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Combinatorial Applications of the
Hard Lefschetz Theorem

1. The hard Lefschetz theorem

Let X be a smooth irreducible complex projective variety of (complex)
dimension % (or more generally a Kdhler manifold), endowed with the “clas-
sical” Hausdorff topology. Let H*(X) = H'(X)OH' (X)®... H™(X)
denote the singular cohomology ring of X with complex coetficients.
(Any field of characteristic zero would do just as well for the coefficient
group. In fact, for the most part we could work over Z, but this is unneces-
sary for our purposes.) Since X iy projective we may imbed it in some
complex projective space PV, Let H denote a (generic) hyperplane in PV,
Then XNH is a closed subvariety of X of real codimension two, and thus
by « standard construction in algebraic geometry represents a cohomology
class o e H*(X), called the class of a hyperplane section.

on—1

THE HARD LEFSCHETZ THEOREM. Let 0 < i< n. The map H'(X)
H*"~%(X) given by mulliplication by o™ is an isomorphism of vector spaces.

This result was first stated by Lefschetz in [18], but his proof was not
entirely rigorous. The first complete proof was given by Hodge in [15],
using his theory of harmonic integrals. The “standard” proof today uses
the representation theory of the Lie algebra sl,(C) and is due to Chern
[4]. Lefschetz’ original proof was only recently made rigorous by Deligne
(sce [22]), who extended it to characteristic p. Other references include
(5], (3], [17], [32].

* Partially supported by the National Science Foundation.
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2. Unimodality

Since 0" ': HY(X)—H*"(X) is bijective for all 0 < i < n, it follows that
o: H(X)—>H"(X) is injective for 0 <i<n—1 and surjective for n < i
< 2n—1. Thus if §; = B,;(X) = dimH'(X) denotes the i-th Betti number
of X, then the sequences f,, fa, ..., fy, and B, fa, ..., fs,_, aTe Symmelric
and wnimodal, i.e., By < fp<... <Py and B; = f,, ;, and similarly
for fy, fsy «+vy Pon_y. This consequence of the hard Lefschetz theorm was
well known from the beginning.

There are several examples for which f; has a combinatorial interpre-
tation. The archetype is the Grassmann variety X = Gy, of d-planes in
C". It was rigorously known since Ehresmann [8] that f#,,,, = 0 and
that f,; is the number p(7, d, n—d) of partitions of the integer i into
< d parts, with largest part << s —d. The unimodality of the sequence
p0,d,n—d), p(1,d,n—d), ..., p (d(n —d), d,n—d) was first proved by
Sylvester [31], and several subsequent proofs have been given. Perhaps
the simplest is [28, Cor. 9.6], but no purely combinatorial proof is known.
Such a proof would.involve an explicit injection from the partitions counted
by p(i, d, n—d) to those counted by p(¢+1, d, n—d), for 0 <7 < [1d(n—
—d)].

More generally, take X to be a generalized flag manifold G /P, where
G is a complex semisimple algebraic group and P a parabolic subgroup.
The hard Lefschetz theorem then yields the unimodality of the number
of elements of length ¢ in the quotient Bruhat order WY = W/W,, where
W is the Weyl group of G and W, ¢f P ([26, § 3]).

Now let g be a complex semisimple Lie algebra and L, an irreducible
finite-dimensional g-module with highest weight 2. Let m,( u) denote the
multiplicity of the weight p in L,. The height htu of p is the number of
simple roots which need to be added to — 4 to obtain u. The polynomial
P,(q) = Y my(p)¢" " was first shown by Dynkin (see [7, p. 332]) to have

1"
unimodal coefficients; see also [25]. Recently Lusztig [19] has computed

the (complex) intersection cohomology H*(0,), as defined by Goresky
and Macpherson [10], [11], of certain Schubert varieties 0, (in general sin-
gular). Namely,

Zdim HY(0,)q" = P,(q?).

(See [19, Cor. 8.97). Now the intersection cohomology H*(X) of any complex
projective variety, considered as a module over the singular cohomology
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H*(X), satisfies the hard Lefschetz theorem. Hence Dynkin’s result may
be regarded as a consequence of the hard Lefschetz theorem for inter-
section cohomology. It would be interesting to investigate what other
sequences of combinatorial interest arise as Betti numbers in intersection
cohomology.

3. McMullen’s g-conjecture

Let 2 be a d-dimensional simplical convex polytope ([14], [21]) with
f; i-dimensional faces, 0 < 7 < d—1. We call the vector f(2) = (foy +vvy fa_1)
the f-vector of 2. The problem of obtaining information about such vectors
goes back to Descartes and Euler. In 1971 MeMullen [20], [21, p. 179],
drawing on all the available evidence, gave a remarkable condition on
a vector (fy, ..., fg—;) which he conjectured was equivalent to being an
f-vector as above.

To describe this condition, define a new vector h(2) = (hg, ..., Iy),
called the h-vector of 2, by

1

ne= ) (673 (=0,

i=0

where we set f_;, = 1. The Dehn—Sommerville equations ([14, §§ 9.2, 9.8],
[21, §§ 2.4, 5.1]) assert that h; = h;_,. McMullen’s conditions, though he
did not realize it, are equivalent to the Dehn-Sommerville equations
together with the existence of a graded commutative C-algebra B = RB;®
DR,®... where R, = C, R1is generated as a C-algebra by R, and dimgFE;
= hj—h;_, for 1< i< [d/2]. In particular, h,< b, < ... < fygy, and we
are led to suspect the existence of a smooth d-dimensional complex pro-
jective variety X(2) for which B,;(X(2)) = h,. If moreover H*(X(2))
is generated by H*(X(2)), then we can take R = H*(X(2))/(w), where
(w) denotes the ideal generated by the class of a hyperplane section, to
deduce the necessity of McMullen’s conditions. In [6] varieties X (2) are
constructed (after some assumptions on # irrelevant for proving Me-
Mullen’s conjecture) with all the desired properties except smoothness
(despite the misleading statement in [6, Rmk. 3.8]). Although X (2)
need not be smooth, its singularities are sufficiently nice that the hard
Lefschetz theorem continues to hold [30]. Namely, X (2) is a V-variety,
i.e., locally it looks like C"/G where G is a finite group of linear transfor-
mations. Thus the necessity of McMullen’s condition follows [27]. Suffi-
ciency was proved about the same time by Billera and Lee [1], [2]. For
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further information see [29]. Some recent work of Kalai [16] suggests
that a more elementary proof may be possible, and perhaps an extension
to more general objects (such as shellable triangulations of spheres or
even triangulations of homology spheres).

4. The Sperner property

Let P be a finite poset (= partially ordered set). We say P is graded of
rank n if every maximal chain of P has length » (or cardinality » +1).
We then define the rank o(x) of x € P to be the length I of the longest
chain 2y < 2; < ... <a;, = 2. Let P; = {# ¢ P: g(x) = 4}. An antichain is
a subset 4 of P of pairwise incomparable elements. Thus each P, is an
antichain. We say that P has the Sperner property if no antichain is larger
than the largest P;. This terminology stems from the theorem of E. Sperner
[24] that the poset of subsets of an n-element set, ordered by inclusion,
has the Sperner property (see also [12]).

If now X is a complex projective variety, we say X has a cellular de-
composition if there exists a (finite) set ¥ = {C,, ..., C;} of pairwise disjoint
subsets 0; of X, each isomorphic as algebraic varieties to complex affine
space C", such that U0; = X and the closure C, (in the classical or Zariski
topology) of each C;is a union of C;’s. We then define a poset Q¥ = Q¥ (%)
to be the set @ ordered by reverse inclusion of the closure of the C;’s. If X
is irreducible of dimension n, then Q% is graded of rank n.

THEOREM 1 ([26, Thm. 2.4]). If X (as above) is smooth and irreducible,
then QX has the Sperner property.

The crucial step in the proof is the use of the hard Lefschetz theorem,
and indeed the theorem remains true for any irreducible X (with a cellular
decomposition) satisfying the conclusions of the hard Lefschetz theorem.
The conclusion to the above theorem is not the strongest possible; see [26]
for further details.

The main class of varieties to which the above theorem applies (indeed,
the only known class for which the Sperner property of @* is non-trivial)
are the generalized flag manifolds X = @ /P mentioned above. Here the
Q¥ are the quotient Bruhat orders WY. For certain choices of G and P
the posets @F have a special combinatorial significance. In particular,
taking @ = SO0 (2n 41, C)and a certain maximal P, the Spernicity of the poset
Q¥ can be used to prove the following number-theoretic conjecture of
Erdos and Moser [9, eqn. (12)].
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THEOREM 2. Let S be a finite subset of R, and for k € R let f(S,k) denote
the number of subsets of S whose elements sum to k. Then for |S| = 2141,
we have

f(Sy k)gf({—l’ _l+1’---yl})0)-

For further information in addition to [26], see [23] and the references
therein.

It would be interesting to discover other properties of the posets Q¥
of Theorem 1 (in addition to the Sperner property). In particular, if 4
denotes the simplicial complex of chains of @¥, where Q¥ denotes Q¥
with the bottom and top element removed, then is the geometric reali-
zation |A| always a sphere or cell? (It may not even be necessary to assume
X is smooth.) This is true when dimX < 2 or when X = G/P. For the
latter case see [3].

In [25, Problem 2] it is asked whether some posets arising from irredu-
cible representations of the Lie algebra sl(n, C) have a “symmetric chain
decomposition”, which is stronger than the Sperner property. In fact,
even the Sperner property is open. Perhaps there is a “cellular decompo-
sition for intersection cohomology” of the Schubert varieties 0, discussed
in Section 2 which would yield a proof of the Sperner property.
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