $\mp c_{S}^{-1}$. This implies $Q_{k}(x)=x^{q_{k}} Q_{k}(1 / x)$ and $Q_{k}(x)=Q_{k}(-x)$. If k is divisible by 4 , then the reciprocal roots come in pairs c_{S} and $c_{\bar{S}}=c_{S}^{-1}$, which implies $Q_{k}(x)=x^{q_{k}} Q_{k}(1 / x)$. If $k \equiv 2(\bmod 4)$, then the reciprocal roots come in pairs c_{S} and $c_{\bar{S}}=-c_{S}^{-1}$, which implies $Q_{k}(x)=-x^{q_{k}} Q_{k}(1 / x)$.

Now define

$$
\bar{F}_{k}(x)=\sum_{n>0} A_{-n} x^{n}
$$

A result of Popoviciu (see e.g. [7, Proposition 5.2]) implies that

$$
F_{k}(x)=-\bar{F}_{k}(1 / x)
$$

as rational functions. From (2) and the equality $c_{j} \bar{c}_{j}=-1$ it is clear that

$$
A_{-n}=(-1)^{(n-1) /} A_{n-2}, \quad A_{-1}=0
$$

Hence

$$
\bar{F}_{k}(x)= \begin{cases}x^{2} F_{k}(x), & l \text { even }, \\ x^{2} F_{k}(-x), & l \text { odd }\end{cases}
$$

Comparing with (11) yields

$$
F_{k}(x)= \begin{cases}-\left(1 / x^{2}\right) F_{k}(1 / x), & l \text { even } \\ -\left(1 / x^{2}\right) F_{k}(-1 / x), & l \text { odd }\end{cases}
$$

Comparing this result with what was just proved for $Q_{k}(x)$ (and using $q_{k}-p_{k}=2$) yields the desired properties of $P_{k}(x)$.
(f) Let $Q(x)=\sum_{i=0}^{s} \delta_{i}\left({ }_{i}^{s}\right) x^{i}$ be any polynomial with negative real roots. I. Newton showed (see e.g. [2, Theorem 51]) that $\delta_{i}^{2} \geqq \delta_{i-1} \delta_{i+1}$. (This result is in fact valid for any polynomial with real roots.) Now consider for k odd the polynomial

$$
Q_{k}(\sqrt{x})=\prod_{S}\left(1-c_{S}^{2} x\right)=\sum_{i=0}^{r} \gamma_{i}\binom{r}{i}(-1)^{i} x^{i}
$$

Since c_{S} is real and nonzero, it follows that $c_{S}^{2}>0$ and hence each $\gamma_{i}>0$. By Newton's result, $\gamma_{i}^{2} \geq \gamma_{i-1} \gamma_{i+1}$. Since each $\gamma_{i}>0$, this means $\gamma_{i} \geq \min \left\{\gamma_{i-1}, \gamma_{i+1}\right\}$ so that the γ_{i}^{\prime} 's are unimodal. This completes the proof.
(g) We omit the proof, which is a rather routine consequence of what we already
have shown.
In conclusion we mention the following conjecture.
Conjecture. The polynomial $Q_{k}(x)$ has distinct roots.
This conjecture is equivalent to the statement that $2^{[(k+1) / 2]}$ is the least degree of a linear recurrence relation satisfied by A_{n} (or equivalently, that $P_{k}(x)$ and $Q_{k}(x)$ are relatively prime). To see this, note that c_{S}^{n} occurs in (3) with nonzero coefficient, so that c_{S} must be a reciprocal root of the denominator $R_{k}(x)$ when $F_{k}(x)$ is reduced to lowest terms. When k is even, this accounts for all $2^{[(k+1) / 2]}$ roots of $Q_{k}(x)$. When k is odd, this only accounts for half the roots of $Q_{k}(x)$. However, in this case $A_{n}=0$ when n is odd. Thus if A_{n} satisfies (1), then it also satisfies (1) when every term $\alpha_{i} A_{n+q-i}$ with i odd is deleted. This means that the unique recurrence (1) of minimal degree satisfies $\alpha_{2 i+1}=0$, so $R_{k}(x)=R_{k}(-x)$. Hence not only must all the numbers c_{S} be roots of $R_{k}(x)$, but also their negatives $-c_{S}$, and we have again accounted for all $2^{[(k+1) / 2]}$ roots of $Q_{k}(x)$.

Let us point out that although we are unable to decide whether the roots of $Q_{k}(x)$ are distinct, it is evident from (3) that the least denominator of $F_{k}(x)$ has distinct roots (because the coefficient of each c_{S}^{n} is a constant, rather than a polynomial in n of degree ≥ 1). This answers a question raised in [5, p. 47].

A stronger assertion than the distinctness of the roots of $Q_{k}(x)$ is the statement that $Q_{k}(x)$ is irreducible over the rationals. In this regard, J . Lagarias has pointed out to me that the reducibility of $Q_{6}(x)$ implies the reducibility of $Q_{k}(x)$ when $k+1$ is divisible by 7 . Moreover, Lagarias has proved that $Q_{k}(x)$ is irreducible whenever $k+1$ is an odd prime $\neq 7$. Hence in this case the above conjecture is valid.

References

[1] J.H. Ahrens, Paving the chess board, J. Combin. Theory (A) 31 (1981) 277-288.
[2] G.H. Hardy, J.E. Littlewood, and G. Polya, Inequalities (Cambridge Univ. Press, Cambridge, 1959).
[3] J.L. Hock and R.B. McQuistan, A note on the occupational degeneracy for dimers on a saturated two-dimensional lattice space, Discrete Applied Math. 8 (1984) 101-104.
[4] P.W. Kasteleyn, The statistics of dimers on a lattice, Physica 27 (1961) 1209-1225.
[5] D. Klarner and J. Pollack, Domino tilings of rectangles with fixed width, Discrete Math. 32 (1980) 45-52.
[6] E.H. Lieb, Solution of the dimer problem by the transfer matrix method, J. Math. Phys. 8 (1967) 2339-2341.
[7] R.P. Stanley, Combinatorial reciprocity theorems, Advances in Math. 14 (1974) 194-253.
[8] R.P. Stanley, Generating functions, in: G.-C. Rota, ed., Studies in Combinatorics (Math. Assoc. Amer., 1978) 100-141.
[9] H.N.V. Temperley and M.E. Fisher, Dimer problem in statistical mechanics - An exact result, Phil. Mag. 6 (1961) 1061-1063.

[^0]: * Partially supported by a Guggenheim Foundation Fellowship.

