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Modular Elements of Geometric Lattices 

RICHARD P. STANLEY 

1. Modular Elements 

Let L be a finite geometric lattice of  rank n with rank function r. (For definitions, 
see e.g., [3, Chapter 2], [4], or [1, Chapter 4].) An element x s L  is called a modular 
element if  it forms a modular  pair with every y e L ,  i.e., if a<~y then a V ( x A y )  
= (a v x )Ay .  Recall that in an upper semimodular lattice (and thus in a geometric 
lattice) the relation of being a modular pair is symmetric; in fact (x, y)  is a modular 
pair i f  and only if r (x) + r (y) = r (x v y)  + r (x A y) [1, p. 83]. Every point (atom) of a 
geometric lattice is a modular  element. I f  every element of  L is modular,  then L is a 
modular  lattice. The main object of  this paper is to show that  a modular  element of  
L induces a factorization of the characteristic polynomial of  L. This is done in Section 
2. First we discuss some other aspects of  modular elements. 

The following theorem provides a characterization of  modular  elements. 

T H E O R E M  1. An element x ~ L is modular i f  and only i f  no two complements of  x are 
comparable. 

Proof. I f x  is modular  and x '  is a complement of  x, then r(x ')  = n - r ( x ) .  Hence all 
the complements of  x have the same rank and are incomparable. 

Conversely, assume x is not modular. Then there are elements y < z  such that 
X A y = X A Z  and x v y = x v z .  Le tp l ,pz , . . . , p~  be a basis for L such that p l , p2  ... .  ,p ,  
is a basis for XAy;  Pl,Pz,...,P~] is a basis for y ;  Pl, P2, . . . ,P ,  is a basis for z; and 
p l ,p2 , . . . , po i s  a basis for x v y .  ThusO<~s<t<u<v<~n, r ( x A  y )=s ,  r ( y )= t ,  r (z)=u,  
r (x v y)  = v. Let 

x' = Ps+ l v Ps+ 2 v ... v Pt v Pv+l v Pv+2 v .-- v Pn 

X" ---- X' V Pt+l V Pt+2 V"" V Pu" 

I t  is easily seen that x '  and x" are both complements of  x with x '  < x". [ ]  
In  particular, an element x with a unique complement x '  is modular.  For a 

stronger result, recall that an element x is said to be in the center of an ordered set P 
with 0 and 1 if  P = [0, x] x [0, x ' ]  for some x '  [1, p. 67]. For  an element x to be in 
the center of  a geometric lattice L, each of the following conditions is necessary and 
sufficient: 

(1) x is distributive (because x is complemented, cf. [1, p. 69]), i.e., for any y, 
z~L,  the sublattice generated by x, y, z is distributive. 

(2) x has a unique complement. This result appears to be new; Curtis Greene has 
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in fact proved the more general result (unpublished) that the intersection (meet) of 
all the complements of  any element of a geometric lattice L is in the center of L. 

(3) x is a separator of  L [3, Chapter 12], i.e., for any point p and any copoint q not 
containing p, either p ~< x or x ~< q. 

(4) x is a standard element of L [1, p. 69] (this follows from (2) since a comple- 
mented standard element has a unique complement). The concept of standard ele- 
ments is due to G. Gr/itzer. 

2. The Characteristic Polynomial 

The characteristic polynomial p f  (2) [4] of a geometric lattice L is defined by 

p, (2) = Z (0, y) 
yeL 

where # denotes the M6bius function of L (see [4]). 
This polynomial was first considered by G. D. Birkhoff, while its connection with 

M6bius functions was noted by Garrett Birkhoff. IfxmL, the characteristic polynomial 
of  the segment [0, x] is denoted p ,  (2). 

The main result of this paper is the following factorization theorem: 

T H E O R E M  2. l f  x is a modular element of a finite geometric lattice L of rank n, 
then 

b) 2 TM] 
The expression in brackets may be thought of as the characteristic polynomial of  

the order ideal C ( x ) = { b l x A b = O  }. C(x) will have a 1 if and only i f x  has a unique 
complement x'  in L. In this case C (x) = [0, x ' ]  and L = [0, x] x [0, x']. Thus when x 
has a unique complement Theorem 2 is trivial, since Pt.l • =PL~PL2. 

To prove Theorem 2, we first prove two lemmas. The first lemma is a special case 
of  some results of  Schwan on modular pairs (see [I, Section IV.2]), but for the sake 
of completeness we include a proof. It is to be assumed throughout that x is a modular 
dement  of  the finite geometric lattice L, and that L has rank n. 

L E M M A  1. For any a~L, the map 

[a ,  a - ,  [a  ^ 

defined by c%(y)=x A y is an isomorphism with inverse z~  y. 
Proof. Clearly a ,  and % are order-preserving. By modularity of x, it is immediate 

that if y~[aAX, X], then cr,z,(y)=x A (av y ) = ( x A a ) v  y=y.  Also if y~[a, av  x], 
then % a , ( y ) = a v ( x A y ) = ( a v x ) A y = y ,  and the proof  follows. [ ]  
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L E M M A  2. For  any y~L,  x A y  is a modular  element of  [0, y] .  
Proof. Let a~  [0, y]  and let b ~< a. We need to show b v ((x a y)  ^ a) = (b v (x A y))  ^ a. 

Using the modular i ty  of  x, we have 

( b y  ( x A y ) ) A a = ( ( b v x ) A y ) n a = ( b v x ) A a = b v  ( X A a )  

= b y ( x ^  ( y A a ) ) = b v ( ( x A y ) A a ) .  [] 

Proof of Theorem 2. By Crapo 's  Complementat ion Theorem [2], if a e [ 0 ,  y]  then 

it (0, y) = ~, It (0, a') ( (a', a") U (a", y),  
a', a" 

where a'  and a" are complements of  a in [0, y] ,  and ( is the zeta funct ion of  [0, y].  
Choosing a = x A y ,  then by Lemma 2 all the complements  of  a have the same rank 
and hence are incomparable.  Thus 

U (0, y) -- Y' U (0, b) It (b, y ) ,  (1) 

where the sum is over all complements b of  x ^ y in [0, y] ,  i.e., over all b~L satisfying 
O<.Nb<~y, b ^ ( x A y )  =0 ,  b v ( x A y ) = y .  Now b ^ ( x A y ) = b  ^ x ,  and by the modulari ty 
of  x, b v (x ^ y)  = (b v x) ^ y. Thus  the sum (1) is over all b E L satisfying b ^ x = 0 and 
ye[b,  b v  x]. Hence 

pL(;O = Z 
y~/., 

= E  
yeL 

It (0, y) 2"-'(Y) 

2 It (0, b) It (b, y) )t "-'C') 
b ^ x = O  

y~[b,  b v x ]  

= 2 E It (0, b)/~ (b, y) ) . ' - ' ( ' )  
b A x = O  ye[b ,  b v x ]  

Now by Lemma 1, as y ranges over [b, b v x] ,  z = x  A y ranges over the isomorphic 
interval [b ^ x, x] = [0, x] ,  and It (b, y)  = It (0, z). Moreover  r (y)  = r (b) + r (z). There- 
fore 

PL (2) = E E It (0, a) It (0, z) 2 " - ' (b ) - ' ' ' '  
b ^ x = O  z e [ O , x ]  

3. Examples 

As a special case of  Theorem 2, suppose x is modular  copoint ,  and that  exactly ct 
points (atoms) a of  L do not  lie below x. Then  these points a, together with 0, are the 
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only elements b of  L satisfying b ^ x = 0. Moreover,/~ (0, a) = - 1,/~ (0, 0) = 1, so 

 L(2) = px(2) (- l )+  2] = ( 2 -  

Thus if L contains a maximal chain O = x o < x l < . . . < x , = l  such that each x~_ x is 
modular in [0, x J  and such that exactly ~i atoms of ['0, x J  do not lie below x i - i ,  then 
Pz (2) = ( 2 -  ~i) ( 2 -  ~z)... ( 2 -  ~,). It is easy to show that the condition that each x i_ 1 
is modular in [0, x~] is equivalent to the condition that each x i is modular in L. A 
class of geometric lattices with such a 'modular maximal chain' is the following: Let 
~1,~2,..., ~, be any collection of positive integers with ~ ,=1.  Let p~, . . . ,p ,  be n 
independent points, and on the line p~p, (1 ~ i ~< n -  1 ) insert an additional ~ -  1 points. 
The geometric lattice L of flats of this geometry contains a modular maximal chain, 

and Pz (2) = ( 2 -  ~i) ( 2 -  c~ 2)... ( 2 -  c~,). 
At this point it is natural to ask for a characterization of the modular elements of 

various geometric lattices. We state such a characterization when L is the lattice of 
contractions of a finite graph. Recall that a contraction of a graph G may be regarded 
as a partition rc of  the vertices of G, such that the subgraph H induced by each block 
B of n is connected [3, Chapter 6]. 

T H E O R E M  3. Let L be the lattice of  contractions o f  a doubly connected finite 
graph G. Then reeL is a modular element of  L i f  and only i f  the following conditions 
hold: 

(i) At  most one block B of  z~ contains more than one vertex of  G. 
(ii) Let H be the subgraph induced by the block B of  (i). Let K be any connected 

component of  the subgraph induced by G -  B, and let H i be the graph induced by the 
set o f  vertices in H which are connected to some vertex in K. Then H i is a clique (complete 

subgraph) o f  G. [] 
The proof  is of  a routine nature and will be omitted. 
I f  G is not doubly connected, then the lattice of contractions of  G is a direct 

product of  the lattices of contractions of the maximal doubly connected subgraphs of 
G, so Theorem 3 easily extends to arbitrary finite graphs G. 
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