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G. INTRODUCTION

The theory of Cohen-Macaulay posets derives much of its
appeal from its interactions with three distinct branches of
mathematics - combinatorics, commutative algebra, and algebraic
topology. Our aim here is to convey the flavor of this subject
by discussing the basic results and some of their main applica-
tions. A comprehensive account of Cohen-Macaulay posets would
be too lengthy to include here and will appear elsewhere [BGS],
but it is hoped that this introduction will stimulate the reader
to look further into the subject.

The combinatorial aspects of Cohen-Macaulay posets have their
origins in the following natural problem. Given some set S of
objects which one wants to enumerate or in some way ''determine,”
is it possible to partition S into (finitely many) "nice'" subsets
S1s+++55, which can easily be handled individually? The first
significant example of such an approach toward counting a set of
objects may be found in MacMahon [MM] (especially vivid in Section
439), and was later systematized in [Sty] (and less comprehensively
in [Kn]). The theory of P-partitions developed in [St7] may be
formulated in terms of distributive lattices, and is outlined here
in Section 1. It is then natural to generalize this theory to a
wider class of lattices. Successive generalizations appear in
[Stz] and [St3], finally culminating in the theory of lexicographic
shellability [Bj1]. Section 2 is devoted to this topic.

Section 3 is devoted to the basic topological concepts asso—
ciated with posets. The prototype for this subject is the theorem
of P. Hall [Ha,(2.21)][Re, p. 346}, which may be interpreted as
expressing the values of the Mobius function of a poset P as a
reduced Euler characteristic. Since Euler characteristics may be
computed from certain homology groups, it is natural to go further
and look at the actual homology groups. This idea was suggested
by Rota [Ro, pp. 355-6] and further considered by Mather [Mat],
Folkman [Fo], and Lakser [Lal. The work of Feolkman on geometric
lattices was made part of a general theory by Baclawski [Ba2’4],
who was the first to consider Cohen—-Macaulay posets from a purely
topological point of view. Subsequent topological investigations
related to the Cohen-Macaulay property appear in [Ba6],[Bj2,3],
[BW]_]& [BWr], [Fal, [Mu], [Qu] and [Wr].



In Section 4 we introduce the fundamental commutative ring
Rp associated with a poset P, and show some counections with the
preceding combinatorial concepts. In particular we give a ring-—
theoretic definition of a Cohen-Macaulay poset. Although Cohen-
Macaulay rings date back to the pioneering work of Macaulay [Mac],
it was not until the paper [Hocjl of Hochster that it became
apparent that Cohen-Macaulay rings (or, at least, special classes
of them)} were closely related to combinatoriecs. This connection
was made more explicit in [St5] and [Re], where a ring Rp was
attached to an arbitrary simplicial complex A. A poset P may be
regarded as a special kind of simplicial complex (see Section 3),
and the rings Rp were first singled out for special study in [Stg,
Section 8]. Subsequently the poset ring, per 4e, was studied in
[Ba;], [BG], [Gajl, [Gapl, [Hoczl, and [Stgl.

In Section 5 we discuss what is perhaps the main theorem on
Cohen-Macaulay posets (due to G. Reisner [Re]), which demonstrates
the equivalence of the algebraic and topological approaches.
Finally in Section 6 we present a brief glimpse of further results
in order to illustrate the many fascinating ramifications and
applications of the theory, and to bring the reader near some
exciting areas of current research.

The following notation will be adhered to throughout, IN
denotes the set of nonnegative integers and P the positive
integers. If d € N, then [d] = {1,2,...,d}. A disjoint union
is denoted by the symbol w . All posets P will be finite through-
out this paper. If y covers x in P (i.e., if x<y and no z¢PF
satisfies x<z<y) then we write x*y. A poset P is said to be
pure if every maximal chain has the same length d+1 (or cardinal-
ity d+2)., If P is pure and has a 0 and 1 (i.e., O0<x<1 for all
x€P), then P is said to be ghaded of rank d+1. If P is any poset,
then P denotes P with a 0 and 1 adjoined. If P has a 0 and 1,
then P denotes P with the 0 and 1 removed and is called the
proper part of P. The set of maximal chains of P is denoted M(P),
and the set of all chains C(P).

Assume throughout the remainder of this section that P is
graded of rank d+1. If xeP, then r(x) denotes the nank of x,
i,e., the length % of the longest chain 0= x0<'x < <X =X
with top element x. In particular, r(0) =0 and r(l) d+1. 1If
x<y in P we write r(x,) v)=1r(y) -r{x). The set of elements
of P of rank 1 is denoted P;, and the cardinality tPll of this set
is denoted Wi and is known as a Whitney numbern of the secend hind.
If c:i0=x <x < sse<xi41=1 is a chain of P, then the set

{r(xl),..?,r(xl)} is called the hank sef of c.

Let § denote the Mobius function of P [Re]. For our purposes
the most convenient definition of W is the following. If x<y in
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P, then define u(x,y) = c,-¢;*+c, =+, where c; is the number
of chains x=xX < x_<*+*+ < x; =y of length i between X and y. We

write u(P) for u(d,1). The Whitney numbens wy of the finst hind
are defined by

w, = X ‘u(a,x)
xeP4

In particular, w, =1 and wd+l==u(P). Recall that the characten-
dstic polynomial p,(t) is defined by

d+1
p,(t) = I wy
P i=0

d+i-1
t

Now suppose that S is any subget of [d] = {1,2,...,d}.
Define the S-iank-selected subposet Pg = {xeP: x=0, x=1, or
r(x)eS}. Thus for instance P a1=F and Pi==§ i} Let a(S) =
op(5) denote the number of maximal chains of Pg. Equivalently,
©(58) is the number of chains in P whose rank set is S5. Note in
particular that o(i) (short for a({i})) is equal to W;. Define

8(8) = Bp() = & (-1 5 Tla. @)
T<S

Thus by the Principle of Inclusion-Exclusion,

a(s) = I B(T) . (2)
TES

Note tTat it follows from our definition of 1 that B(8) =
(-l)]S -lu(Pg). 1In particular, for i=1,2,...,d,

1wy = B(1,2,...,1i-1) + B(1,2,...,1).

Recall also that the zeta pofynomial Z{P,n) of P, as defined
in [St,] and further studied in [Edl], may be defined for graded
posets by either of the two equivalent conditions

Z(P,n) = T alS) (| .q)

ss1d] Is|+1
5 B(S)t|s{+1

I z@,n)t" = Se[d]

a0 (l—t)d+2

(3

Thus we see that the numbers RB(S) (or equivalently, a(S5)) are
closely related to many properties of P of known interest and



importance. The prominence of the numbers B(S) will become even
more apparent in the following pages, where they will count
certain maximal chains in P and will appear in the Hilbert series
of the poset ring, as Betti numbers of rank-selected subposets,
and as group characters.

1. DISTRIBUTIVE LATTICES

Let P be a finite poset with d+ 1 elements. An order {deal
(also called a semi-ideaf or decreasing subset) of P is a subset
I of P such that if xeI and y<x, then yeI, Let J(P) denote the
set of all order ideals of P, ordered by inclusion. Then J(P)
is graded of rank d+1, and is in fact a distributive lattice.
Conversely, any finite distributive lattice is of the form J(P)
for a unique poset P [Bi, p. 59, Thm. 3]. Consider, for instance,
the poset P given by

(4)

Then J(P) locks like

(5)

The values of o

J(P)(S) and QJ(P)(S) are given by

5 a(S) B(S)
9 1 1
1 2 1
2 2 1
3 2 1
12 3 0
13 4 1
23 3 0
123 5 o



Several empirical facts are evident. For instance, B(S) 20 and
several valuss of B(S) are equal to G. The fact that B{1,2,3) =0
follows from the well-known fact that if L is a finite distribu-
tive lattice then U(L) =0 unless L is a boolean algebra [Ro, pp.
349-50]. But the reason, say, for f(1,3)=1 above is not so
clear. What 1s needed is a suitable combinatorial interpretation
of the numbers R(5)}.

Consider the general case L=J(P), where |P] =d+1. We
first associate with every maximal chain of 1 a permutation of
the set [d+1]. Fix an order-preserving bijection w:P—+ [d+11].
Let ¢= I0 €l ceerc Id+1 =P be a maximal chain m of L. Each I

is an i-element order ideal of P. Hence Ij- I;_, contains a
unique element x. of P, Associate with m the permutation m(m) =
(m(xl),m(xz), ceey W(Xg4y)) of [d+1]. The set L(P)=L{P,w): =

{w(m) :meM(L)} is called the Jondan-Holdern set of P. If 7 =
(.'EL1 »++>834,) 1s any permutation of [d+ 1], then the descent sel

of T is defined by D(m) = {i:a; > ai+1}. It is then easy to verify

that OLL(S) is equal to the number of permutations 7el (P) whose
descent set is contained in S.

For instance, if we define w for the poset P of (4) by
'31\\\\}‘f
{ Y

then we have the following table:

mel (B) D(m)
1234 )
2134 1
1243 3
2143 1,3
2413 2

Since, for example, four of the above descent sets are contained
in {1,3}, we conclude a(l,3) =4.

Now let Y(8) =v,(8) = |{meL(P):D(m =8}|. Clearly

L y(T) = |{mel(P):D(m)ss}]| = a(s).
TS



But the numbers R (T) are uniquely defined by (2), so we conclude
BL(S) =YP(S). Hente:

1.1 THECREM: Llet L=J(P). Then BL(S) s equal Lo the numbern of
permutations me L(P) whose descent sef (s S.

This shows in particular that B8;(S) 20 for a distributive
lattice L, 2nd much additional information can be gleaned from
Theorem 1.1 {Stl]. Moreover, the numbers B(S) play a central
role in the theory of P-partitions [Stl], which deals with order-
preserving (or order-reversing) maps of a poset P into a chain.
For instance, if Q(P,n) denotes the number of order-preserving
maps C:P—+ [n}, then '

fae,w = ¢ 1 2HPMIy a2
=0 el (P)

]

(6)

]

( = IS(S)tl"'IS')(1—1:)_‘1"2 .
se[d]

Note that it follows from (3) or otherwise that fI{(P,n) = Z(J(P),n).

At this point it is natural to ask for a generalization of
the preceding theory to wider classes of graded posets Q. What
structural properties of Q guarantee that Bn(8) 20?7 Is there a
natural way of associating a permutation (or possibly a sequence)
with each maximal chain of Q so that Theorem 1.1 remains valid?
These and related questions will be considered in the next section.

2. LEXICOGRAPHICALLY SHELLABLE POSETS

Let P be a graded poset of rank d+1. Assume that each edge
x+vy in P has been labeled by an integer A(x—+y). Then each k-
chain X, FX, TR is naturally labeled by a k-tuple )\(xo+xl+

"'+xk) = (}\(xo-*xl), Ax +x2),...,)\(xk__1+x ))EZZk. We
will compare such k~tuples éy their Lexicoghaphtic oader: (al,az,
eersd < (bl,b s+es,by) if and only if ai<bi in the first
coordinateé where they differ.

2.1 DEFINITION: The edge-labeling XA will be called an El-fabeling
if for every interval [x,y] in P:

(i) There is a unique chain a, X=X FX Frtetx =y
) 3

such that ?\(x0+x1) < A(xl +x2} L ese g }\(xk_l,xk) .
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(11i) for every other chain bi:x=y Y -+"'-+yk-y we have

Alb) > l(a y)

The poset P is said to be edge-wise Lexicographically sheflable,
or EL-shellfable, if it admits an EL-labeling.

The reader is invited to check that the fellowing edge-
labeling is an EL-labeling,

(73
!
Q
For each maximal chain m:6==x0'*x1‘*""*xd+l= 1 we define
= { A - > X -+ :
the descent setf D(m) {ie[d] : (xi_l xi) (xi xi+l)}' There

is the following combinatorial interpretation of the B-invariant
of an EL-shellable poset P,

2.2 THEOREM. Fox S5S[d], B(S) equals the number ¢f maximal chains
m {n P such that OD(m)=8. In particular, B(S) = 0.

Every interval of P is EL-shellable under the same edge-

labeling, so we deduce the following interpretation of the Mobius
function of P.

2.3 COROLLARY: When x<y4inP, (- 1)r(x’y)u(~<,y) equals the numben
0f chains x = x +x*ﬂ'hﬂ% vy such fha k@0+x)>K@1+x)*
vee > A(xk xk) In particuldn, (- 1Ty uix,y) = 0.

2.4 EXAMPLE: Distributive lattices. Recall the discussion of
Section 1. Tet L=J(P) be a finite distributive lattice of rank
d+1, and let w:P~ [d+1l] be an order-preserving bijection. 1If
I+1' is an edge in J(P) then I'-1I={x}, and we can label
Ap(T+1'") =w(x). This is an EL-labeling. The lattice (3)
considered in Section 1 gets the following labeling A, from the
choice of W considered there.



(8)

2.5 EXAMPLE: Semimodular lattices. Let L be a finite (upper)
semimodular lattice. Give the join-irreducibles of L a linear
order € 58y 500 0a8g which extends their partial order (i.e.,

eq < ey implies 1< j). Then :

A&+y)=mh1{ﬂx<xvai=y}

defines an EL-labeling of L. Clearly, if L is distributive this
coincides with the labeling method described in Example 2.4. The
first picture below shows an ordering of the join-irreducibles of
a semimodular lattice, the second picture shows the induced
EL~labeling,

(9

2.5 EXAMPLE: Supersolvable lattices. A finite lattice L is
said to be supersolvable if it contains a maximal chain M which
together with any other chain in L generates a distributive
gsublattice. Each such distributive sublattice can be labeled by
the method previously described so that M receives the increasing
label (1,2,...,d+1l). It turns out that this will assign a unique
label tc cach edge of L, and the resulting global labeling of L

-8-



is an EL-labeling. If G is a supersolvable finite group then
the lattice L{G) of subgroups of G is a supersolvable lattice
(hence the termincology). The following picture shows an EL-
labeling of the subgroup lattice of the Abelian group Z X Z,
produced by the method described.

- (10)

The notion of a lexicographically shellable poset as defined
above was introduced in [le], the motivating examples being the
finite distributive [St;], supersolvable [Stz], and semimodular
lattices [St3]. In an EL-shellable poset the maximal chains
derive their labels from the edges traversed. In some situations
it is not known how to assign labels to the individual edges im
a coherent manner, but it is nevertheless possible to assign
labels directly to the maximal chains in such a way that the
basic properties encountered above are preserved. This leads to
the more general definition of lex1cographlc shellability
considered in [BW;]} and [BWj3].

Let P be a graded poset of ranmk d+1l. To each maximal chain
m: O"x - *"---*xd =1 we assign a label A(m)—~(l (m), A {m},
eresA + (m) e zdtl, +1 satisfying the following condltlon If
two maximal chains m and m' coincide along their first k edges,
then A;(m) = X;(m') for 1=1,2 ge+-ske If [x,y] is an interval
and ¢ a saturated chain from O to x the pair ([x,v],c) will be
called a roofed intenval and denoted [x,y] Every maximal chain
b in a rooted interval [x,y]. has a well—deflned induced label
AS(b)e ZT(X,¥) | namely A& (b) = X5 = Ar(x)+i™) for i = 1,2,
«.esr{x,vy} and any max1mal chain m containing ¢ and b.

2,7 DEFINITION: A labeling A of the maximal chains of P as
above is a CL- Eabeﬁ&ng if for every rooted interval [x,y] in P:
(i) there is a unlque max1mal chaln a=ay in® [x,v]
such that )\ (a)<7\ (a)s-"<lr( y)( )’, »¢
L]

(i1) 1f b is any other maximal chain in [x,¥] then
A (b) > l (ay,y, c)e

The poset P is said to be chain-udse Lexicoghaphically shellabte,
or Cl-ancllable, if it admits a CL-labeling.

-0-



This definition is illustrated in the follewing picture

which shows a rank 3 poset and a CL-labeling of its maximal
chains.

(11}

It is clear that an EL-labeling of P induces a CL-labeling,
hence EL-shellable implies CL-shellable. The reason for calling
these posets "lexicographically shellable" is that the lexico-
graphic order of the labels gives a shelling order to the maximal
chains, For a definition of "shelling order" and the general
notion of "shellable posets" see [le].

The notion of descent sef generalizes immediately from EL-
labelings to CL-labelings: For a maximal chain m in P and a
CL-labeling A, D(m) = {ie[d]‘l.(m)>~l.+l(m)}. Theorem 2.2
remains true for CL-shellable posets, "Also, a CL-labeling of P
restricts to a ClL-labeling of any rooted interval [x,y]c, S0
Corollary 2.3 suitably reformulated also remains true.

2.8 EXAMPLE: Bruhat order. Let (W,S) be a Coxeter ghoup (see
[Bo, Ch. 4]). TFor instance, W could be the symmetry group of a
regular polytope or the Weyl group of a root system, and S the
set of reflections across the walls of a fundamental chamber.
Bruhat ondern is a partial ovrdering of W which appears repeatedly
in the geometry and representation theory of algebrait groups
and Lie algebras. For instance, let G be a connected complex
semisimple_algebraic group and B a Borel subgroup. The Schubert
varieties C,; in the irreducible complex projective variety G/B
are indexed by the corresponding Weyl group W, and Bruhat order
describes the disposition of Schubert varieties: w<w' if and
only if CWE(%H. We will here explicitly formulate Bruhat order
only for the symmetric groups S, and refer to [De] or [BWy] for
the general definition.

Let S, be the group of all permutations of [n], and let
ﬂ==alaz"'an€Sn. The elements covering 7 in Bruhat order are
precisely those permutations 7' obtained from T by dinterchanging
a pair of elements a4 and aj with 1< j, satisfying: (i) aj<as,
and (ii) if i< k< j then ag<ay or g >as. It follows that the
poset rank of T equals its inversion number, i.e., the number of
pairs (1,j) with i< j and aj> aj- Here is the Bruhat order of SS:

=-10-



N

312
>< I \ (12)
132

’/,/f’

123

1'3!
213

Let (W,S) be a Coxeter group (not necessarily finite). Each
interval [w,w'] in the Bruhat order of W is a finite graded poset,
which can be shown to be CL-shellable {BWy]. For instance, the
labeling algorithm applied to S, produces the labeling of maximal
chains in picture (11). A slightly stronger formulation is
possible. For J&S, let W] denote the set of minimal coset repre-
sentatives modulo the parabolic subgroup WJ (as defined e.g. in

[Bo, p. 19]). Then every interval [w,w'] in the Bruhat order of
WJ is CL-shellable.

It is not known whether Bruhat order is in general EL-shell-
able. However, EL-labelings have been found (ef. [Ed3],{Pr]) for
the classical finite Weyl groups corresponding to root systems of
type A, B, C and D,

2.9 EXAMPLE: Face lattices. Let A be a finite simplicial or
polvhedral complex with all maximal faces of the same dimension.
The faces of A ordered by inclusion form a graded lattice L{A)
{(the improper faces ¢ and A included), the {face-fatlice of A.

The face-lattices (or their duals) of the following complexes

are known to be CL-shellable (cf. [BWz1): (1) The boundary
complex of a convex polytope, (2) the Coxeter complex of a finite
Coxeter group, (3) the Tits building of a finite group with BN-
pair, (4) the independent set complex of a matroid, (5) the
broken circuit complex of a matroid. Face-lattices of simplices,
cubes and cress-polytopes of all dimensions are known to be EL-
shellable [B31, p. 174]; picture (13) shows an EL-

labeling of the face-lattice of the 2-cube. It is not known

whether face-lattices of convex polytopes are in general El-
shellable.

2,10 EXAPLE: Totally semimodular posets. A finite poset P is
said to be (upper) semimodufar if whenever two distinct elements
u,v both cover teP there exists a zeP which covers both u and v

(cf. [Bi, p. 391). P is said to be fofally semimedufar 1if it has

0 and 1 and all intervals [%x,vy] are semimodular. Totally semi-

modular pusets are CL~-shellable [BW2]

-11-



(13)

3. ORDER HOMOLOGY

Let P be a finite poset, and let k be a field or the ring
of integers ZZ. For each ie Z let C{(P,k) denote the free k-
module on the basis of the i-chains X <x,<*r<xy of P. Ve
consider ¢ to be a (-1)-chain, so c_, (P,k)=k. Also, C;(P,k) =
for i< -1 and i> length(P). Deflne a map di: C4(P, k) Ci-y (P,K)
by linearly extending

di(x0<x1 < ---<xi)

= J LR N ] LK N ]
JEO( D (x,<x < < Xyy < Kypp < <x4)

when i-chains exist, and setting d;=0 otherwise. Then d; d1+1 :
that is, Imdj4,Skerd;, Define, for ie Z,

ﬁ.(P,k) = ker d;/Imdyy, . (14)

The k-modules H;(P,k) are the_oader homology groups of P with
coaééauem‘/s in k. Clearly, H (P,k) = 0 for i<-1 and 1> 2(P).
Also, H (P k) = 0 if and only 1f Pz¢, and HQ (P, k) 0 if and
only 1f P is connected (as a poset). In fact, H (P,k} is a
free k-module of rank one less than the number of connected
components of P.

Let ci(P) denote the number of i-chains of P. TFor k a field
we have the Euler-Podincaré formula

-12-



2(P) . £(?) .
I (-1)%ei(P) = I (-1)*dimydH; (P,k) . (15)
i=-1 iz=-1

As was mentioned in the Introduction the left side of (15) equals

u(P). Hence, the Mobius Ffunction p(P) is the Euler characteristic
of order homology:

N 2(P) .
u®) = I (—l)ldimkﬁi(P,k) . (16)
i=-1

The numbers dimQﬁi(P,Q) are called the Betti numbens of P.
Define a simplicial complex A(P) in the following way: the
vertices of A(P) are the elements of P and the i-faces of A(P)
are the i-chains x <x <***<x;. The order homology of P
defined in (14) is’ then the (reduced) simplicial homology of
A(P), as familiar from combinatorial topology. In fact, the
properties stated above are just a recapitulation in poset term-
inology of some basic facts from simplicial topology. As a
finite simplicial complex, the cider complex A(P) determines a
- compact topological space |A(P)|, the geometrnic reallzation of P.
Thus one may speak of topological type, homotopy type, etc., of
posets. The following picture shows two posets and next to them
their geometric realizatioens:

v

(17)

- To obtain a poset with preassigned homology groups or
topological type, one can take a simplicial complex T with the
desired properties and look at the poset Pr of faces of T ordered
by inclusion. Then |A(P.)| and |T| are homeomorphic (the former
being the barvcentric sugdivision of the latter). In particular,
any compact triangulable space is the geometric realization of a
finite poset (in fact, of the proper part L of a finite lattice !

La .
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Suppose now that P is a lexicographically shellable poset
of rank d+1. The order homology of P can easily be computed by
standard methods of algebraic topology (the Mayer-Vietoris exact

sequence): H {(P,k)=0 for 1=d-1, and H (P k) =k I“(P)l. Since
each 1nterval [x,y] in P is 1ex1cograph1cally shellable, we have
found that for each open interval (x,y) in P "homology vanishes"
below the top dimension. This brings us to the key definitionm.

3.1 DEFINITION: Let P he a graded poset. We say that P is
Cohen-pacaulay over k (CM/k, for short) if for each open interval
(x,y) in P: H; ((%,y),k) =0 for i=8(x,y), where 8§(x,y) = r(x,y)-2
is the dlmen51on of A((x,y)).

In particular,

3.2 THEOREM: 14 P 48 Lexdicoghaphically shellable, then P is
Cohen-Macaubay over Z and all f{ields k.

In a lexicographically shellable poset the Mobius function
H{x,y) has a combinatorial interpretation (Corollary 2.3) which

r(x,y).

shows that (-1) u(x,y)=z0. More generally, in a Cohen-

Macaulay poset by (16): (-1)T ¥ (x,y) = dimlly 3 (Gy) 1020,

In a similar way the nonnegativity of the numbers B(S) (cf. Theorem
2.2) extends to any Cohen-Macaulay poset P (cf. Theorem 5.2).

3.3 THEOREM: Foa each S5< [d}, the fop homology ghoup 04 P A
free over k of rank 3(S).

The definition of Cohen-Macaulayness given here applies only
to graded posets. However, it is possible to define the notion
in a similar manner for any finite poset P. It can be shown that
this definition implies that P is graded (0 and I may have to be
added), so there is in fact no lcss of generality.

The property of being Cohen-Macaulay depends on the ring k as
well as the poset. The universal coefficient theorem for homology
shows that CM-ness over 7 is the strongest property and CM-ness
over Q@ the weakest. More precisely, CM/ Z implies CM/k for all
fields k, while CM/k for Acme field k implies CM/Q.

All graded posets of rank one and two are CM. A graded
poset P of rank 3 is CM if and only if the proper part P is
connected. From rank 4 on CM-ness cannot be as easily character-
ized. Consider, for instance, the following rank 4 poset P.

14—



(18)

It can be seen by imspection that all rank 3 intervals are con-
nected, so to test for CM-ness one must only compute the homology
of the proper part P. Now, |A(§)l is the real projective plane,
S0
- Z,,1=1
Hi(P’ Z) =
0, i=1

Hence, P is not CM over Z or over Z,, but P is CM over fields
of characteristic =2,

For another example, consider the following poset.

15~



(19)

Here ﬁi(ﬁ, Z)=0 for all i (the geometric realization of P isf the
dunce hat), so P is CM/ Z. However, P is not (lexicographically)
shellable.

Let us finally mention the remarkable faect that the CM-ness
of a poset is a topological property: If Pl and P, are two finite
graded posets and TA(P1)|i5 homeomorphic to |A(P2ﬂ, then P is
CM/k if and only if P, is CM/k.

4, THE POSET RING

With any finite poset P we will associate a commutative ring

whose structure closely reflects the combinatorial and topo-
logical properties of P. In this way we gain new insight into
the significance of Cohen-Macaulay posets. Assume that P has a
0 and 1, and let k be any field (which for our purposes can be
taken to be the rational numbers Q). (Much of the theory goes
through for an arbitrary commutative ring k, but for simplicity
we take k to be a field throughout this and the next section.)
If P = {x,,...,%34}, then form the polynomial ring R=k[x ,...,%5],
where the elements of P are regarded as independent indeterminates.
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Let Ip be the idezl of R generated by all products xyx; where xj

and x; are incomparable elsments of P. Set R —-R/I We call
Rp the poset ring correspondlng to P. (In some papers it is not
requlred that P have a 0 and l, and our RP would be denoted Rs.)

More generally, one can define a ring R, associated with an
arbitrary simplicial cowmplex A fSt5 6] {Re], so that the ring
RA(P) associated with the order complex of P coincides with the
poset ring . Im this general setup R, is called the "Stanley-
Reisner ring" of A, Here, however, we will be concerned
exclusively with posets,

The ring is an algebra over the field k. A k-basis for
consists of all monomials of the form yllyEZ---vas , where

aj>0 and y; <y, <***<y;. We can identify this monomial with the
multichain (= chain with repeated elements)

a a a
y1-1<y22< oo-<yss

of P, where the notation indicates that Vi is repeated aj times.

Thus we can regard elements of RP as llnear combinations of
multichains.

In general, a k-algebra A is said to be INm—gnaded, wherea
meP, if it is given a vector gspace direct sum decomposition
A=(xg£UnAa satisfying A&ABEAG+S' We then call an element XAy

homogeneous of degree o, denoted degx= «. If A is finitely-
generated as a k-algebra, then each A, is a finite-dimensional

vector space over k. In this case, the Hifbent senies of A is
defined to be the formal power series

F(a,t) = I (dimkAa) £
e IN®

b

where t = (t seeesty) and ta—tlul “-tmm for a={a ,...,0).

For poset rlngs there are several possible ways to éeflne an WM -
grading, of which only one will concern us here. Namely, if P is
graded of rank d+1 and xeP;, 1<i<d, then we define degx to be
the ith ynit coordinate vector e, in W9, This makes Ry into an
INd—graded k-algebra where ( )u has a k~basis consisting of all
multichains containing o4 elements of rank i, where a==(a1,...,ad).
Let us compute the Hilbert series F(RP,t) with respect to this
grading. By grouping multichains in P according to their suppoerts
(i.e., the chain of elements of P which appear at least once in
the multichain), we see that
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F(Rp,t) = 2 () T o=~
SS{d]  1ieS i
d
When put over the common denominator -Hl(l_ti)’ the coefficient
l=
of Il t; in the numerator becomes z (-l)IS-TL(T)= B(5).
ie8 TES

There follows:

4,1 THEOREM: (e have
d _
F(Rp,t) = ( I B(S) Mty I (1-¢)™F .
sSc{d] ie§ ~ i=1

If A is any finitely-generated N"-graded k-algebra and
xeAu, then it is easily seen that

F(A,t) = Fla/x,t)

(termwise ) ;

1-t°
with equality if and only if x is a non-zero-divisor in A [Sts,
Theorem 3.1]. Define the rank-fevel parameters 6 ...,6q of Rp by

ei= Zx ’
xePy

so B is homogeneous of degree ey The quotient ring =
RP/(GP""ed) inherits an ZNd-grading from Rp. The following
result is now an immediate consequence of Theorem 4,1.

4.2 THEOREM: let 8 ,...,83 be the nank-Level parameters of the
graded poset P of rank d+ 1. Let QP==RP/(81,...,Gd). Then

F(Qp,t) = L B(s) I t4 (2o
scid] ies

L4 and only Lf 81 45 not a zero-divisorn in the ring
RP/(SIQ---sei__i), l..'*; iSd .

We define the ring Rp to be Cohen-Macawlay if it satisfies
either of the two equivalent conditions of Theorem 4.2. Note
that our definition is only applicable to ghaded posets. It is
possible to define what is meant for any finitely-generated graded
algebra to be Cohen-Macaulay, One can then prove that if P is
any finite poset with 0 and 1 such that Rp is Cohen-Macaulay,
then P is indeed graded. hus it costs us nothing to restrict
our attention to graded posets from the beginning.
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An important property of a Cohen-Macaulay poset ring Rp is
that there is a simple canonlcal form for its elements. Firset
note that if xeP; then x9 =x% in R Hence x%=0 in Qp, soO QP
is spanned by all chaing (or square%ree monomials) in P. <{This
also follecws from (20)). Choose a k-basis B for Q. consisting
of chains of P. We call B a set of separatorns for Rp. By (20),
the number of chains 0<y, < *** <y <1 in B satisfying S =
{r(yl),...,r(ys)} is equal to 8(53 The next result is a
consequence of the previous theorem.

4.3 COROLLARY: let Rp be Cohen-Macaulay, and Let B be a set of
separoatons. Then eueﬂg element £ of R, can be wiitten uniquely
in the form

f= 1 n'Pn(els-'-’ed)s (21)
neB

whenre P A8 a polynomial in 8,,...,84 {with coefficients in k).

It is an interesting problem to decide efficiently when a
poset ring is Cohen-Macaulay and to find a set of separators
when this is the case. The following result appears in [Gas],
together with an algorithm for testing CM-ness.

4.4 THEOREM: Llet B be a collection of chains of P, such that

&E[(S) elements of B have rank set s, forn all sS [d] . Let & be
the incidence matiix between B and the set M of maxdmal chading

of P, L.e., if ceB and meM then

1, if cEm
®Cm=
0, if c$1n
The following two conditions are equivalent:
(i) Rp s CM and B L8 a set of separatons,
(LL) Iﬁe matnix ¢ 48 lnvertible [(oven k).

Now suppose P is lexicographically shellable, and let

~

m:0 = yn +y1+---+yd+yd+l =1
be a maximal chain of P. Define the hestrniction

R(m) = {yi:)\(yl_1+Yi) > ?\(Yl+Yi+1)};

and let B={R(m):mgM}. 1If one orders M lexicographically and
orders B correspondingly, then the matrix ¢ of Theorem 4.4 is
upper triangular with 1's on the main diagonal. Hence from
Theorem 4,4 we deduce:
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4.5 COROLLARY: Let P be Lexicographlcally shellable, and Let
B= {R(m):meM}.  Then Rp 4is Cohen-Macawlay {over any §ield k),
and B s a set of separatons.

Corollary 4.5 can be formulated for arbitrary shellable
posets [Gaj, Thm, 4.2], and can be generalized to arbitrary

shellable simplicial complexes [KK].

4.6 EXAMPLE: Let P be the distributive lattice

(22)

with EL-labeling as shown (cf. (8)). We then have the following
table.

maximal chain m R(m)
-+ -+ - -
Qrx, ¥x, »x >l ¢
0=+x »+x +x 1 X
~ 1 3 o o 6
O0+x +x =% =1 X,
~ 2 3 5 -~
0+rx +x, +x +1 X, < Xg
-> -+ - -
0 X, * X, "X T Kq

It follows that every element f of Rp can be written uniquely in
the form

f=p, +x.p, +x,p,.tx xp +x p_,
1 5E2 253 2765y ut's

where P is a polynomial in the variables 81 =%, +X,, 82 =X, +Xx ,

63 =X+ x;.

5. REISNER'S THEOREM

Perhaps the most important result im the theory of Cohen-
Macaulay posets is the following. While we state it for the case
of a field k, the theorem and its attendant background carry over
straightforwardly to more general commutative rings k, in partic-
ular to the important case k = Z.
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5.1 THEOREM: Fix a fdeld k and £et p be a {inife graded poset,
Then P {8 Cohen-Macawlay (in the topological sense of Definition
3.1} 4§ and only if the poset ning Rp 44 Cohen-Macaulay.

There is no really simple proof known of this fundamental
result, The original proof of Reisner [Re] (which dealt with
arbitrary simplicial complexes) used twe tools from commutative
algebra: (i) the theory of local cohomology first developed by
Grothendieck, and (1i) the theory of the "purity of Frobenius"
developed by Hochster and Roberts which enables one to compute
local cohomology in characteristic p. Subsequently a proof was
given by Bochster [Hocz] which replaced local cohomology by
properties of the Koszul complex. Hochster's proof yields a
homological criterion for Rp to be Cohen-Macaulay which requires
considerable topological arguments [Mu] to show is equivalent to
Definition 3.1. A proof similar to Hochster's, but more element-
ary, was given by Baclawski and Garsia [BG, Prop. 6.2]. Hochster
also gave a further proof using local cohomology but avoiding
purity of Frobenius. This proof is unpublished by Hochster but
reproduced in [Stlo]. For readers familiar with homological
algebra it is the shortest and most elegant proof of Reisner's
theorem to date., Finally, at this very Symposium on Ordered Sets,
Stanley and Walker succeeded in finding a proof devoid of all but
the simplest ring theory and using nothing from topology beyond
the Mayer-Vietoris sequence. )

Reisner's theorem is merely the first step in a beautiful
theory connecting the combinatorics and topology of P with the
algebraic properties of Rp. We will give the briefest glimpse
of what lies bevond Reisner's theorem in Section 6e. For the
conclusion of this section we will content ourselves with an
illustration of the usefulness of Reisner's theorem in prov1ng
purely combinatorial statements concerning P.

Let P be (ohen-Macaulay of rank d+ 1, and let S={d}. Let I
be the ideal of R, generated by U P;. Then R,/I= Rp , where
P . i P
ie[d]-S
Pg is the S5- rank-selected subposet of P. Moreover, QP/I QP
where I denotes the image of I in QP But since

G0 = B B Ty

ieT

there follows

/T = I Iey

Hence RP is Cohen-Macaulay, and we have proved the result
S
alluded to in Section 3.
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5.2 THEOREM: 14 P 8 Cchen-Macaulay of hank d+ 1, then 40 4is
Pg for all s& [d].

While it is possible to give a purely topological proof of
this result, the details are rather messy [Mu]l[Bas}. The ring-
theoretic appreach yields the atove almost trivial proof, which
first appeared in [Stg].

6. FURTHER DEVELOPMENTS

The main purpose of preceding sections was to introduce the
reader to the notion of a Cohen-Macaulay poset starting from
scratch. In this section we will briefly mention some areas in
which there is current research activity. For a fuller treatment
see our exposition in [BGS].

(a) Applications to ning theony. An elaborate theory now
exists showing how properties of a poset ring Rp can be "trans-
ferred" to other rings of interest in invariant theory, represen-
tation theory and algebraic geometry. The idea to put the poset
ring to such use seems to be due independently to DeConcini and
Garsia. Thus DeConcini and collaborators [DEPZ], fpL], iprl,
[Ei] have developed the notion of "Hodge algebras," while Garsia's
ideas have been further developed by him and Baclawski [Gaj],
[Gaz], [BG], [Basgl, [GS] leading to the notion of "lexicographic
rings.'" Preambles to these developments appear in the work of
Hodge (see below) and of Rota and his colleagues [DRS], [DKR] on
"straightening laws." This latter work in turn has its roots in
the work of Alfred Young, : L

The interest to algebraic geometry in these developments
derives from the fact that certain rings related to algebraic
varieties, in particular the homogeneous coordinate rings of
certain projective varieties, are closely related to the poset
rings of Bruhat order and other related posets. The archetypal
example, due to Hodge [Hod], [HP, p. 378], concerns the Grassmann
variety Gpn of r-planes in €B. Recent work of DeConcini,
Lakshmibai, Musili and Seshadri [DL], [LMS) extends the range of
the method to wide classes of '"generalized Schubert varieties.'
It is a noteworthy development that the Cohen-Macaulayness of the
homogeneous coordinate rings of these varieties is deduced from
the Cohen-Macaulayness of the corresponding Bruhat poset rings,
and hence is made to ultimately depend on the pure comblnatorlcs
of lexicographic shellability.

(b) Group actions. Let G be a finite group of automor-
phisms of a Cohen-Macaulay poset P of rank d+l. For each S¢S [d],
G permutes the chains of rank set S. Call the character of this
permutation representation Qg - Thus, gs(g) is the number of
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chains of rank set 3 fixed by geG, Also, the action of G on P
induces an action on the homology H <|- (P.,8). Call the
character of this complex represeatation B.. The following
character relations can be deduced from the Hopf trace formula:

S

~

0.(g) = I B.(2)
~5 Teg T

(23)

8:(8) = I -1 18 11!%(3).

TES
Note that these formulas evaluated at the identity eeG reduce to
the fundamental relationship (1)-(2) between the numbers a(S} and
B8(S) mentioned in the Introduction. The formulas (23) were
anticipated by Solomon [Soj, p. 389] and first proved by Stanley
[Stg].

The typical example of the situation described above is that
of the symmetric group 5, acting on the Boolean algebra By of all
subsets of an n-element set. Here the characters Q. were first
- considered by "Frobenius and ES by Solomen [802,5 6]. There is
an explicit formula for decomposing B, into irreducible characters,
which is due to Solomon [Sop]l (see also {Stg,Thm.4.37]). Another
example is that of the general linear group GLg4+3(q) acting on the
lattice of subspaces of a (d+ l)-dimensional vector space over
GF(q). Here the characters 4q were first considered by Steinberg
[Ste], and 8 41 is now known as the Steinberg character. For
other examplés, see [Stg] and [Bj,].

(e¢) Alternating Mobius funciéion. Let us call a graded’

poset P of rank d+l alternating if B(S) = (—1)1S|_lu(PS)2 0 for
all Ss={d]. Cohen-Macaulay posets are alternating (Theorem 3.3},
but the converse is not necessarily true, as the following
example shows.

(24)

A simple condition which assures that a graded poset P is alter-
nating is the following: P is said to be ER (also called parti-
ionable) if for each maximal chain m there is a subchain R (m)Sm,
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the restrniction of m, such that C =

says that for each chain ¢ there
such that R(m) £ cSm, The poset
graphically shellable posets are
subchain of m where the descents

mg {R(m) ,m]. This condition
is exMctly one maximal chain m
above is ER. Also, all lexico-
ER; for R(m} simply take the

in the label occur {cf. Coroll-

ary 4.5). It is not known whether all Cohen-Macaulay posets are ER.
The nonnegativity of the numbers B(S) for a Cohen-Macaulay
poset has several interpretations. Thus, we have seen that R(8)
occur as Betti numbers for the homology of rank-selected sub-
posets and determine the Hilbert series of the poset ring. The
following purely combinatorial interpretation appears im [Stg]:
If P is a Cohen-Macaulay poset of rank d+ 1 then there exists a
subcomplex A of the order complex A(P) such that for any SS[d]
the number of faces of A having rank set S is equal to R(S).
follows that if B{(S)#0 and TS S, then B(T) # 0. The proof is
based on manipulations with the poset ring. This result can be
viewed as giving a necessary condition that a collection of
integers B(S), S< [d], are the numbers B(S) of a Cohen-Macaulay
poset. The condition is not quite sufficient for posets, but if
one allows slightly more general objects (so called '"Cohen-
Macaulay completely balanced complexes') then the condition is
both necessary and sufficient [BS].

It

(d) Furthen topological developments. The topological
definition 3.1 of a Cohen-Macaulay poset imposes a condition on
the homoleogy of each open interval, By sharpening the attention
to homotopy type we get a related notion: A graded poset P is
said to be homotopy Cohen-Macaulay if for every open interval
(x,¥) in P the homotopy groups Wi(IA((x,y))l), i< 8(x,y), are”’
trivial. Thus P is homotopy CM if and only if P is CM/ Z and
when §(x,y) =22, 1&((x,y))t is simply connected. This notion was
introduced by Quillen [Qu] for the purpose of studying certain
posets of subgroups of a group G. For instance, he showed that
if G==GLn(k), where k is a field, and if p# charkand k has a
primitive p-th root of unity, then the poset of elementary Abelian
p-subgroups of G is homotopy Cohen-Macaulay. For the full sub-
group lattice there is the following characterization which
follows from results of Bjorner, Iwasawa and Stanley [Bj1, p. 167]:
The subgroup lattice L(G) of a finite group G is homotopy Cohen-
Macaulay if and only if G is a supersolvable group. A lexico-
graphically shellable poset is homotopy (M and a homotepy CM
poset is CM/ Z, but neither of the converse implications are
true. For instance, the poset of figure (19) is homotopy CM but
not lexicographically shellabie.

For a variety of topological developments related to the
Cohen-Macaulay property of posets we refer the reader to [Baj_4]
[Bi, .1, [BWr], {Fal, [Mu], [Qu] and [Wr].
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(e) Funther nding-theonetical developments: With every
finite poset P one can associate its poset ring Rp, and as a
very general program one might ask in what way various ring-
theoretic properties of Rp influence the structure of P. In this
paper we have been concerned with merely one instance of this,
viz., the Cohen-Macaulay property. Even for the Cohen-Macaulay
case one can seek to probe much further into the ring-theoretic
structure, asking for explicit minimal free resolutions, des-
cription of the canonical modules, etc. ... . Let us here merely
examplify by mentioning Gorenstein posets. A poset ring Rp (or
poset P) is said to be Gorensfein (with respect to k) if the
ideal generated by the rank-level parameters is {nreducible, i.e.,
cannot be expressed as an intersection of two strictly larger
ideals. When is a graded poset P Gorenstein? There is a
characterization of this property in terms of the homology of
open intervals of P which is analogous to Reisner's theorem,
[Hocy, 5 6], [Stg, §8]. This can be formulated as follows: P is
Gorenstein if and only if P _is CM and the Mobius function of nucP
satisfies U(x,y) = (-1)T'%* ¥/ Here "aucP" denotes P minus those
elements # 6,i which are comparable to all xeP. Somewhat sur-
prisingly, this condition for Gorensteinness is equivalent to the
apparently weaker condition that P is CM and the Mobius function
of nucP satisfies u(x,y) =1 only for intervals [x,y] of length
2, together with the additiomal requirement that u(ﬁ,i)#'o.

Consider, for instance, the two distributive lattices

N

(25)

~

The first one is Gorenstein but the second is not (the open
circles denote elements of nucP). Nevertheless, the order
complexes_of their proper parts are homeomorphic. On the other
hand, if P and Q_are nonacyclic (i.e. their order homology is non-
zero) and if |A(P)| and |A(Q)| are homeomorphic, then P is Goren~
stein if and only if Q is Gorenstein. It follows from the above
characterization of Gorenstein posets that Boolean algebras,
(full) Bruhat order, and face lattices of comnvex polytopes (cf.
Section 2) are Gorenstein.

The poset ring Rp of a Gorenstein poset P satisfies a certain
"self-duality" property. While we cannot enter inte the details
here, we can mention one simple combinatorial manifestation of
this fact. Suppose P is Gorenstein of rank d+ 1 and that P =nuc?P.
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If S is any subset of [d], then B(S) = B([d]-S). More generally
[Stag, Prop. 2.2], if Q is any (induced) subposet of P then

u(qQ) = (-1)4u(P-Q). This result extends to the situation of
group actions as follows [Stag, Thm. 2.4]. Let P be as above, and
let G=AutP. Then the § characters of Section 6b satisfy

Bs = BrajBrdi-s-

Further ring-theoretic aspects of CM posets are studied in
[335,6]’ [BG], [DEP1,2]’ [Gal,zl’ [Hoz], and [St6,8,101'

REFERENCES

[Baj] K.Baclawski (1975) Whitney numbers of geometric lattices,
Advances in Math 16, 125-138.

[Bap] K.Baclawski (1976) Homology and combinatornics of crdenred
4ets, Ph.D. Thesis, Harvard University

[Ba3] K. Baclawski (1977) Galois comnections and the Leray
spectral sequence, Advances Ain Math., 25, 191-215.

[Ba4] K, Baclawski (1980) Cohen-Macaulay ordered sets, J. Algebra
63, 226-258.

[Bas] K. Baclawski (1981) Rings with lexicographic straightening
law, Advances in Math. 39, 185-213. y

[Bag] K. Baclawski (to appear) Cohen-Macaulay connectivity and
geometric lattices, Ewropean J. Combinatorics.

[Ba7] K. Baclawski (to appear) Canonical modules of partially
ordered sets.

[BG] K. ‘Baclawski and A. M. Garsia (1981l) Combinatorial decompo-
sitions of a class of rings, Advances in Math. 39, 155-184.

[Bi] G. Birkhoff (1967) Lattice Theory (3ad. ed.}, Amer. Math.
Soc., Colloq. Publ, No. 25, Amer, Math. Soc., Providence,RI.

[Bj1] A. Biorner (1980) Shellable and Cohen-Macaulay partially
ordered sets, Thans. Amen., Math, Soc. 260, 159-183.

{sz] A, Bjorner (1981) Homotopy type of posets and lattice
complementation, J. Combinatorial Theony A 30, 90-100.

[Bj3} A. Bjorner (to appear) On the homology of geometric lattices,
Algebra Universaldis.

-26-



[B3,}
[BGS ]
[BS]

(v, ]
(BW,]

[BWr]

[Bo]

[DEPl]

[DEPZ]

(DL]

[DP]

[De]

[DKR}]

[DRS]

A. Bjorner (to appear) Shellability of buildings and homo-
logy representations of finite groups with BN-pair.

A. Bjorner, A.M. Garsia and R.P. Stanley (to appear)
Cohen-Macaulay partially ondered sets,

A. Bjorner and R.P. Stanley (to appear) The number of
faces of a Cohen-Macaulay complex.

A, Bjdrner and M. Wachs (to appear) Bruhat order of Coxeter
groups and shellability, Advances .n Math.

A. Bjorner and M. Wachs (to appear) On lexicographically
shellable posets.

A. Bjorner and J. W. Walker (to appear) A homotopy comple-
mentation formula for partially ordered sets, European
J. Combinatonrics.

N. Bourbaki (1968) Gnroupes et algébres de Lie, £1éments
de Mathématique, Fasc. XXXIV, Hermann, Paris.

C. DeConcini, D. Eisenbud and C. Procesi {1980) Young

diagrams and determinantal varieties, ITnvent, Math, 56,
129-165.,

C. DeConcini, D. Eisenbud and C. Procesi (to appear)
Hodge algebras,

C. DeConcini and V. Lakshmibai (to appear)Arithmetic

Cohen-Macaulayness and arithmetic normality for Schubert
varieties, Amer. J. Math.

C. DeConcini and C. Procesi (to appear) Hodge algebras:
A survey, in Pnoceadingé of the conference on Schur
functors 1980, Torun, Poland.

V. V. Deodhar (1977) Some characterizations of Bruhat
ordering on a Coxeter group and determination of the
relative Mobius function, Inv. Math. 39, 187-198.

J. Désarménien, J.P. S.Kung and G.-C. Rota (1978)
Invariant theory, Young bitableaux, and combinatorics
Advances .in Math. 27, 63-92.

P, Doubilet, G.-C. Rota and J. Stein (1974) On the founda-

tions of combinatorial theory IX: Combinatorial methods in
invariant theory, Studies Ain Appf. Math. 8, 185-216.

-27-



[Edl] P. H. Edelman (1980) The zetfa polynomick of a partially
ordened 4ef, Ph.D. thesis, Massachusetts Institute of
Technology.

[Edz] P. H. Edelman (1981) The Bruhat order of the symmetric

group is lexicographically shellable, Proc. Amer. Math.
Soc. 82, 355-358,

{Ei] D. Eisenbud (1980) Introduction to algebras with straight-
ening laws, in Ring theory and algebra 111 (Proc. Third
Oklahoma Conference) (B. R. McDonald, ed.), Dekker,

New York, 243-268.

[Fa] F.D. Farmer (1979) Cellular homology for posets, Math
Japonica 23, 607-613.

[Fo] J. Folkman (1966) The homology groups of a lattice,
J. Math. Mech. 15, 631-636.

[Ga 1 A. M. Garsia (1979) Méthodes combinatoires dans la théorie

des anneaux de Cohen~Macaulay, C, R. Acad. Sol, Pandis. Séx.
A 288, 371-374.

[Gaz] A. M. Garsia (1980) Combinatorial methods in the theory of
Cohen-Macaulay rings, Advances {in Math. 38, 229-266.

[GS] A.M. Garsia and D. Stanton (tn appear) Group actions on
Stanley-Reisner rings and invariant theory, Advances .in

Math.

[Hal P. Hall (1936) The Eulerian functions of a group, Quart.
J. Math. 7, 134-151.

[Hoc ] M. Hochster (1972) Rings of invariants of tori, Cochen-

Macaulay rings generated by monomials, and polytopes,
Annals of Math. 96, 318~337.

[Hocz] M. Hochster (1977) Cohen-Macaulay rings, combinatorics,
and simplicial complexes, in Ring Theoay I (Proc. Second
Oklahoma Conference) (B. R. McDonald and R. Morris, ed.),
Dekker, New York, 171-223,

[Hod] W. V. D. Hodge (1943) Some enumerative results in the theory
of forms, Proec. Camb, Phil. Secc. 39, 22-30.

[HP] W.V.D.Hodge and D. Pedoe (1952) Methods of Algebraic

Geometry, Vol. 11, Cambridge Univ. Press (reprinted 1968),
London. '

-28-



[KK]

[Kn}
{La]
[LMs ]

[Mac]

(MM]

[Mat]
[Mu]
[Pr]

[Qu]
[Re]
[Ro}
[504]

[802]

[St,]

B. Kind and P. Kleinschmidt (1979) Schdlbare Cohen-—
Macaulay-Komplexe und ihre Parametrisierung, Math. Z.
167, 173-179,

D. E. Knuth (1970) A note on solid partitions, Math. Comp.
24, 955-967.

H. Lakser (1971) The homology of a lattice, Discrefe Math,
1, 187-192.

V. Lakshmibai, €. Musili and C. 5. Seshadri (1979)
Geometry of G/P, Bulf. Amen, Math, Soc. 1, 432-435.

F. S. Macaulay (1916) The Afgebralic Thechy of Modulan
Systems, Cambridge Tracts in Mathematics and Mathematical
Physics, No, 19, Cambridge Univ. Press, London.

P. A. MacMahon (1915,1916) Combinatory Analysis, Vols. 1-12,
Cambridge Univ. Press, London (reprinted by Chelsea,
New York, 1960).

J. Mather (1966) Invariance of the homology of a lattice,
Proc. Amex. Math, Soc, 17, 1120-1124.

J. Munkres (1976) Topological results in combinatorics,
Preprint, MIT, Cambridge, Mass.

R. A. Proctor {(to appear) Classical Bruhat orders and
lexicographic shellability.

D. Quillen (1978) Homotopy properties of the poset of non-
trivial p-subgroups of a group, Advances .in Math. 28,
101-128.

G. Reisner (1976) Cohen-Macaulay quotients of polynomial
rings, Advances .Ln Math. 21, 30-49.

G.—~C. Rota (1964) On the foundations of combinatorial

‘theory: I. Theory of M&bius functions, Z. Wahrscheinfich-

kheltstheonie und Verw. Gebiete 2, 340-368,

L. Solomon (1966) The order of the finite Chevalley groups.
J. Algebra 3, 376~393.

L, Sclomon (1968) A decomposition of the group algebra of
a finite Coxeter group, J. Afgebra 9, 220-239.

R. P. Stanley (1972) Ordered structures and partitions,
Mem. Amer. Math. Scc. 119,

-29-



[st,]
[st,]
{st,]
'[Sts]
[St,}
{st,]
[Stg]
[Sty]

[st,.]

10

[5te]

[Wal

[Wr}]

R. P. Stanley (1972) Supersolvable lattices, Algebaa
Univernsalis 2, 197-217.

R. P. Stanley (1974) Fiuite lattices and Jordan~Holder sets,
Algebra Universalis 4, 361-37L.

R. P. Stanley (1974) Combinatorial‘reciprocity theorens,
Advances in Math, 14, 194-253.

R. P. Stanley (1975) Cohen-Macaulay rings and constructible
polytopes, Bulf. Amer., Math., Secc. 81, 133-135,

R. P. Stanley (1977) Cohen-Macaulay complexes, in H{ighenr
Combinatorics (M. Aigner, ed.), Reidel, Dordrecht.

R.P. Stanley (1978) Hilbert functions of graded algebras,
Advances in Math. 28, 57-83.

R. P. Stanley (1979) Balanced Cohen-Macaulay complexes,
Thans. Amern. Math. Soe. 249, 139-157.

R. P. Stanley (to appear) Some aspects of groups acting on
finite posets, J. Combinatorial Theorny A.

R. P. Stanley (in preparation) Some interactions between
commutative algebra and combinatorics, Report, Dept. of
Math., Univ. of Stockholm, Stockholm, Sweden.

R. Steinberg (1951} A geometric approach to the represen-
tation of the full linear group over a Galois field, Tarans,
Amen. Math. Sec, 71, 274-282.

M. Wachs (to appear) On the relationship between shellable
and Cohen-Macaulay posets.

J. W. Walker (1981) Topolegy and combinatories of ordered
sets, Ph.D. Thesis, Massachusetts Institute of Technology.

-30-



DIAGRAM OF IMFLICATIONS

The relationships among most of the poset properties
discussed in this paper are summarized by the diagram below,.
While we have included all implications of which we are aware,
we have not indicated which reverse implications are open or
are known to be false. For instance, it is unknown whether CL-
shellable implies EL-shellable, and whether shellable implies
CL-shellable. On the other hand, it follows from a recent deep
result of R. Edwards that spheres (dvery—theposet—of—faees—of
‘. ¢, osef P a—;r;angulata9n_o£wa—sphefeT—w&Ebﬁaaé—aéie&ﬁedﬂ need not be
with & mf 7 homotopy CM.
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