Unimodality and Lie Superalgebras

By Richard P. Stanley*

It is well-known how the representation theory of the Lie algebra sl(2,C) can be
used to prove that certain sequences of integers are unimodal and that certain
posets have the Sperner property. Here an analogous theory is developed for the
Lie superalgebra osp(1,2). We obtain new classes of unimodal sequences (de-
scribed in terms of cycle index polynomials) and a new class of posets (the
“superanalogue” of the lattice L(m, n) of Young diagrams contained in an m X n
rectangle) which have the Sperner property.

1. Introduction

Let m and n be integers with m < n. A sequence d,,, @,,.1,---» @, of real numbers
is symmetric [about Y(m + n)]if a,,,,=a,_; for 0 <i<n-m, and unimodal if

n—1

a,<a, <--<aza.,,2" - 2a, for some j. We also call the Laurent
polynomial a, g™+ a,,.,q"* '+ - -+ +a,q" symmetric or unimodal if its coeffi-
cients a,,, a,,,,..., a, have the corresponding property. It is well known how the

representation theory of the Lie algebra sl(2) =sl(2,C) can be used to prove
certain sequences are symmetric and unimodal. This goes back to Dynkin [5, p.
332] and is further discussed, for example, in [1], [16], [18]. In particular, every
finite-dimensional complex semisimple Lie algebra & contains a copy of sl(2),
known as a “principal three-dimensional subalgebra,” which leads to a wide
variety of unimodal sequences (explicitly described in [16]).

Here we derive an analogous theory for Lie superalgebras. The analogue of
sl(2) is the orthosymplectic superalgebra osp(1,2) [also denoted by B(0,1) or
osp(2,4)]. It is no longer true that every finite-dimensional complex semisimple
Lie superalgebra contains a principal osp(1,2). Indeed, the only general class of
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superalgebras which do contain a principal osp(1,2) are those denoted by
gl(n +1/n). [Strictly speaking, gl(n +1/n) is not semisimple, and we should be
dealing instead with sl(n +1/n), also denoted by A(n, n —1) or spl(n +1, n). It is
more convenient to work with gl(n +1/n), and this superalgebra is close enough
to being semisimple to cause no difficulties.]

The Lie algebra sl(2) can also be used to prove that certain partially ordered
sets have some desirable extremal properties, in particular the Sperner property.
This use of sl(2) had its origins in [17] and was first explicitly formulated in [14].
In Section 8 we give a “superanalogue” in which sl(2) is replaced by osp(1,2).

2. Review of sl(2)

First we review the relevant background concerning sl(2), so that the analogy with
osp(1,2) will be clear. The Lie algebra sl(2) is spanned by the three matrices

a8 ool
x‘[oo]’ h[o -1 Y711 ol

with the bracket operation [4, B]=AB — BA. Let gl(n) = gl(n,C) denote the Lie
algebra of all n X n complex matrices, and let

¢:s1(2) — gl(N)

be a representation ( = Lie-algebra homomorphism) of s}(2). Then ¢# is similar to
a diagonal matrix with integer eigenvalues, say diag(j,..., jy), Jj; € Z. We then
define the character ch¢ of ¢ to be the polynomial

ch¢ = q.h + ... +ql'~_

(In the precise definition of ch¢ as given e.g. in [6, §22.5], the symbol g is
regarded as a certain element in the group algebra of the dual to the weight lattice
of sl(2), but for our purposes we may merely regard g as an indeterminate.)

The representation ¢ can be written as a direct sum of irreducible repre-
sentations, and ch¢ can be uniquely written as a nonnegative integral linear
combination of irreducible characters. The Lie algebra sl(2) has one irreducible
representation ¢, _; (up to equivalence) of every dimension n >1. [The image of
sl(2) under ¢,_, is a “principal three-dimensional subalgebra” of gl(n).] The
character of ¢,_; is given by

Ch¢,, — q—n + q—n+2 + q—n+4 R +qn.

For these basic facts about sl(2), see e.g. [6, §7].
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It follows that when we write ch¢ as a linear combination of irreducibles, we
obtain, for certain nonnegative integers m;,

che = mychey + myche, + -+

m0+ml(q—l+q)+m2(q—2+1+q2)+ e

Zbiqi’

where b,=b_, and b,— b,,, =m, =0 for i > 0. Hence we obtain:

THEOREM 2.1. If ch¢ =Xb,q', then the two sequences ...,b_4 b_,,
bos by, byy... and ...,b_3, b_y, by, bs,... are symmetric (about 0) and unimodal.

3. Schur functions

Let A=(A,A,,...,\,) be a partition of length I(A):=#{i|A;#0} <n, ie,
AM=A,>--- 2,20, \,€Z. Write A\]=A;+ --- +A,. Then A indexes a
certain irreducible representation ¥, : gi(n) = gl(N), whose description is essen-
tially due to Schur [in the context of the Lie group GL(n)]. We will not bother to
define ¥, here, but will merely state the properties of interest to us. If A € gl(n)
has eigenvalues ay,...,a,, then ¥,(4) has all its eigenvalues of the form a,a,
+ -+- +a,a,, where a,,..., a, are nonnegative integers independent of «y,..., «,,

n-n®

and Ya, = |A|. Define the character chy, of ¥, to be the polynomial
chi, =2 xft -+ xjn,

the sum being over all eigenvalues Ta,a; of 4. Then chy, is a symmetric
function of xi,..., x, denoted sy(x) = sy(Xy,.--,x,) and called a Schur function.
The basic properties of Schur functions are discussed in [12] and [15].

Consider now the composite representation

§1(2) "5 gl(n) 3 gl(V)

of sl(2). Now ¢,_,(h) has eigenvalues —n+1,—n+3,...,n—1, so Yad,—1(h)
has eigenvalues (— n +1)a, +(—n+3)a, + - -+ +(n—1)a,. Hence °

Eq—(n-d)u, —(n—=3)a+ - +(n—1)a,

Ch( ‘P)\‘#'H— 1)

= q—(n+1)|>\|z(q2)al+2u2+ 4+ na,
= q—("+1)p\ls>\(q2,q“,...,q“), (1)

We deduce from Theorem 2.1:
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THEOREM 3.1. For any partition \ of length < n, the polynomial s\(q,q>,...,q")
is symmetric and unimodal.

Note: If I(A\)>n, then sy(x;,...,x,) =0, so the condition /(A)<n of the
previous theorem is irrelevant.

A simple explicit formula for 5,( g, q?,...,q") appears in [12, Example 1, p. 27]
or [15, Theorem 15.3]. Theorem 3.1 is 1mphclt in [5, p. 332], is more explicit in [16
Example 2], and is also given in [12, Example 4, p. 67]. The coefficient of ¢‘ in
sx(g, q% ..., q") has a combinatorial interpretation—it is the number of column-
strict plane partitions (as defined in [12, Example 13, p. 48] and [15, §1]) of shape
A, largest part < n, and sum of parts equal to i.

Let us also mention that when A = (m), the partition with a single part equal
to m, then

ny . oM n+m-—1
Sm(q7""q ) =4q [ m ]’

where

[a] _(=¢90-g*") - (=g
b (1-¢")(1-g"") - (1-4q)

denotes a g-binomial coefficient.
There is a generahzatlon of Theorem 3.1 pomted out to me by A. Kerber, and

proved by him in a different way than that given below. Let p,(x) denote the
power-sum symmetric function [12, pp. 15-16}, defined by

pu(x) = Zx'" pa(x) = pa(x)pa,(x) - -+ pa(x),

where [ = [(\). If weS,,, the symmetric group on m letters, then p(w) denotes
the partition whose parts are equal to the cycle lengths of w. The irreducible
(ordinary) characters x" of S, are indexed by partitions A of m. We then have
the famous formula of Frobenius (see [12, Chapter 1.7])

s(x) = Z X (W)Pp(w)(x)- 2@

weSm

Thus

1 { : N Ci(w
s\ (@:4%-.09") = — ¥ xX*WTT(g"+q*+ -+ +¢")"™,  (3)
!

1
ml s

where w has ¢;(w) cycles of length i.
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Now if H is a subgroup of S, and x a character of H, then define [7, 5.1.27]
the generalized cycle index of H with respect to x by

Cye(H, x) = IHI L x(w ) Lap .

weH

If x =1 is the trivial character, we write Cyc(H) for Cyc(H,1). Equation (3)
becomes

sx (g, g% .rq") = Cye( S, xM)(x, = @'+ g% + -+ + ¢"), (4)

where the notation indicates that we substitute ¢'+g* + --- +¢" for x; in

CyC(Sm’ X}\)'
We may generalize (4) as follows. Let

f(q)=a0+a1q+---+arq’

be any polynomial with symmetric, unimodal, nonnegative integer coefficients.
Let n= f(1), and let ¢:sl(2) = gl(n) be the representation with character ch¢ =
g7 '7(g?). Let ¥, :gl(n) — gl(NV) be as above, where /(A) <n and |A| = m. Then
we obtain in the same way as (1) and (4) that

= g—M's 2 2 2 2r 2r
Ch(‘l’)\(P) q ' (LL/__}/?‘I s s dT 547 500004 ),

ay a; a

so from (2) we get that
CyC( me X )(xi_’f(qi)) (5)

is symmetric (about $mr) and unimodal. The substitution x; — f(gq") is some-
times called the Polya composition with f(q), denoted

Cyc(S,., x*)[7(9)].

Since the center of symmetry of the polynomial (5) is at ymr (independent of
A), it follows that any nonnegative linear combination of polynomials (5), where
m and f are flxed will also be symmetric (about 3mr) and unimodal. Hence we
may replace x* in (5) with any ordinary character x of S,,. Thus we have proved:

THEOREM 3.2. Let x be an ordinary character of S,, and let f(q) be a
polynomial with nonnegative integral unimodal coefficients, satisfying q'f(1/q) =

f(q). Let
g(q) = Cyc(S,., x)[f(9)]. (6)

Then g(q) has nonnegative integral unimodal coefficients, and q™'g(1/q) = g(q).
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In particular, it is easily seen (e.g., by Frobenius reciprocity) that for any
subgroup G of S, and any ordinary character x of G we have

CyC(G’ X) = CyC(Sm’ind%"X)’
where ind$» x denotes the induction of x to S,. There follows the result of

Kerber:

COROLLARY 3.3. Let G be a subgroup of S,,, x an ordinary character of G, and
f(q) as in Theorem 3.2. Then

Cye(G, x)[ ()]

satisfies the conclusions to Theorem 3.2.

Let us note that if f(q) satisfies all the conditions of Theorem 3.2 except
integrality, then g(gq) [as defined by (6)] need not have unimodal coefficients. For
instance,

Cyc(S,)[4 +4q] = $(3+29 +34?).

4. The superalgebra osp(1,2)

A Lie superalgebra is a vector space ® (which we will always take over C),
together with two subspaces ®, and &, for which & = &,&®,, and a binary
operation [ 4, B] satisfying certain axioms. Rather than give the precise definition
here, we will be content with defining examples of concern to us. Our basic
reference is [8] and the useful summary [9]. All the results stated below without
proof can essentially be found in these references.

Let ¥ be a complex vector space of dimension m + n, and let ¥, and V| be
subspaces satisfying V =V,@V,, dimV,=m, dimV;=n. The Lie superalgebra
gl(m /n) is defined as follows. As a vector space it is given by EndV, the set of
linear transformations 4 : ¥V — V. For i = 0,1, define

End,V = {A€EndV:4V,CV,,;},
where the subscript i + j is taken modulo 2. Thus
EndV = End,V® End, V.
Define a binary operation [ 4, B] on EndV by
[4,B] = 4B —(—-1)"BA,

where A€ End,V, B€End/V, and extending to all of EndV by bilinearity
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Choose an ordered basis for ¥ whose first m elements form a basis for ¥, and
last n for V. Then End ¥V can be identified with the space of all (m + n)X(m + n)
complex matrices

m n

—— ——
4= m{|:A1 Azjl,
n{ A3 A4

where End ¥ consists of those matrices with 4, =0 and A4;=0, and End, V of
those with 4, =0 and 4,=0.

Any subspace & of gl(m /n) satisfying & =[& Ngl(m /n) &[G Ngl(m /n),]
and closed under the operation [ 4, B] is itself a Lie superalgebra, with &, = & N
gl(m /n),. In particular, define the orthosymplectic Lie superalgebra osp(1,2)C
gl(1,/2) [sometimes denoted osp(2,4) or B(0,1)] to be the set of all 3 X3 complex
matrices of the form

Thus dimosp(1,2) = 5.

A (finite-dimensional) representation of a Lie superalgebra & = & @ ®, is a
linear transformation ¢:® — gl(m/n)=End,V®End,V, such that ¢&,c
End,V and ¢[4, B]=[¢A4, $B]. We write A-v for ($4)(v) and think of 4 € & as
acting on V. Two representations

¢:® - Endy Ve End,V,
y:® - End,W® End, W

are equivalent if there is an isomorphism ¢: ¥ — W and a bijection #:{0,1} —
{0,1} such that oV,=W,, (i=0,1) and o(¢4)=(yA)o for all 4€G. A
representation ¢: ® — End,V®End, V is irreducible if V has no proper ®&-in-
variant subspace W= W,@W, where W, =W NV,

THEOREM 4.1.

(a) Every representation ¢:0sp(1,2) = EndV is completely reducible, i.e., we
can write V as a direct sum of irreducible invariant subspaces.

(b) For each integer n = 0 there is an irreducible representation ¢, :0sp(1,2) —
gl(n +1/n), and this accounts for all inequivalent ( finite-dimensional) irreducible
representations of osp(1,2).

Note: Unlike the situation for the Lie algebra gl(n), not every finite-dimen-
sional representation of gl(m /n) is completely reducible.
Let A = diag(0,1, —1) € osp(1,2). If ¢:0sp(1,2) — gl(m /n) is a representation,

then ¢4 is similar to a diagonal matrix with integer eigenvalues «,..., d,,.,. We
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then define the character of ¢ by
Ch¢ = qal 4 e +qam+n.

THEOREM 4.2. Let ¢,:0sp(1,2) = gl(n +1/n) be the irreducible representation
of Theorem 4.1(b). Then

Ch(ﬁ" —= q—n + q—n+1 4+ . +qn.

In fact, writing gl(n +1/n)=End(V,@V,) where dimV,=n +1 and dimV, = n,
then ¢, h restricted to V, has eigenvalues —n, —n+2,..., n, while ¢, h restricted to
V. has eigenvalues —n+1,—n+3,... n—1.

COROLLARY 4.3. Let ¢:0sp(1,2) = gl(m /n) be any representation. Then the
Laurent polynomial

N
ch¢ = 3 byg'
i=—N

is unimodal and symmetric about 0 (i.e., b,=b_)).

Proof: By Theorems 4.1 and 4.2, ch¢ is a nonnegative integer linear combina-
tion of the Laurent polynomials ch¢, =¢~"+¢~""!'+ --- 4+ 4", and the proof
follows. O

5. Super-Schur functions

We now turn to the superalgebra analogue of Schur functions. Let I'(m, n) be the
set of all partitions A = (A}, A,,...) such that A, < n if i > m + 1. Thus the Young
diagram of A lies inside a hook of arm height m and leg width »n. Then A indexes
a certain irreducible representation ¥, :gl(m/n) — gl(M/N), as described, e.g.,
in [3]).

Suppose 4 € EndV, where gl(m/n)=EndV. Let «,...,«,, be the eigenval-
ues of A restricted to V,, and B,..., 8, the eigenvalues of A restricted to V.
Then the eigenvalues of ¢,(A4) have the form aa + --- +a,a, + b8
+ -+ +b,B,, where the a;’s and b,’s are nonnegative integers independent of the
a,;’s and B;’s. Moreover, Xa, +Xb, = |A|. Define the character chy, of ¥, to be

the polynomial
chiy = Toxit - iyt -y, ™

the sum being over all eigenvalues Ta,a, +Xb,8; of y\(A).
While the evaluation of the characters chy, is included in the general theory
" of Kac¢, a combinatorial description appears in [2], [4], and most explicitly in [3].
We will use the notation s,(x/y) for these characters and call them super-Schur
functions; Berele and Regev denote them by HS,(x; y) and call them ‘“hook
Schur functions.” They are polynomials which are symmetric in the x,’s and »;’s
separately, and have the additional “cancellation property”

Sa (x/}’)lx1=—,vl = Sy (x/)’)lx|=.vl=0- (8)

Such polynomials are essentially the “bisymmetric functions” of [13, §5]. [More
precisely, s,(x /- y) is a bisymmetric function.]



Unimodality and Lie Superalgebras 271

The super-Schur functions are given by the formula [4, (9); 3, Definition 6.3]

sa(x/y) = L 5.(x)sx 0 (¥). (9)

p,C)\

Here sy, denotes a skew Schur function {12, Chapter 1.5] and ’ denotes the
conjugate partition. In the terminology of D. E. Littlewood [10; 11, Chapter 6.4],
sy(x/— y) is a Schur function of the series

nt

I—I (l_xi)

i=1

ﬁ (1‘)’1)

Jj=1

In the notation of A-rings [12, pp. 26-27], the polynomial s,(x/— y) corre-
sponds to the operation SMX-Y), where X=x;+---+x, and Y=y
+ --- + y,. If @, denotes the automorphism of the ring of symmetric functions in
the variable y = (y,, y;,...) as described in [12, pp. 14-17] (regard w, as
commuting with the x,’s), then '

s\(x/y) = wys\(x, »), (10)

where s5,(x, y) denotes the Schur function s, in the two sets of variables x and y.
Since w, is an algebra automorphism preserving the standard scalar product [12,
Chapter 1.4] on symmetric functions, almost every formula involving Schur
functions has a “superanalogue” obtained by applying o,.

The formula (9), together with the well-known combinatorial definition of
skew Schur functions [12, p. 42; 15, §12], gives a combinatorial definition of
sy(x/y). Namely, set x; < -+» <X, <y <+ <) and fill the Young diagram
of shape A with x;’s and y,’s such that:

(a) The entries weakly increase in every row and column.
(b) The x,’s strictly increase in columns.
(¢) The y’s strictly increase in rows.

Let p(T) be the product of the entries of the resulting tableau 7. Then

s\(x/y) = ;p(T), (11)

summed over all tableaux of shape A satisfying (a)-(c).

Example: To compute s,,(xy, X, /Y1), we have

X1X; X1X5 X%, XXy XX
X2 X2 N N N1
X1 )1 X101 X2 )1
X2 Y1 Y1

SO $551( Xy, Xo /Y1) = %1%y + x1x3 4 xEy, +2x,1 %,y + x5y, + X p7 + xy 1.
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It is perhaps of interest to note that we may choose any ordering of the x,’s
and y;’s in the combinatorial description of s,(x/y). More precisely:

THEOREM 5.1. Fix an arbitrary linear ordering of the set {X,,..., X,y Y1s--es Yy }-
Fill the Young diagram of shape X with x;’s and y;’s such that:

(i) The entries weakly increase in every row and column.
(ii) Any x, appears at most once in each column.
(iii) Any y; appears at most once in each row.

Then s,(x/y) =Xy p(T), summed over all tableaux of shape X satisfying (1)-(iii),
where p(T') is the product of the entries of T.

Proof: Let h;, and e, denote the complete homogeneous and elementary
symmetric functions, respectively, as defined in {12, Chapter 1.2]. Thus A, = 5, and
e,=sy. By (11) and the Littlewood-Richardson rule [12, Chapter 1.9] (or by
applymg the automorphism w, to the scalar product (s,, &,)), the coefficient of
x@ e xtmybio.ybe in s,\(x/y) is equal to the coefficient of 5, when the
product h, ---h, e, ---e, is expanded as a linear combination of Schur
functions. But the factors of this product can be written in any order, and by the

Littlewood-Richardson rule this yields the desired result. O

There is an alternative combinatorial interpretation of s,(x/y) which makes
the cancellation property (8) obvious. We merely state the result without proof; it
is not difficult to deduce it from Theorem 5.1 by letting m = n = o and choosing
the ordering x, <y, <x, < y, <

THEOREM 5.2. Fill in the Young diagram of shape X with positive integers such
that:

(i) The entries weakly increase in every row and column.
(1) The entries strictly increase along any diagonal running from the upper left to
lower right. ( Equivalently, no 2X2 square has all its entries equal.)

Let T be the resulting tableau. Let m; denote the number of entries of T equal to i, r,
the number of rows of T which contain an i, and ¢, the number of columns of T which
contain an i. Define

a(T) =TTy (e 3)" 57
i1
Let x = (xy, X5,...) and y = (y;, 5,...). Then
sa(x/y) =2 a(T),
T
where T ranges over all tableaux satisfying (i) and (ii).

6. Application to unimodality

Consider the composite representation

osp(1,2) 3 gl(n +1/n) B gl M/N)
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of osp(1,2). Let h = diag(0,1, —1) € osp(1,2) as in Section 4. Write gi(n +1/n) =
End(V,@V)). By Theorem 4.2, the eigenvalues of ¢,(h) restricted to V, are

—~n,—n+2,...,n, while those restricted to V; are —n+1,—n+3,...,n—1.
Thus if

s\(x/y) = fol . x:’l%:ylbl . ':),.’
then by the definition (7) of s,(x/y) there follows
ch 4/)\(1) — Zq—nal+(—n+2)a2+ ceknay gt (—n+ Db+ (~n+3)by+ - +(n—1)b,
n

— q—n|}\|zq2a2+4a3+ et 2nd, b +3by+ - 20— 1)b,

It

q—n|>\|s)\(1,q2,”_,qul/q’qS,“"qZH—l)‘

Hence from Corollary 4.3, we conclude:

THEOREM 6.1. Let A€ (n+1,n). Then the polynomial s5,(1,4q7%,...,q%"/
a4, 9°%,...,q%" ") is symmetric about n|\| and is unimodal.

Remark: By (9) we have

s}\(l,qz"n’quz/q,qJ’“"qZIl—l) = Z S#(l,ql,”.’an)sX/M,(q’q3,.“,q2n—1)

p.C)\

X 7(9), say.

p,C)\

It is easily seen that f,(¢) = ¢*"™f,(1/q) and that f,(q) is even or odd depend-
ing on whether |A/p|=|A|—]u| is even or odd. Moreover, it follows from
Theorem 3.1 and the nonnegativity of the integers c;‘,, in the expansion s, ,, =
Z,,c,i‘,,s,, [12, Chapter 1.9] that the coefficients of the even-degree (respectively,
odd-degree) terms of f,(¢) for |A/u| even (respectively, odd) are unimodal.
Hence it is a consequence of the representation theory of sl(2) and gl(n) alone

that the two polynomials

Y flg) ad ¥ f(q), (12)
pLCA pLCA
|A /| even |\ /u}odd

respectively, have unimodal coefficients of their even-degree (respectively, odd-
degree) terms; and both are symmetric about the same point (viz., n{A[). The
superalgebra structure has the effect of “unifying” (12) into a single polynomial
with unimodal coefficients. This is analogous to (but far less profound than) the
way in which superalgebra theory unifies particles with half-integer spin (fer-
mions) and integer spin (bosons).
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Example: Suppose A consists of a single row of length /. Then

!
s,(l,qz,...,qz"/q,q3,...,q2”"1) =Y s,.(l,qz,...,qz”)slz-f(q,q3,...,q2"‘1)
i=0
el
-i=0q I ,]2 I—i (]2’

where [g]qz denotes the g-binomial coefficient in the variable q*. If we denote
the above expression by P,,(q), then

. (+g)(A+g)---(1+4> )
EOP'"(")’ T a-0)(1-g¢%)---(1—-g*1)

Even though P,,(g) has a simple, elementary definition, we don’t know how to
prove its coefficients are unimodal without using superalgebras. If instead we
took A to consist of a single column of length /, then we would obtain the
unimodality of the polynomials P;,(q) defined by

, I (1+t)(1+q2t)...(1+q2nt)
/gopl"(q” (1—qt)(1_—q3t)...(1_q2n_1t).

Example: Suppose A = (A Ag,...) Where A,+1 = n. The representation , of
gl(n +1/n) is then called typical, and by [3, Theorem 6.20] or [9, §2.4] we have

n+1l n

s}\('xlr"-:xn+l/y1"--, yn) = sa(x)sﬂ(y) ]._.[1 I—L(xi+yj),
i=1 j=

where a= (A, — 1, Ay =1, A1 — 1) and B’ =(A, 42, A, 13,...). In particular,
if A= (n,n,...,n)(n+1 times), then

S}\(x19""xn+1/y1""’ yn) = n(xi+yj)7

a result essentially due to Littlewood [10, Theorem XVIII; 11, Theorem XVIII, p.
115]. Thus by Theorem 6.1 the polynomial

n n n

ino jl—Il(qzi+qzj—1) — qgn(n+1)(4n—1)1‘{1(1+qu—1)2("—"+1)
=0 j= i=

is unimodal.
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7. A cycle-index generalization

Theorem 6.1 can be generalized in the same way as Theorem 3.1 was extended to
Theorem 3.2.

THEOREM 7.1. Let x be an ordinary character of the symmetric group S, , and
let f(q) be a polynomial with nonnegative integral unimodal coefficients, satisfying
q*f(1/q) = f(q) for some integer r = 0. Let

g(q) = Cye(S,, x)(x,~ F((=1)'"'¢)).

Then g(q) has nonnegative integral unimodal coefficients, and q*™'g(1/q) = g2(q).

Proof: Let ¢:0sp(1,2) —> gl(k/n) have character ¢~'f(¢). (If ¢ denotes the
middle coefficient of f(q), then k= 3[f(1)+c] and n= i[f(1)—c].) Let X =
Yc,x* be the decomposition of x into irreducibles. Let :gl(k/n) — gl( M /N)
be glven by ¢ =Xc\,, so chy =ZXcsy(x/y). Suppose f(g)=a,+ayq

- +a,,q*". Then

chy¢
= ZC}\S)\(l’ ,1,612, -,qz, » q »q /‘1, yq ,q2r-1,”.,q2,<_1)
“o a, Ay, a, s,
(13)

Now it follows from (2), (10), and the fact that w,p(y)=(=1""1p(y)[12, p.
16] that

sx/9) = r Z PTG~ (=1 p (0] ™,

weS,

G

where |A|=m and w has ¢;(w) cycles of length i. Hence

chy¢ Zcx > x*(w)l—[[ao+a2q2’+ ot a,,q?n

weES,

m

._(-—1)"(alqi+ e 4 azr_lq(lr_x),-)] ¢, (w)

- Ly x()TTA((-D)" )"

m! wes,

Cyc(S,,, X)(X,- —’f((_l)i_lqi))-
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Thus by Theorem 6.1, g(q) has nonnegative integral unimodal coefficients. Each
term in the sum on the right-hand side of (13) is easily seen to be symmetric about

mr, so the same is true of ch Yo, O

COROLLARY 7.2. Let G be a subgroup of S,,, X an ordinary character of G, and
f(q) as in Theorem 7.1. Then the polynomial

Cye(G, x)(x; - f((-1)'"'q'))

has nonnegative integral unimodal coefficients and is symmetric about mr.

Proof: Exactly the same as the deduction of Corollary 3.3 from Theorem 3.2.
O

As in Section 3, we note that if f(g) is not required to have integral
coefficients, then g(g) need not be unimodal. For instance, let f(g) = 14+ g+ Lq2

Then

Cyc(Sz)(xi—)f((—l)i_lq’)) = %(3—{—:4(] +2g%+4q° +3q*%).

8. The Sperner property

The Lie algebra sl(2) has been used [14] to show that certain posets have the
Sperner property. We will briefly review these results here and indicate their
analogues for osp(1,2). We follow [14] in notation and terminology.

A ranked poset P of length r is a partially ordered P together with a partition
P =U’_, P, into r +1 nonvoid ranks P, 0 <i <r, such that elements in P, cover
only elements in P,_;. Assuming P is connected; then the ranking of P, if it
exists, is unique. We will assume P is finite, and we set p,=|P,. A ranked poset
P is strongly Sperner if for every k =1 no union of k antichains of P contains
more elements than does the union of the k largest ranks of P. In particular
(k =1), a strongly Sperner poset is Sperner, i.e., no antichain of P contains more
than max p, elements. A ranked poset of length r is rank-symmetric if p;= p,_;
for 0 <i<r. It is rank-unimodal if po<p,<--- <py,=2py,=---=p, for
some 0 < k < r. Finally, a ranked poset is Peck if it is rank-symmetric, rank-uni-

modal, and strongly Sperner.
If P =U/_,P, is any ranked poset, define a graded complex vector space

P=PeobPeo- - oP,
where P, is the complex vector space with basis P,. A linear operator X on P is a

lowering operator if XP,C P,_,, and a raising operator if XP,C P, . A raising
operator X is an order-raising operator if for all a € P; we have

Xa = Y.0(a,b)b,
b
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where 6(a, b)=0 unless b covers a in P. For any ranked poset P of length r
define a linear operator H on P by ’

Ha = (2i—r)a, a € P,

t

We now say that a ranked poset P carries a representation of sl(2) if there

exists a lowering operator Y and an order-raising operator X on 2 such that
XY —YX = H. This is equivalent to the statement that if x, 4, y are the matrices
spanning sl(2) defined in Section 2, then the linear transformation ¢ : sl(2) — gl( P)
defined by ¢(x)= X, ¢(h)=H, ¢(y)=Y is a homomorphism of Lie algebras.

We now state (as a single theorem) the results of [17, Lemma 1.1] and [14,
Theorem 1].

THEOREM 8.1. Let P be a ranked poset of length r. The following three conditions
are equivalent:

(1) P is Peck. _
(ii) There exists an order-raising operator X on P such that

X ?|p: P, > P

r—i

is an isomorphism of vector spaces for every 0 <i<r/2.
(iii) P carries a representation of si(2).

Moreover, an order-raising operator X satisfies (i) if and only if P carries a
representation of s\(2) whose order-raising operator is X.

We wish to give a “~supe~r-anqlogue” of Theorem 8.1. Suppose P is ranked of
even length 2r. Write P = P°@ P!, where P°=P@P,® --- ®P,, and P'= P o
P,® - .- @P,,_,. Define the following three elements of osp(1,2):

0j]o0 0O 0]0 1 0|1 o0
h=1|ol1 o x={f1]0 of »y=| 0|0 of (14)
olo -1 0olo o -1 0

Then osp(1,2) has a vector space basis consisting of #, x, y, and

0l0 0 0| 0 0
x*=1o0lo0 1| »*=1|0] o of
olo o 0ol -1 0

The superalgebra structure on osp(1,2) is defined by the relations
[A,x] = hx — xh = x,
(7, y]=hy = yh = -,
[x,y] =%y + yx = h,

[x’x]=2x2s [y,y]=2y2,
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DEFINITION 8.2. Let P be a ranked poset of length 2r. Define a linear
operator H on P by

Ha = (i—r)a, a € P, (15)

Then P is said to carry a representation of osp(l,2) if there exists a lowering
operator Y and an order-raising operator X such that XY+ YX=H. Equiv-
alently, the linear transformation

¢:osp(1,2) — gl(P%/P)
defined by ¢(h)=H, ¢(x)=X, ¢(y)=Y, ¢(x*)=X?, ¢(y*)=7Y? is a homo-

morphism of Lie superalgebras.

THEOREM 8.3. Let P be a ranked poset of length 2r. Then P carries a
representation of osp(1,2) if and only if Pis Peck.

Proof: Assume P carries a representation of osp(1,2) with order-raising oper-
ator X. While a proof that P is Peck could be given along the lines of [14,
Theorem 1), it is easier to appeal to Theorem 8.1. One easily checks that £, x2, y*
span a sub-superalgebra of osp(1,2) isomorphic to the Lie algebra sl(2). Hence the
posets

P’ = P,®P,® --- ®P,,
and

Pl=P®oP,® - ®P,, _,

each carry representations of sl(2) with order-raising operator X2. By Theorem
8.1, the linear transformations

r—2i -4 =4
(X2) |,~,Z':P2,»—>P2(,_i), OSiS%,

2\ r—1-2i L% ~ . r—1
(X ) |i)2/+1'P2’.+1_)P2(r—i)”1’ 05'1<_2_a

are isomorphisms. But then for any 0 <i <r, the linear transformations
2r=2iy. . F B
X IIP,-Pi - P,

are isomorphisms. By Theorem 8.1, P is Peck.
The converse is proved entirely analogously to the corresponding result for
sl(2) [14, p. 277]; the details are omitted. O
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It follows from Theorems 8.1 and 8.3 that if P carries a representation of
osp(1,2), then it also carries a representation of sl(2). However, in certain cases
there may be a “natural” way to define the osp(1,2) representation while a direct
construction of the sl(2) representation appears intractable. The next result gives
such an example; it describes a new class of Peck posets (or even of posets with
the Sperner property), and may be regarded as the “super-analogue” of the fact
[17, Section 4] that certain posets L(m, n) are Peck.

_ THEOREM 8.4. Let k and r be positive integers, and define K (k,2r) (respectively
K(k,2r)) to be the set of all Young diagrams Y contained in a k X2r rectangle,
such that no two rows of Y have the same odd (respectively, even) length (including’
in the case of K, no two rows of zero length, where Y is regarded as having exactly 1;
rows). Partially order K(k,2r) and K(k,2r) by inclusion of Young diagrams.
Define the rank of a Young diagram Y to be its number of squares, so that K (k,2r)
and K(k,2r) become ranked posets. Then K(k,2r) and K(k,2r) are Peck posets.

Proof: First consider the case K(k,2r). We index the rows and columns of a
matrix 4 in gl(r +1/r) by the numbers 0,2,4,...,27,1,3,...,2r —1, in the order
given. Let E;; € gl(r +1/r) denote the matrix with a 1 in position (i, j) and 0’s
elsewhere. Define a linear transformation y,:0sp(1,2) = gl(r +1/r) as follows
where h, x, y are given by (14): ’

Y, (h) = rEy +(r=1Ey+ -~ rEs, 2ps
\I/r('x) = EOI + E12 R E2r—-1,r’
Y (y) = rEyp +(r—D)E; +(r—=2)Esy + -+ + Ey,_1 5,
—Ey —2E;; ~3Eg — - —rEy, 5,4,
2
(3 = 9 (0) (7)) = () (16)
One easily checks by direct computation that ¢, is a homomorphism of Lie
superalgebras. [In fact, Y, is the irreducible representation ¢, of osp(1,2), but it is
irrelevant here that ¥, is irreducible.]

The representation , defines an action of osp(1,2) on a vector space V@17,
where dim V, = r +1, dim ¥V, = r. Define the kth supersymmetric power Skv,@v))
of the pair (¥, V;) to be the kth tensor power T*(V,@V;) modulo the subspace
generated by all relations

vew—(-1)"weu, 17)
where v € ¥}, w € V. [We may identify Sk(Vy@V,) with the space

L1 5/(7) e 2~(,),



280 Richard P. Stanley

where S’ and A’ denote the ith symmetric and exterior power, respectively.] The
action ¢, of osp(1,2) on V@V, induces an action of osp(1,2) on TK(Vy@V,) by

2r
A-(0,@0,® - ®0y,) = 2, 0,®V;® -+ AV, ® - -+ ®,,. (18)
j=0

The subspace defined by (17) is stable under this action, so osp(1,2) acts on
Sk(V,@V,) by the same rule (18). [We identify v,® - - - ®v,, with its image in
NRAIAN

Now let x,,, X5, _2,..., X¢ and X,,_1, X5,_3,..., X; be the ordered bases of V,
and V], respectively, which define the matrices 4 € gl(r +1/r). In other words,
Xgpseeey Xgs Xa,._1,-+-, X1 are the unit coordinate vectors for V,@FV; in the given
order. A basis for SX(V,@V,) consists of all tensors x =x;,8x,® --- ®x; for
which 2r > i; > i, > -+ 2 i, > 0 and for which no two odd i,’s are equal. Hence
we may identify x with the Young diagram Y in K(k,2r) whose rows are of
length iy, i,,...,i,. Thus we may identify the vector space K(k,2r) with S"(VO@
V).

It is then immediate from (16) and (18) that ¢, (x) is an order-raising operator,
Y,(p) is a lowering operator (in fact, an order-lowering operator), and ,(h) acts
as in (15). Hence K(k,2r) carries a representation of osp(l,2), and the proof
follows from Theorem 8.3.

The proof for K(k,2r) is entirely analogous. We replace S¥(V,@¥,) by the
kth superexterior power AF(V,®V,) defined by taking T*(V,®V,) modulo the
subspace generated by all relations

vew— (-1 " Ve,

or equivalently AK(V,@V,) = S¥(V,®V,). The details are omitted. O
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