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1. INTRODUCTION 

Let g = sl(n, C) denote the Lie algebra of all n x n complex matri- 
ces of trace 0. Let ad : SL(n, C) + GL(g) denote the adjoint represen- 
tation of SL(n, C), defined by 

(adX)(A) = XAX - ', 

where X E SL(n, C) and A E g. Introduce two infinite sets u = ( u , ,  
u,, . . . ) and .t. = ( v , ,  u,, . . . ) of variables, and the following function 
on SL(n, C) with values in the formal power series ring Q [ [ u ,  c] ] :  

This function is a virtual character of SL(n, C), and a wide variety of 
problems in combinatorics and representation theory involve its de- 
composition into irreducibles. In particular, the q-Dyson conjecture 
for equal exponents and the computation of the generalized expo- 
nents of SL(n, C) are special cases of this problem, discussed in more 
detail in Sections 8 and 9. We will study the behavior of (1) as n + co, 
and obtain what amounts to a decomposition into irreducibles in this 
limiting case. 

'Partially supported by a grant from the National Science Foundation and by a 
Guggenheim Fellowsh~p. 
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4 R. P. STANLEY 

The virtual character (1) is a symmetric function of the eigenvalues 
of X. Our approach will be based on the theory of symmetric 
functions, which we now briefly review. Two basic references on 
symmetric functions are [14] and [20]. In general we will adhere to the 
notation and terminology of [14]. 

2. SYMMETRIC FUNCTIONS AND THE CHARACTERS 
OF SL(n, C) 

Let A = (A,, A,, . . . ) be a partition, i.e., a decreasing sequence 
A ,  > A, > . . . > 0 of nonnegative integers with only finitely many A, 
unequal to zero. If A,, , = A,,,, = . . . = 0, then we also write A 
= (A,, . . . , A,). The number of nonzero A, is the length of A, denoted 
/(A). If m = A ,  + A, + . . . then we write Atm or IA/ = m and say that 
A is apartition of m. The conjugate partition A' = (A',,A;, . . . ) to A has 
A, - A,,, parts equal to i. We also let m,(A) denote the number of 
parts of A which are equal to k, so IA/ = C k  . m,(A). 

Let A, = A,(x) denote the ring of all symmetric polynomials with 
rational coefficients in the variables x = (x , ,  . . . , x,), and let Q,, 
denote A, modulo the ideal generated by x,x2 . . - x,, - 1. A vector 
space basis for 3, consists of all Schur functions s,(x) = 

s,(x,, . . . , x,), where A ranges over all partitions of length < n - 1. 
For the definition and basic properties of Schur functions, see [I41 or 
POI. 

A polynomial representation of SL(n, C) of dimension N is a homo- 
morphism $ : SL(n, C) + GL(N, C) such that for X € SL(n, C), the 
entries of the matrix + ( X )  are polynomial functions of the entries of 
X. For instance, 

is a polynomial representation of SL(2, C) of dimension 3. Every 
continuous representation + : SL(n, C) + GL(N, C) is equivalent to a 
polynomial representation, so for all practical purposes it costs us 
nothing to consider only polynomial representations. If $ is a polyno- 
mial representation of SL(n, C), then there is a unique polynomial in 
a,, denoted char+ and called the character of +, satisfying (char+) 
( x , ,  . . . , x,) = t r+(X) for any X E SL(n,C) with eigenvalues 



x , ,  . . . , x,, where tr denotes trace. Note that since x ,  . . . x,, = 1 for 
X E SL(n,@) with eigenvalues x , ,  . . . , x,, the value (char$) 
(x,, . . . , x,) is well-defined. For instance, if + is given by (2) then 
char + = x: + x,x, + x i  (or equivalently, say, char+ = x,x;' + 1 + 
x,'x,, which is the same element of Q,). 

A basic theorem (e.g., [21, Thm. 1.31) on the representations of 
SL(n, C) states that the irreducible (polynomial) characters of 
SL(n, C) are precisely the Schur functions sA(x) E Q,, /(A) < n - 1. 
Thus the problem of decomposing char + into irreducible characters 
is equivalent to expanding char+ as a linear combination of Schur 
functions in the ring 3,. More generally, any f E Q,, (or f E Q,, 8 K 
for some extension field K of Q )  may be regarded as a virtual 
character (over Q or K) of SL(n, C), and expanding f as a linear 
combination of Schur functions (over Q or K) sA(x) E Q,, is equivalent 
to decomposing f into irreducibles. 

Sometimes it will prove convenient to work with symmetric func- 
tions (= formal power series) in infinitely many variables x = ( x , ,  
x,, . . . ). We let A = A(x) denote the ring of all symmetric formal 
power series of bounded degree with rational coefficients in the 
variables x. A is the inverse limit of the rings A, in the category of 
graded rings. The Schur functions sA(x), for all partitions A, form a 
vector space basis for h(x). The completion fi of A (with respect to 
the ideal of symmetric functions with zero constant term) consists o*f 
all symmetric formal power series with no restriction on the degree. 12 
is the inverse limit of the rings A, in the category of rings. For further 
information, see [14, Ch. 1.21. Let us remark that in [I41 the elements 
of A,, A, and have integer coefficients, but we will find it conve- 
nient to allow rational coefficients from the start. 

3. THE COEFFICIENTS c,,(u; c) 

Introduce two sets u = (u, ,u, ,  . . . ) and c = (o,,c,, . . . ) of vari- 
ables. The function which sends X E SL(n, C) to the element 

1 - u,adX 
det , 1 - cAadX 

of Q[[u, u]] is a virtual character of SL(n, C) (over, say, the quotient 
field Q((u,c)) of Q[[u,c]]), i.e., it is a symmetric function of the 
eigenvalues of X. In fact, suppose X has eigenvalues x , ,  . . . , x,. 
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Then (e.g., [21, eqn. (8)]) ad X has eigenvalues x,xJ-' (once each for 
i f j )  and 1 (n - 1 times). Thus (3) can be rewritten 

Our main object here is to decompose (4) into irreducibles (equiva- 
lently, expand (4) in terms of s,(x),l(A) < n - 1, in the ring a,,) as 
n + a. It will prove convenient to multiply (4) by a factor n k ( l  - u,) 
(1 - ck ) - ' ,  SO (4) now becomes 

Thus define formal power series c:(u; c) E Z [ [ u ,  c]]  by 

where A ranges over all partitions of length < n - 1. 
In order to consider c:(u; C) as n + a, one must vary A with n in a 

suitable way, or else the limit becomes zero or undefined. The correct 
way of passing to the limit was suggested by R. Gupta (in the 
somewhat less general setting of Section 8). Given any two partitions 
a and p of lengths k and I of the same integer m, and given n k + I, 
define the partition 

of length < n - 1 



It follows from Gupta's work (and will be shown below) that 

exists as a formal power series, which we denote by cab(u; c). Our 
main goal here is formula for caB(u; r;) .  

4. INTERNAL PRODUCTS AND SKEW SCHUR FUNCTIONS 

In order to give our formula for ca13(u; v) ,  we first review some 
more background from the theory of symmetric functions. The irre- 
ducible characters x h f  the symmetric group S, are indexed in a 
natural way by partitions h of m. If w E S,, then define p(w) to be 
the partition of m whose parts are the cycle lengths of w. For any 
partition h of m of length I, define the power-sum symmetric function 
ph = px ,ph2  . . . pi,\,' where p , (x)  = C ,x,". For brevity write p, = p ,(,, . 
The Schur functions and power-sums are related by a famous result 
of Frobenius (e.g., [14, Ch. 1.71): 

Now let 

where each gaBY is a nonnegative integer. (It is an important open 
problem to obtain a nice combinatorial interpretation of gap,. For 
some recent work on this problem, see [3].) D. E. Littlewood [13], in 
order to incorporate the Kronecker product X"X13 into the theory of 
symmetric functions, defined an associative, commutative product 
f * g on symmetric functions by 

and extending to all of A by bilinearity. We will call f * g the internal 
product o f f  and g. (Littlewood uses the term "inner product." Since 
the product f * g has nothing to do with the usual definition of inner 
product in linear algebra, we have followed a suggestion of I. G. 
Macdonald in calling it the internal product. Littlewood uses the 
notation f 0 g for our f * g. Since we are adhering to the notation of 
[14], where f 0 g denotes plethysm, we have introduced the new 
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notation f * g). Note that s, * s, = s, and s ,~ , , , ~  = s,,, where a' denotes 
the conjugate partition to a.  A table of internal products appears in 
[17] and [24, appendix]. 

In terms of the power-sums we have the expansion 

The following basic property of the internal product is due to Schur 
[19] (p. 69 of Dissertation; p. 65 of GA); see also [14, (7.9), p. 631. 

We have 

Now define a scalar product ( f ,  g)  in the ring 12 by letting the 
Schur functions form an orthonormal basis, i.e., 

Given partitions A,a, define a symmetric function s,,, E A, called a 
skew Schur function, by the rule 

In other words, multiplication by s, is adjoint to the linear transfor- 
mation sending s, to s,,,. It is not difficult to show that s,,, = 0 
unless a < A, i.e., a, < A, for all i. For further information, see [14, 
Ch. 1.51. 

Let us remark (as brought to my attention by R. Cupta) that the 
Schur function S [ , , ~~ , , (X)  was considered by D. E. Littlewood [lo], 
who essentially showed that in the ring Q, we have 

where x = (x , ,  . . . , x,) and l / x  = ( l / x , ,  . . . , 1 /x,). For instance, 
the adjoint representation of SL(n, C) corresponds to the partition 
[I, I],, with character 



CHARACTERS OF SL(n, C) 

5. A SYMMETRIC FUNCTION IDENTITY 

Our evaluation of cap(u, c) will depend on a new identity involving 
symmetric functions. 

THEOREM 5.1 Let x = ( x l , x 2  , . . .  ), , v = ( y l , y 2 , . . . ) ,  .t;=(.t;,, 

c2, . . . ) be three infinite sets of variables. Then 

Here a , ,  . . . . a, range independentl,~ over the positive integers, ph(c) 
= ~o : ,  and we set sA*  s,(c) = 0 if / A  # / pi. 

Proof Let R denote the ring Q((c)) @ A(x) 63 .2(y), which should 
be regarded as a vector space of formal power series of bounded 
degree, symmetric in the x's and y's separately, over the field Q((c)) 
(the quotient field of Q[[c]]). Define a scalar product on R by letting 
the elements sa(x)sp(y) form an orthonormal basis. If f E R,  then 
following [14, Ex. 3, p. 431 let D (  f )  : R + R denote the linear transfor- 
mation which is adjoint to multiplication by f, i.e., 

Note that D(f + g)  = D(f)  + D(g).  Let 

The right-hand side of (10) is given by 

= ( c )  - y , ) )  (1 - y , ' .  
i,k I , J , ~  

by Proposition 4.1 and the "Cauchy identity" [14, (4.3), p. 331 [20, 
Cor. 7.21 

Thus writing F for the left-hand side of (lo), we need to show that for 
all f E R, 
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It suffices to check this for all f forming a Q((u))-basis for R, and we 
will choose f = p, (x)pg (y). 

Now [14, (4.7), p. 351 [20, Prop. 4.21 

where mi = mi@). It follows that for any power series G = C,>,t , /n  
we have 

Now 

Thus by (12), 

Write p. U X for the partition whose parts are those of X and of p, 
arranged in descending order [14, p. 51. There follows 



Let r, = m,(p)  and s, = rn,(a). Then (14) becomes 

= % ( p a  P J P ~  n(l - e , ( v > ) ' .  
I 

Comparing (13) and ( 1 5 )  completes the proof. 

6. A FORMULA FOR cap(u;c)  

We will first obtain a formula for the generating function 

C ( x ,  y ) :  = c d ( u ;  u)s,(x)s;,(y) E Q [ [ u , c ] ]  8 * ! ( x )  8 h ( y ) .  
u?P 

It will be more convenient to work with 

and later to apply a standard trick to obtain C ( x ,  y) from C,(x, y) .  
(Here cmR(0; c) denotes the result of substituting uk = 0 in cO8(u; c).)  

LEMMA 6.1 We have 

Proof For the present we fix n > 1 and use only the variables 
x = ( x , ,  . . . , x,). All our computations are done modulo the relation 
x ,  . . . x,, = 1 (i.e., in the ring Q,) until further notice. Set x, =.I; = 0 
for j > n in (8) and set y, = x , '  for 1 < j < n. Comparing with (5) 
(when each u, = 0), we obtain 

c ~ " ( o ;  D)s,(x) = 2 SJ, * s , ( u ) s ~ ( x ) s , ( ~ / x ) .  
v A, p 

( ' 8 )  

Here v,  A, p range over all partitions of length < n - 1 .  Let p = ( p , ,  
y, , .  . . , p B _ , ) ,  and define , i i = ( p ,  -p , , ,  p, - p  n p l , .  . . , p , -  y,). It 
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is well-known (e.g., [21, ( 1  I ) ] )  that 

s , ( l / x )  = s,-(x) (in a,). 

The ring Q ,  has a scalar product for which {s,:  I(h) < n - 1 )  is an 
orthonormal basis. Take the scalar product of (18) with s,(x). We 
obtain 

We now wish to invoke (9).  Some care must be taken since we are 
working in Q ,  and not A (or A,). Suppose that I (y) ,  1(6) ,  I ( € )  < n - 1 ,  
and that Ie/ + rn = lyl + 181 for some integer r > 0. Let C = ( E ,  + r, 
e2 + r,  . . . , e n ,  + r,r) ,  SO ICl  = / y /  + 181. It is easily seen that 

where the subscript indicates the ring in which the scalar product is 
taken. Moreoever, if 1-f + 181 - lei # rn for some integer r  > 0. then 
(s,ss, s c h , ,  = 0. For instance, (s2s32, s , ) ~ ,  = (s2s3,, s32,j, = 1 .  

We can therefore replace (sAsF,s , , )  in (19) by (s,s;,s,),. Now let 
v = [ a ,  PIn  When n is sufficiently large (namely, n > 1 ( p )  + [ ( a ) ) ,  
the shape 5/$ splits up into a disjoint union of the two shapes a  and 
( p / / 3 ) " ,  where " denotes the operation of rotating 180". Since 
s,,,,, = n s p , / , ,  when the shape p /a  is a disjoint union of the p ' / a 1  

- (e.g., by [14, (5.7), p. 40]), we conclude s , ~ , ~ , , , , ~  - s ~ s ( , ~ ~ )  .. . But for 
- any p and /3 we have s( - s , / ~ ,  as follows immediately from, 

e.g., [14, (5.11), p. 411 and the fact that skew Schur functions are 
symmetric. We conclude that s , ~ , ~ , , / ~  = s ~ s , / ~  (for n > I ( p )  + [ (a ) ) .  
Hence from (19), 

cap ( 0 ;  c )  = Iim c;,,~,,, ( 0 ;  c )  
n+m 

by (9),  where the scalar product is now taken in A. 
Multiply (20) by s a ( x ) s P ( y )  and sum on all a  and ,!3 to obtain 



where ( , ); denotes that the scalar product is taken with respect to 
the variables z. 

By, e.g. [I4, p. 411, we have 

(since s,,,(z, x) is symmetric in the x's and z's together), and similarly 
for p / / 3  and p. Hence 

= C SA * S ~ ( Z . ' ) S A / ~ ( X ) S ~ / ~ ( Y ) ~  
A.P, a 

since (s, (z), sP(z)): = . This completes the proof. 

We can now give a formula for cap(O; 6). 

THEOREM 6.2 We have 

The notation indicates that we are to expand s, * sP in terms of the pk7s, 
as given explicit& by (7), and substitute pl, (c)/(l - pi, (c)) for p, . 

Equivalently, we have 

where the notation now indicates that we are to evaluate s, * sP at the 
variables u,, . . - oar for all r > 0, where a , ,  . . . , a, range independently 
over all indices of the 0's. I n  the notation of plethysm [14, Ch. 1.81, (22) 
can be rewritten 

Let us note that 114, p. 621 

Proof of Theorem 6.2 Comparing (lo), (16), (17), we see that 
cap(O; v) is equal to P(c)-I times the coefficient of sa(x)sa(y) when 
the left-hand side F of (10) is expanded as a linear combination of 
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s,(x)s,,(y). If we substitute the products c,, . . . O, for the variables c, 
in (8), then we obtain 

In order to find a similar formula for cmi,(u; v ) ,  consider the algebra 
automorphism o, described in 1141 acting on symmetric functions in u 
(regard all other variables as scalars commuting with a,). It follows, 
e.g. from [14, p. 141 that 

" ,n(~  + u ~ ~ ) - I =  n ( i  - ~ ~ t ) .  
k k 

Since o, is an algebra automorphism, we get 

Hence if we set u = 0 in ( 5 ) ,  next replace c by the two sets of variables 
- u and o, and finally apply a,, then we obtain 

a ,  C c^"(O; - u, c)s , (x)  = 2 c,"(u; c)s,(x).  
A h 

Therefore w,c;;'(O; - u ,v )  = c t ( u ;  c) ,  so in particular 

Cd,cap(O; - U , G )  = C , ~ ( U ;  O ) .  

Now replace v by - u,  c in (21) and apply a,. Since p k ( -  u ,  c )  
= p k ( -  u )  + p , ( v )  and w,p,(- u )  = - p k ( u )  (e.g., [14, p. 161), we 
obtain our main result: 

THEOREM 6.3 W e  have 

where 

There is no direct generalization of (22) for c ( u ;  c ) ,  i.e., cap(u;  c )  
cannot be written as P ( u ;  c)-I  times sU * s/, % a certain set of 



variables. However, we do have a generalization of (23), viz., 

A result essentially equivalent to Theorem 6.3 was proved indepen- 
dently by P. Hanlon [26]. He computed maximal weight vectors for 
certain virtual representations of SL(n,C) as n +  oo. When these 
weight vectors are used to decompose the character of the correspond- 
ing representation into irreducibles, a special case of Theorem 6.3 
results. There is no difficulty, however, in extending Hanlon's work to 
obtain all of Theorem 6.3. 

7. A LEMMA ON THE CHARACTERS OF THE SYMMETRIC 
GROUP 

We next want to consider the form of the generating function 
cap(u; 2;) in certain special cases. We first need some information on 
when the character value $( y) is nonzero. We will use the formula of 
Littlewood and Richardson [ 1 1 ,  p. 701 [14, ex. 5 ,  p. 641 (equivalent to 
the "Murnagham-Nakayama formula") for computing the irreduc- 
ible characters of the symmetric group S,. We now review this result. 
Given a shape A, a border-strip (or skew hook or rim hook) of A is a 
nonvoid skew shape y = A/ y which is rookwise-connected and which 
contains no 2 x 2 block of squares. For instance, with X as below a 
typical border strip is shaded. The total number of border strips of X 
is /A / .  

A border-strip tableau (or rim-hook tableau) B of shape X is a 
sequence A = X0 2 A'  I, . . . > XJ = 0 of shapes such that each skew- 
shape X i / X ' + '  (0 < i < j - 1 )  is a border strip of Xi .  We say that B 
has rype v  = ( v , , v , ,  . . . , v,) if v,,, = IA1 /X '+ ' l .  Note that v  need not 
be a partition. We can denote a border-strip tableau by filling in the 
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squares of X ' / X i + '  with i + 1's. For instance, 

is a border-strip tableau of shape (6,5,4,4,2,2, 1) and type (6,4,3,7, 
1>3). 

As in Section 4 let XQenote the irreducible character of S,, 
corresponding to b m .  An element w E S,? has type v = ( v , ,  
v,, . . . , v,) if its cycle lengths (in its disjoint cycle decomposition) are 
v, ,  v,, . . . , v,. Write v = v(w).  We do not require v to be a partition. 
Each w has exactly one type which is a partition, which we denoted 
by p(w) in Section 4. Since xX(w) depends only on the type of w, we 
can write xX(v) for xh(w) when v = v(w). We can now state the 
formula of Littlewood and Richardson. 

THEOREM 7.1 Let X tm and let u = (v, ,  . . . , v,) be any sequence of 
positive integers summing to m .  Then 

where B ranges over all border-strip tableaux of shape X and type v, and 
where ht B is an integer whose value is irrelevant here. 

COROLLARY 7.2 Suppose there does not exist a border-strip tableau of 
shape X and type v. Then X"v) = 0. 

LEMMA 7.3 Suppose y = h / y  is a border-strip of h with l y l  = p k ,  
where p and k  are positive integers. Then there exists a sequence 
X = X 0  > X I  > . . . > h k  = of shapes such that (a) h ' / X 1 + '  is a 
borderstrip o f h ' ,  0 < i < k  - 1 ,  and(b)  /X1 /h '+ ' l  = p ,  0 < i < k  - 1. 

Proof (in collaboration with A. Garsia) Let the successive squares 
of y, reading from left-to-right and bottom-to-top, be s,,s,, . . . , s,, . 
By induction on k it suffices to find a border-strip X / X 1  of h 
contained in y, such that h / h l /  = p  and such that when we remove 
X / h l  from y, the connected components thus formed (either one or 
two of them) will have a number of squares divisible by p. 

Define y, = { S , ~ - ~ + , , S ~ ~ ~ ~ + ~ ,  . . . ,sip), 1 < i < k .  Let r be the least 
positive integer for which s,+, does not lie to the right of s,. The 



integer r exists since skp+, is undefined and hence doesn't lie to the 
right of skp. Since r is minimal, s , ~ - ~ +  , lies to the right of s,-,. Hence 
y, is a border-strip with the desired properties rn 

Now recall 114, p. 2) that the diagram of a partition h = (A , ,  
A,, . . . ) is the subset of z2 given by 

{ ( i , j ) :  1 < i <  I(h),l < j < h i } .  

If x = ( i ,  j )  is an element of the diagram of X (written x E A), then the 
hook-length of X at x is defined [14, p. 91 to be 

Note that if y = X / p  is a border strip of h with its left-most square(s) 
in column j and topmost square(s) in row i ,  then 1- f  = h ( i ,  j ) .  

Define also the hook polynomial [14, p. 281 

It is well-known (e.g., [14, Ex. 2, p. 281) that 

where 

LEMMA 7.4 Fix an integer p > 0. Given an integer j ,  define 

Let hp(X) be the number of hook lengths of h divisible by p .  If &v) # 0, 
then Civ*  < hp(h).  

Proof Relabel the pi 's  so that v , ,  . . . , v, are divisible by p and 
v,+ , , . . . , vl aren't, where I = I(v). If XA(v )  # 0, then by Corollary 7.2 
there exists a border-strip tableau of shape h and type v. By the 
previous lemma, there exists a border strip tableau of shape h and 
type ( p ,  p ,  . . . , p, v,+ , , . . . , v,), where the number of p's is C ,v: . It is 
well-known and easy to see that when a border strip of size p is 
removed from A, the number of hook lengths divisible by p decreases 
by exactly one. Hence to remove C,v:  successive border strips of size 
p from A, we must have C , v :  < hp(h). H 
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COROLLARY 7.5 Let 1 = I(v). If XA(v) # 0, then H,,(q) is divisible by 
J L ( 1  - q",). 

Proof Fix p > 0. The multiplicity of a primitive pth root of unity 
as a root of ( I  - q ",) is card { i :  p I z; }, and of HA(q) is h, (A). Clearly 

so the proof follows from the previous lemma. 

8. GENERALIZED EXPONENTS 

This section and the next will be devoted to two special cases of the 
power series ca8(u; G). Let Q = sl(n, C) and G = SL(n, C). The adjoint 
action of SL(n, C) extends to an action on the symmetric algebra 
S(g) = U,>,Sh(S), where S' denotes the kth symmetric power and 
U the direct sum of vector spaces. It is well-known that the ring 

of invariants of this action is a polynomial ring in n - 1 variables 
f,, . . . , f,, where 1 E s'(Q)'. Namely, for A E g, j (A)  is the coeffi- 
cient of trip' in the characteristic polynomial det(A - t l )  of A. 

By a theorem of Kostant [9, Thm. 0.21, we can write 

were H = U H~ is a graded G-invariant subspace of S(g) (so H' 
= H n s " (~ ) ) .  Let HA denote the isotypic component of H corre- 
sponding to A, i.e., the sum of all subspaces of H which afford the 
character sA(x). We may then decompose HA into isomorphic irreduc- 
ible subspaces HA,, , 

where each HA,, can be chosen to be homogeneous, i.e., to lie in sd,(g) 
(or H ~ )  for some dl .  The numbers dl are called the generalized 
exponents of A. Define 

the generating function for the generalized exponents of A. Kostant 
also shows in [9, Thm. 0.1 11 (when applied to SL(n, C)) that GA(l) is 
equal to the dimension of the zero-weight space of the representation 



X and is therefore finite. Thus G,(q) is a polynomial in q, which 
vanishes unless IXI is a multiple of n. In terms of generating functions 
it is easy to see from the above discussion that 

(modulo x ,  . . . xn - 1). (27) 

Ranee Gupta conceived the idea of studying GLN,Pl , (q)  as n + m, and 
showed that 

GNb(q):= &", G [ u , f l ~ n ( q )  

exists as a formal power series. She conjectured that GaB(q) is a 
rational function PaB(q)H,(q)-I, where PNp(q)  is a polynomial with 
nonnegative integral coefficients satisfying P N f i ( l )  = X P ( l ) ,  the num- 
ber of standard Young tableaux of shape ,O [14, p. 51, and where 
H,(q) is as in the previous section. Later she and I conjectured on the 
basis of numerical evidence that GNB(q)  = s, * sg(q,  q2, . . . ). We will 
indicate how all these conjectures follow immediately from our previ- 
ous discussion, except for the nonnegativity of the coefficients of 

( q ) ,  which remains open. 

PROPOSITION 8.1 We have 

Proof Comparing ( 5 )  (in the case c ,  = q, c, = u, = . . . = U ,  = u2 
- - . . .  = 0 )  with (27), we see that 

Thus by Theorem 6.2 (or 6.3), 

- - s, * ( q ,  q2,  . . . ). 
Note that by (6)  and (24) there follows 

Gap(4) = C g,Puq'+')~y(q)-L. 
Y 
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Similarly from (7) and the fact that 

PA(q,q2, . . . ) = q k / ( l  - q k )  we have 

PROPOSITION 8.2 (i) There is a polynomial Pap(q) E Z[q] for which 

Gad41 = ~ n P ( q ) H a ( 4 ) - ~ .  

(ii) Pap(l) = xP(l) ,  the number of standard Young tableaux of shape 
/3 (often denoted by f O). 

(iii) Pa,&) = Pa,&) 
(iv) q m + h ( d p  ,p(l /q) = Pap.(q), where ( a /  = 1 /3( = m and h(a )  

= CXE&(X>. 
(v) degP,,(q) < h(n), with equality if and only if P = a' (in which 

case Pap(q) is monic). 
(vi) Pap(q) is divisible by qm, and the coefficient of q'" is the 

Kronecker delta Sap. 
(vii) POa(q) = Pap(q)Hp(q)ff,(q)-'. 
(viii) Let /3 consist of the single part m, and write P,,(q) for P,p(q). 

Then P,,(q) = q""), where i ( a )  is defined by (25). 

Proof (i) By Corollary 7.5, every term of (28) for which ~ " ( w )  # 0 
has the property that its denominator n ( l  - qP,(")) divides H,(q). 
Hence Gap(q) itself has the common denominator H,(q), and it is 
easily seen that the numerator has integer coefficients (e.g. because 
Gap(q) has integer coefficients). 

(ii) One of several ways to prove this result is to multiply (28) by 
H,(q) and set q = 1. Since H,(q) is divisible by (1 - q)", every term 
of the right-hand side of (28) will vanish except for w = 1, where we 
obtain m!-lfnfPnxE,h(x). The well-known hook-length formula of 
Frame-Robinson-Thrall asserts that f a  = m! /n,, , h (x), so the 
proof follows. 

(iii) Since Ha(q) = H,,(q), we need to show Gap(q) = G, p,(q). This 
is immediate from (28), since Xa'(w)XB (w) = (sgn w)2X " ( W ) ~ ~ ( W )  
= x"(w)xP(w). 

(iv) From (28) we have 

where c(w) denotes the number of cycles of w. But (-I)'(') = 



( -  l)"'(sgnw) and ( ~ ~ n w ) ~ O ( w )  = XP'(w) (e.g., [14, Ex. 2, p. 63]), so 

= ( -  l?m9-mGap (Y?. 

The proof follows from (I). 
(v) Smce H , (q )n l ( l  - qp ( " ) ) - '  IS a polynom~al of degree h(a) 

- m, ~t is ev~dent from (28) and the def~nition of Pnp(q) that 
deg Paa(q) < ~ ( c Y ) .  Now the coefficient of qh(") in (28) is 

and the proof follows. 
(vi) Follows from (iv) and (v), or by dividing (28) by q"' and setting 

q = 0. 
(vii) Follows from the definition G,,p(q) = Pap(q)H,(q)- '  and the 

fact (evident e.g. from (28)) that GaO(q) = Gp,(q). 
(viii) We have s, * s, = s, (since x"' is the trivial character of S,,,). 

so G ,,,,, (q) = s,(q, q2,  . . . ), and the proof follows from (24). 

To conclude this section we state explicitly the conjecture men- 
tioned above. 

CONJECTURE 8.3 (Gupta-Stanley) The coeflcients of Pap(q) are non- 
negative. 

Alain Lascoux has proved the above conjecture when ,I3 is a 
"hook", i.e., a partition of the form (m - k, 1') for some 0 < k 
< m - 1. He has shown that in this case Pap(q) is the coefficient of t k  
in the product 

( i ,  j ) - ( I .  I )  

9. APPLICATION TO THE Q-DYSON CONJECTURE 

Let a , ,  . . . , a, be nonnegative integers. In 1962 Dyson [2] conjec- 
tured that when the product 
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is expanded as a Laurent polynomial in the variables x , ,  . . . , x,, 
then the constant term is equal to the multinomial coefficient 
( a ,  + . . . + a,) ! /a , !  . . . a,!. This conjecture was proved in 1962 by 
Gunson [5] and Wilson [23], and in 1970 an exceptionally elegant 
proof was given by Good [4]. 

In 1975 G. Andrews [ l ,  p. 2161 formulated a "q-analogue" of the 
Dyson conjecture, which reduces to the original conjecture when 
q = 1. Write (a ) ,  = (1 - a)(l - aq) . . . (1 - a q n  I ) ,  so (y), = (1 - q )  
(1 - q2) . . . (1 - 9,). 

Q-DYSON CONJECTURE 9.1 When the product 

is expanded as a Laurent po[~xomial in the variables x , ,  . . . , x,, then 
the constant term is equal to the q-multinomial coefficient 

(4),,+ +o,r/(9)o,  . . . (qL,,, . 
This conjecture was proved for n < 3 by Andrews [ I ,  pp. 216-2171 

and for n = 4 by Kadell [7]. It was also proved for a ,  = . . . = a,, = 1, 
2, or so by Macdonald [15], who formulated a far-reaching general- 
ization. See also [6] and [16]. Recently D. Bressoud and D. Zeilberger 
[25] have found a proof in general, while P. Hanlon has made 
considerable progress on many of the conjectures in [15]. We will 
obtain what may be regarded as the entire expansion of (29) in the 
case a ,  = a ,  = . . . = I in the limit n -t so. In the form stated above, 
the expansion of (29) as n 3 cc becomes meaningless. However, (29) 
can be rewritten to make sense in this limit. Here we will rewrite (29) 
in terms of representation theory in a form due to Macdonald 115, 
Conj. 3.1'1. 

Q-DYSON CONJECTURE 9.2 FOR a ,  = . . . = a, = I (reformulated). 
The mul t ip l ic i~  of the trivial character of S L ( n , C )  in the virtual 
character 

is equal to 

PROPOSITION 9.3 Let a ,  P+m. The coefficient of the character s , ~ , ~ ~ , , ,  
in the expansion of the virtual character (30) of S L ( n ,  C) approaches, as 



n -+ oo, the value 

Proof Compare (30) with (5 ) ,  and apply Theorem 6.3 in the case 

If we let a = /3 = 0 (the void partition) above, then s, * s, = s, 
= 1, so we obtain: 

COROLLARY 9.4 (q-Dyson conjecture for a, = 1 - 1 and n = oo) The 
coefficient of the trivial character s, in (30) approaches, as n + m, the 
value 

We now wish to obtain information on the form of the generating 
2 function cap(q,q , . . . , 4'-I;  0) analogous to Proposition 8.2. Regard- 

ing l as fixed, define 

so by (32) we have 

k a l  1 - 9  

PROPOSITION 9.5 (i) There is a polynomial Lmp(q)  E Z[q] (which de- 
pends on I )  for which 
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(v) degLu8(q) < 1.  h(a:), with equality if and only if a: = /3' (in 
which case L,!(q) is monic) 

(vi) Lap(q) 1s divisible by qm( l  - q ) " ( l  - I ) ,  and the coeffi- 
cient of q" is ( - 1)"'6u1, . 

(vii) L&) = L u p ( q ) ~ p ( q l ) ~ , ( q l ) - ' .  
(viii) Let f i  consist of the single part rn, and write L,,n(q) for L,,,(q). 

Then 

Example of (viii): Let a: = (3,2,2). The factors qi l  - q('- ' ) '+ '  are 
given by 

q 1  - q' - q l + l  q1 - q2/+ ' 
q2' - $1 - I+  

q3' - q 3 ' - q l + l  

Thus 

Proof (i) By (7), (32), and the fact that ( -  I)"'"' = ( - 1)" (sgn w), 
we have 

where p(w) = (p,(w), p2(w), . . . ). The proof now follows from Corol- 
lary 7.5 just as did Proposition 8.2(i). 

(ii) Multiply (35) by Ha(ql)  and set q = J'. Now ~ , ( q ' )  is divisible 
by (1 - ql)"', while the multiplicity of { as a root of n i ( l  - q l~ , ( " ) )  is 
equal to the number of cycles of w. Hence every term vanishes except 
for w = 1; giving 



(iii) Analogous to Proposition 8.2 (iii). 
(iv) Analogous to Proposition 8.2 (iv). 
(v) Analogous to Proposition 8.2 (v). 
(vi) For each w E Sm, the product n , ( l  - q( ' - ' ) f i (w))  is divisible by 

1 - q'-'. Since ~ , ( ~ ' ) n , ( l  - q'~,'"'))-' is a polynomial, it follows 
that La8(q) is divisible by 1 - q'-I. Since 1 is not a pole of the 
product in (35) but is a pole of ~ , ( q ' )  of multiplicity m ,  it follows 
that L (q) is divisible by (1 - q)". Finally it is obvious from (35) that 
LCy8(q;% divisible by qtn, and the coefficient of q m  is computed as in 
Proposition 8.2(vi). 

(vii) Analogous to Proposition 8.2 (vii). 
(viii) Let f(x) = C,>,b,xn be a power series. Littlewood [ l l ,  pp. 

99ffl discusses the Schur function (or "S-function") of the series f, 
corresponding to the partition A, which we denote by s;f. It follows 
easily from Littlewood's discussion that if f(x) has the form 

then 

(In the A-ring notation of [14, pp. 26-27], s l  corresponds to the 
operation s"(c~, - Cc,).) 

Now s, * sm = s,, so 

where 

The proof follows from [I 1, Thm. 11, p. 1251 by substituting z + q, 
w + q', q + q', and using the fact that Littlewood's product 
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Remark Equation (35) shows that we may rewrite (33) as 

Remark on A(g) Consider now the special case of Proposition 9.3 
obtained by setting I = 2 and q +  - q, so (30) becomes det(1 + q .  
adX).  Letting g = sl(n, C) as in Section 8, it follows that the coeffi- 
cient of q k  in det(1 + q . adX)  is the character of G = SL(n, C) acting 
on Ak(@), the kth exterior power of the adjoint representation of G. 
Then (31) becomes (1 + q3)(1 + q5) . . . (1 + q2"-'), the well-known 
Hilbert series for the invariant subalgebra h(g)'. (See, e.g., [8, Cor. 
8.71 [12] [18] [21, (17)], [22, p. 2331.) There is no analogue of (26) 
known which would describe the decompositiofi of Ah(g) into irredu- 
cible~. But Proposition 9.3 essentially gives such a decomposition as 
n + co, viz., the multiplicity of sLa, ,jl,, in the character of the represen- 
tation Ak(g) of SL(n, C) approaches, as n I, co, the coefficient of q k  in 
the power series 

Of course Proposition 9.5, in the case I = 2 and q +  - q, gives some 
properties of the power series (36). 

Remark There is considerable evidence to suggest that the polyno- 
mial Lu8(q) of Proposition 9.5 has in many cases in addition to (34) a 
simple explicit expression. It may even be true that for any a and P 
there is a fairly simple description of L,,,(q) which would involve a 
product analogous to (34), together with an additional factor with 
direct combinatorial or algebraic significance. 
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