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1. Introduction 

What can be said about the set E ~ of solutions in nonnegative integers to a 
system of linear equations with integer coefficients? For many purposes, such 
as those of linear programming, this question has been adequately answered. 
However, when this question is regarded from the vantage point of com- 
mutative algebra, many additional aspects arise. In particular, there is a na- 
tural way to associate with E ~ a graded module A ~ (over an appropriate graded 
commutative ring A), and one can ask for such standard information about A s 
as its depth, canonical module, etc. We will obtain such information by 
explicitly computing the Hilbert function of the local cohomology modules 
Hi(A ~) associated with A s (with respect to the irrelevant ideal of A) in terms of 
the reduced homology groups of certain polyhedral complexes associated with 
EL This method was suggested by some work of M. Hochster concerning 
polynomial rings modulo ideals generated by square-free monomials  (unpub- 
lished by him but discussed in [Sts]), and I am grateful to him for making his 
ideas available to me. Similar techniques were employed by Goto and Wa- 
tanabe [G-W]  to study arbitrary affine semigroup rings, though they did not 
consider modules over them. 

As a consequence of our computations regarding Hi(A~), we can give a 
general "reciprocity theorem" (Theorem 4.2), whose statement does not involve 
commutative algebra, connecting the set E ~ of nonnegative integral solutions 
to the set of solutions in negative integers. This generalizes the results in [St2], 
where only a special class of equations was considered. 

It seems natural to find a purely combinatorial analogue to the algebraic 
results mentioned above. In Sect. 5 we discuss what we have accomplished 
along these lines, and offer a general ring-theoretic conjecture which would 
imply a much more definitive result. 

The following notation concerning sets will be used throughout. 
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176 R.P. Stanley 

Symbol Set 
N nonnegat ive  integers 

- N nonposi t ive integers 
IP positive integers 

- IP negative integers 
�9 ,.+ nonnegat ive  real numbers  
[p] { l ,2  . . . . .  p}, where p e n  
[p,q] { p , p +  1 . . . .  ,q}, where p<q and p, qe7l 
S \ T  {xeS: xq~T} 

The nota t ion  77, Q, IR is s tandard.  I f /3=(/3  1 . . . .  , /3,)eN" and 7=(71 . . . .  , G ) e N " ,  
then fiN 7 means  /3i_--<7i for all i, while /3<7 means  /3i<~i for all i. Similarly 
/3 > 0 means/3~ > 0 for all i, and /3  > 0 means/3~ > 0 for all i. 

Let us now consider some background  mater ia l  concerning linear equa- 
tions. Let q~ be an r x n matr ix  of  integers (or 77-matrix), and assume (without 
loss of  generali ty in what  follows) that  rank  (b=r .  Let c~e77 r, regarded as a 
co lumn vector  but writ ten for convenience as a row vector. (We will write all 
co lumn vectors as row vectors  in this paper.) Define 

E= {/3eN~: q) /3=O} 

E~= {/3ENn: ~/3= ~}. 

Hence  E is a submonoid of N ~ (i.e., closed under  addi t ion and containing 0), 
and E s is an " E - m o d u l e "  in the sense that  E+E~cEL Here of course E+E ~ 
={/3+7:  f lee and ?,EEl}. 

Let  k be a field ( though much  of what  we do goes through for an arbi t rary  
commuta t ive  ring), and let A = kE denote  the mono id  algebra of E over k. In 
order  not to confuse the addi t ion opera t ions  in E and in A, we will denote  by 
x ~ the element of  A corresponding to /3EE. Hence  A as a vector  space has the 
basis {x~: flee}, and mul t ip l ica t ion in A is defined by x~.x~ '=x~+L In fact, 
define a l inear t r ans format ion  

o9: A--~k[xi, . . . ,x,] 

by co(xa)=x{ ' . . .x~  ~, where /3=(/31,-..,/3~). This is clearly an i somorphism of A 
on to  the subalgebra  of k[x~,...,x,] generated (in fact, spanned) by the mo-  
nomials  x ~ . . . x ,  a~. Hence  we may  regard A as a ring generated by monomia ls ,  
and may  identify x ~ with x ~ . . .  x~ ". 

Similarly, let A ~ denote the vector  space with basis {x~:/3EES}. Then  A s is a 
A-module  is a natural  way, viz., if f lee and TEE ~ then define xa.xV=xa+VeA~. 

The ring A and module  A s have an in terpre ta t ion in terms of invar iant  
theory. Suppose q~= [~/1, 72, --., G],  where 7~ is a co lumn vector  of  length r. 
Define 

T =  {diag(u ~, uW, ...,  ur~ uE(k*)~}, 

where k * = k - { 0 }  and u~'=u~"...u; '', and where u=(u~,...,u,) and 7~ 
=(?i~,... ,?~r). Since rank q~=r, T is a subgroup  of  GL~(k) i somorphic  to (k*) ~, 
and hence by definit ion is an r -dimensional  (algebraic) torus. T acts in a 
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natural way on the polynomial ring R=k[-x  1 . . . .  ,X. ] ,  viz., if ru 
= diag(u~l, ..., u ~') e r then t , .  f ( x  1,..., x,) =f(u~'x I . . . .  , u'"x,). Let 

R r = { f e R :  r . f = f  for all r eT} ,  

the ring of invariants of T acting on R. One sees immediately that A - R  r - -  , S O  

that A may be regarded as a ring of invariants. From this observation several 
facts about A are clear. For instance, since T is linearly reductive it follows 
that A is finitely-generated as a k-algebra (e.g. [M]). This was first shown by 
Hilbert and in a simple combinatorial way by Gordan (see [G-Y, Sect. 151]). 
We will soon need a refinement of this result. It also follows from I-H] or the 
more general [H-R]  that A is a Cohen-Macaulay ring. This result will also be 
a consequence of our work. The reader unfamiliar with Cohen-Macaulay rings 
may wish to consult [St4]. 

We also wish to interpret the module A s in terms of invariant theory. 
Suppose that the equation q~fi=c~ has at least one integral solution fle~". 
Equivalently, the g.c.d, of all the j x j  minors from any j rows of �9 must equal 
the g.c.d, of all the j x j  minors from the corresponding .j rows of the augmen- 
ted matrix [4~, c~]. We then call the pair (45, e) or the equation 4~fl=c~ non- 
trivial, and henceforth we will automatically assume that (4~, c~) is non-trivial. In 
this case the map 7~: T ~ k *  defined by Z~(%)=u ~ is a one-dimensional repre- 
sentation (or character) of T, and every rational irreducible representation of T 
is obtained in this way. Now define 

Rz =T ----{feR: z" f = z ~ ( t ) f  for all zeT},  

the module of semi-invariants or relative invariants of T with respect to the 
character Z~. Again it is immediate that ~ r A = R z .  From this one can deduce 
that A = is a finitely-generated A-module, or if preferred a direct combinatorial 
proof can be given. However, it is not in general true that A ~ is a Cohen- 
Macaulay module, and one of our main aims is to give a necessary and 
sufficient condition for this to be the case. 

We have mentioned that A is a finitely-generated k-algebra (or equivalently, 
E is a finitely-generated monoid). Define f leE to be fundamental if whenever fl 
= 7 + 6  with ?, a c e  then 7 = 0  or 6=0 .  The set of all fundamental elements of 
E is denoted FUND(E). It is easily seen that  a subset G e E  generates E as a 
monoid if and only if F U N D ( E ) c G .  Hence FUND(E)  is the unique minimal 
set of generators of E, and {xe: f leFUND(E)} is a minimal set of generators of 
A. We need for later purposes, however, a minimal set B of elements of E for 
which A is integral over the subalgebra k[xB]=k[x~: fleB] generated by x ~, 
fleB. (Equivalently, A is a finitely-generated k[xt~]-module.) To see that 
FUND(E)  need not coincide with B, let q 5 = [ l , 1 , - 2 ] .  Then FUND(E)  
={(2,0, 1), (0,2, 1), (1, 1, 1)}, but we may take B={(2,0,  1), (0,2, 1)}. This leads us 
to define an element fleE to be completely fmldamental if whenever mfi=~+6 
where m > l  and 7, 6eE, then 7=ifl  for some O<_i<_m. Let CF(E) denote the 
set of completely fundamental elements of E. 

1.1 Proposition. Let B be any subset of E. Then A is integral over k[x ~] if and 
only if B contains a non-zero multiple of every element o[ CF(E). 
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The proof is an easy consequence of [St1, Lemma 2.4]. 
It is useful in what follows to view the set CF(E) geometrically. Let (r 

denote the set of all solutions fielR'+ to @fl=0. Thus cg is an 0 1 - 0 -  
dimensional convex polyhedral cone in N.", with unique vertex at the origin. 
Let ~ = o ~ ,  denote any non-degenerate cross-section of (6 (e.g. 
cgm{(fll, ..., fl,)elR": Xfli= 1}). Thus ~ is an ( n - r -  l)-dimensional convex poly- 
tope (or ( n - r - 1 ) - p o l y t o p e ,  for short), and any other non-degenerate cross- 
section of (r is combinatorially equivalent to ~ An /-dimensional face ,~ of :~ 
will be called an i-face. If fl=(fll ,  ...,fl,)elR'+, define the support of fi by suppfi 
={ i : f i i>0} ;  and if fl=(fll,...,fl,)elR", define the negative support of fl by 
supp_fl={i:  fli<0}. If g is a face of ~,, then all elements of the relative interior 
~ o  o f - ~  have the same support, which we denote by suppl . .  It follows that 
the faces of ~ are in one-to-one correspondence with the supports of elements 
fleE, and that two faces ~ , N  satisfy o ~ c N  if and only if s u p p ~ c s u p p ~ g .  If v 
is a vertex (=0-dimensional face) of ~ then those elements fleE satisfying 
suppf l=suppv  are N-multiples of a unique element fi,,eE. We leave to the 
reader to verify that {fl~: v is a vertex of ~} = CF(E). In other words, CF(E) 
consists of those non-zero points fl of E which lie on an extreme ray of ~6 and 
for which no other points of E lie on the line segment joining 0 and ft. 

1.2 Example. Let ~b= [1, 1 , -  1 , -  1]. The supports of elements of E consist of 
the sets 0, {1,3}, {1,4}, {2,3}, {2,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, 
{ 1, 2, 3, 4}. Hence the lattice of faces of ~ is given by 

1 3 ~ "  ~ 23 

so .~ is a quadrilateral: 

I] 14 

I (1) 
2=~ 24 

The vertices 13, 14, 23, 24 correspond to the completely fundamental elements 
1010, 1001, 0110, 0101, respectively. D 
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The ring A and module A m have in a natural way the structure of an IN"- 
graded k-algebra and 77"-graded A-module respectively. Namely, we have the 
vector space direct sums 

A=HA ~, A~=HA~, 
fl~E .O~E ~ 

where Ae (respectively, A}) denotes the one-dimensional vector space spanned 
by x/~ for flee (respectively, /3eU). The HiIbert series of A and A m are defined 
to be the formal power series 

F(A, ?,) = y~ x~e77[[x, , . . . ,  :,.]] 
[Je E 

V ( A % x ) =  ~ x~e7ZE[x, . . . .  ,x,]], 

where if /3=(fll,--.,/3,) then xP=~/J'"'~ ~ " ~ 1  ~,,. It follows from general facts about 
Hilbert series that F(A,x) and F(A ~,x) represent rational functions of x 
=(xl  . . . .  ,x,). (This is because A is a finitely-generated k-algebra and A ~ a 
finitely-generated A-module.) We should point out [St~, Thm. 2.5], though we 
don't need this fact, that when F(A, x) and F(A% x) are reduced to lowest terms 
(and assuming as always (~, c~) is non-trivial) then they both have denominator 

FI {l-x"). 
[I~CF{E) 

We conclude this section with a description of the Krull dimension of A 
and AL One can define dimA to be the maximal number of elements of A 
which are algebraically independent over k, and similarly we can set dim A ~ 
=dim(A/AnnA ~) where AnnA ~ = { f e A [ f - A  m=0}. Clearly AnnA ~=0 (since 
(q0, e) is non-trivial), so dim A~=dimA. Now a set xQ x ~ .. . .  of monomials is 
algebraically independent if and only if the vectors /3, ? .... are linearly inde- 
pendent (over F,, say). Hence dim A is equal to any of the following quantities: 

(i) the dimension of the real vector space lRE spanned by E, regarded as a 
subset of P,", 

(ii) the dimension of the cone cg, 
(iii) the rank of the (free) abelian group 77E generated by E, regarded as a 

subset of 77". 
We will always denote dimA by the symbol d. If d' is the rank of the 

abelian group of all 77-solutions/J to ~b/3=0, then note that d<d', with equality 
if and only if there exists a IP-solution to {/}/3=0 (i.e., Ec~]P"4:0). 

2. Local Cohomology 

Let A+ denote the irrelevant maximal ideal of A, i.e., the ideal generated (or 
spanned) by all monomials x~eA with /34:0. Let Hi(A m) denote the i th local 
cohomology module of A m with respect to the ideal A+. (The usual notation is 
HiA+(A% but we suppress A+.) There are several equivalent ways of defining 
Hi(A m) (see, e.g., [H-R, Sect. 5]). The definition which will be most useful for 
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our purposes is the following [H-R, p. 133]. Let y~ . . . .  ,y~ be any set of 
elements of A for which rad(y~ . . . . .  ys)=A+, i.e., for which A+ c(Yl .... ,y~) for 
some t>0.  Let A y = y ~ l A  denote the ring of fractions of A with respect to y, 
(or more accurately, with respect to the multiplicative set generated by y~), and 
denote by Jg(y~, A ~) the complex 

+ ( O - .  A-+Ay--~O)@A ~ 
i=1  

-+  - .  - - . . . . - - .  ~ 0 .  (2)  
I<J  

The map cSj+ 1 has the following explicit description. Let ueA>.i,yi2...~,,,~ = M. Let 
{1,2,,. . . ,s}\{il,i  2 .... , i j}={{x,{2,. . .  , [~ j}, with f ~ < / 2 < . . . < r  j. Let qSr: 
M - ,  M~, be the natural map (here an injection), for 1 _< r < s - j .  Then 

s - j  
6j+ l(u) = ~ ( -  1) ~ 1 q~e~(u). (3) 

r = l  

We now define HZ(A ~) to be the ith cohomology module of the complex 
.~f~(yOO, A~), i.e., 

H'(A') = H'(~~ ~, A~)) = ker 6~+ 1/ira 6,. (4) 

This definition is independent of the choice of y~ .. . .  ,y~ (provided A+ 
=rad(yi,...,ys) ). We will always choose yi=x~', where /31 . . . . .  fir is some speci- 
fied ordering of CF(E). By Proposition 1.1, we indeed have in this case that 
A + = rad (y  I . . . .  ,y~). Since the elements x ~ are N"-homogeneous, each Hi(A ~) 
inherits from (4) the structure of a N"-graded A-module. In other words, we 
have a direct sum decomposition 

H'IA~) = [I I4'(A%, 
Be:g" 

where A,/.H'(A~)t~cH~(A~).~+~. The modules H'(A ~) are not in general finitely- 
generated, but we do have dimkH'(A~)e< oe. Hence we can define the Hilbert 
series 

F(H~(A~), x) = ~, (dimkH'(A')~)x ~. 
~e7s 

It is well-known that Hi(A ~) is an artinian A-module (though not necessarily of 
finite length). It follows that there exists a vector TeN" for which 

x-  ~F(Hi(A~), x)e7Z [[x~- 1, ..., x;- 1]]. 

Part of the importance of local cohomology stems from its depth sensi- 
tivity. A proof of this fundamental result (which we simply state for the case A ~ 
at hand) may be found e.g. in [H-K, Satz 4.10 and 4.12]. 

2.1 Theorem. Let e =dep thA  ~ and (as usual) d=dimA.  Then Hi(A~)=O unless 
e<i<_d. Moreover H~(A~)=t=O and Ha(A~)4=O. D 
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We also record for later use the relationship between the Hilbert series of 
A ~ and of H~(A'). If F(x) is any rational function of x=(x~ .. . .  ,x,,) possessing a 
Laurent series expansion about 0, then denote by F(x)~ the Laurent series 
expansion of F(x) about oo (i.e., which converges in some deleted neigh- 

1 x -I 
borhood of oo).  For example, if F ( x ) -  - then F ( x ) , =  
-- E Xm" l - - x  l - - x - 1  . . . .  

m < 1 

2.2 Theorem. Let e =dep thA  ~ and d = d i m A  ~ as above. Then 

d 
F(A~,x)~= ~(-1)~F(H~(A~),x).  ~ (5) 

i=e 

Perhaps the easiest way to verify this theorem (which is widely known 
though not conspicuously published) is to observe that both sides of (5) are 
additive functions (in the category of 77"-graded A-modules) and agree on free 
modules. 

Now that we have disposed of the general facts we shall need concerning 
local cohomology, let us return to the subject of this paper. The following 
notation will be used. If S c C F ( E ) ,  then A~s=S-1A ~ denotes the module of 
fractions of A = with respect to the (multiplicative set generated by the) mo- 
nomials x ~ for tieS. (There should be no confusion with the homogeneous 
component A}, where/~E77".) Define ~s  to be the face of ~ satisfying 

supp ~ = U supp ft. 
3 e S  

If 7E7/", then (, s)~ denotes the },-homogeneous part of A}. We write /~ for the 
abelian group generated by Ec77", and E~ for the coset of E in 77" containing 
E ~" 

2.3 Lemma. Let S c CF(E). Then 

1, if yEE ~ and s u p p _ y c s u p p ~  
dimk(A~)~' = 0, otherwise. 

Proof Suppose (A~)~,4=0. Then there are integers at~ for tieS and an element 
a c e  ~ such that 

7=(5+ ~,al,. ft. {6) 
lJe,'; 

Conversely, if 7 can be written as (6) then dimk(A~) ~ = 1. But 7 can be written as 
(6) if and only if Tee  ~ and supp_7 c U(supp /~)=supp .~s, and the proof 

//es 
follows. 

Now given yEE~, define A r to be the abstract simplicial complex whose 
faces are those sets S c CF(E) such that 

supp_), c U (supp c5) = supp ~cr(~\s. 
6eCF(E)\S 
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2.4 Example. Let q ~ = [ 1 , 1 , - 1 , - t ] ,  c~=2, and 7 = ( 0 , 0 , - 1 , - 1 ) .  Let a 
=(1,0, 1,0), b=(1,0,0,1),  c=(0,1,0,1),  d=(0,  1, 1,0), so CF(E)={a,b,e,d}.  Then 
supp_~.={3,4} and A>. is given by 

a ab b 

c cd d 

The crucial result for our analysis of H~(A ~) is the following. 

2.5 Lemma. Let yeff~ ~. Restrict the complex J{'(y~',A ~) to its y-homogeneous 
part, obtaining a complex JC(y ~, A~);. of JD~ite-dimensional vector spaces. Orient 
the simplicial complex A., by ordering the vertex set CF(E) as fi~ < ... < fl*, where 
y ,=x  ~'. Then the complex J{(y~,A~);. is isomorphic to the augmented oriented 
chain complex C(Av) of A r (with coefficients in k), up to a shift in grading. 

Proof Let ICF(E)I =s, and set 

K i =  
S CF(E) 

I s l=s - i -  1 

,of) c~ Hence ~*"(y , A )~, has the form 

0s-  I ~t 9o 
0 - + K s _  1 -  ~. . .  , K  o >K 1 -+0  

By Lemma 2.3, (A})v=0 unless supp_Tcsupp,~s ,  and dimk(A~) ~ =1 if 
s u p p _ T c s u p p ~  s. If x} denotes the obvious generator for (A})~ (as a vector 
space), then we can identify +x} with the face CF(E)\S  of A~. In this way K i can 
be identified with the space (?i(A;.) of/-chains of A s (including the case i=  - 1 ,  
where we take a " -  1-chain" to be a scalar multiple of the null set). 

It remains to show that 8 i coincides with the boundary map 81: 
Ci(Ay)--*Ci_l(A~,). Let [Vo,V 1 . . . .  ,vi]ECi(Ay) denote the oriented simplex with 
vertex set {Vo,Vl,...,v~}. Recall (e.g., [Sp, p. 159]) that 8' i is defined by 

i 

8'iEVo, v , , . . . ,  vi] = y, ( -  1);[v 0, vl , . . . ,  ~j,..., vi], 
j = 0  

where ~; denotes that vj is missing. Comparison with (3) yields 8g=8'i when 
the right sign of _+x} is chosen, as desired. H 

Let us denote the reduced homology groups of A v by /4~(Av). It is under- 
stood that the coefficient group is always k. We remind the reader that for the 
null set O we have 

0, i=# - 1  
/li(0) ~ k, i = - 1 .  
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2.6 Corollary. Let ?E~ ~. Then 

dimk Hi(A~)~, =/ '0  , if ~ E ~  
dimk/t ,_  ~_~(A~), if 7~EL D 

While Corollary 2.6 in a sense "determines" the Hilbert function of H~(A ~) 
and thus in particular depth AL it is not a very practical result because of the 
difficulty of computing /~(A~.). What we need to do is replace A~ by a more 
tractable object. To this end, let ~* denote the dual polytope to ~ There is 
thus a one-to-one inclusion-reversing correspondence ~-- , .~-* between the 
faces f f  of ~ and ~.~* of ~*, satisfying 

dim ~ + dim ~ *  =(dim 7)  - 1. 

Given ;~,eE ~, define a subset F of ~* by 

F~= U {.~*: ~ is a face o f ~  satisfying supp ),~supp~-} (7) 

F.,. has the structure of a polyhedral complex whose faces (or cells) are certain 
faces of ~*;  it is a subcomplex of the polytope ~*. 

2.7 Example. Let O, c~, and 7 be as in Example 2.4. ~ is given by (1). The 
faces ;N whose support contains {3, 4} =supp_y are the edges joining 13 to 14, 
23 to 24, together with ,~ itself. Hence E~ consists of the two disjoint vertices of 
.~* circled below: 

134 I 3 3 4  

23 24 124 
7 "  

We now come to a crucial topological lemma which will lead to a signifi- 
cant simplification of Corollary 2.6. 

2.8 Lemma. Let d = d i m A  ~ and s=LCF(E)I, as usual. Then Jbr all i, 

1:4(0  ~ fl~_ ~ + i(A ;,), 

where I2Ii(F~,) denotes reduced singular homology (with coefficient group k ). 

ProoJ2 Let L(N*) denote the poser of proper faces of 2/* (i.e., excluding 0 and 
•/*), ordered by inclusion. Let L(F~)= {,~-*eL(2/*): ~*cF~}.  Regard the posets 
L(.~*), L(F~), and L(r as simplicial complexes whose faces are the 
chains of the corresponding poset. Now L(7*) and L(Fy), regarded as simplicial 
complexes, are just the first barycentric subdivisions sd(c)7*) and sd(F~) of c~7" 
and F~, regarded as polyhedral complexes. Hence the geometric realization 
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[L(~*)l of L(U~'*) is a ( d -  2)-sphere. By Alexander duality, 

/4,(F~) ~/4a ,- 3(L(~*)\L(F~)) �9 (8) 

(Since we are working with field coefficients, homology and cohomology coin- 
cide.) Let /77 denote the collection of all subsets of maximal elements (=(d 
-2)-faces) of L(~*)\L(F~) whose intersection is not contained in L(F~). Thus /77 
is a simplicial complex on the vertex set CF(E). By a theorem of Folkman [F] 
(see also [L] [B, Thm. 2.3] [W, Thin. 5.9]), /7~ and L(~*)\L(F~.) have isomor- 
phic reduced homology (in fact, the same homotopy type), so 

I:Ia-i- 3(L(~*)\L(F~)) ~/4a- ,  3(//7). (9) 

Let ~2 denote the boundary complex of the abstract simplex on the vertex 
set CF(E) (i.e., ~2 consists of all subsets of CF(E) except CF(E) itself). By 
definition of A 7 and F~, we have 

A7={Sc CF(E): CF(E)\Sr 

Since If2] is an (s-D-sphere, again by Alexander duality we have H~(AT)_--- 
/t~- 3- ~(H~), or equivalently 

t:I,~-a+,(A~) ~/4a ,- 3(/77). (10) 

Combining (8), (9), and (10) completes the proof. [] 

Although not relevant to us here, the preceding lemma suggests the follow- 
ing conjecture. 

2.9 Conjecture. The spaces ]AT] and IX~-aF~] have the same homotopy type, 
where X ~-d denotes the (s-d)-fold suspension. 

From Corollary 2.5 and Lemma 2.8 we deduce the main result of this 
paper. 

2.10 Theorem. Let d=d imA.  Then 

F(Hi(A~), x)= ~ (dimk/Q a_ I_i(F7))xL 
7~E e~ 

Recall that a topological space F is acyclic (over k) if/4i(F) = 0 for all i. The 
null set is not acyclic since F t  ,(0)~k. Since A s is Cohen-Macaulay if and only 
if Hi(A ~)=0 (equivalently, F(Hi(A=), x)=O) for i4:d, we deduce from Theorem 
2.10 a criterion for A ~ to be Cohen-Macaulay. 

2.11 Corollary. The following two conditions are equivalent: 
(i) A s is Cohen-Macaulay, 

(ii) for all 7eE ~, either 1~=0 or ~ is acyclic. [~ 

To supplement Corollary 2.11, we collect a few observations on what it 
means for ( to be void. 
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2.12 Proposition. Let y~E~. Then: 
(a)  ~ = 0  if a~d only if the only face ~ of ~ satisfying supp 7 ~ s u p p ~  is 

?~ itself 
(b)  I f  ~=0,  then 

F~ = ~ <~ supp_ 7 = supp ~.  

(c) Let ~=0, 
+ 0. Then 

and suppose there exists a 1P-solution to ~/,fl=0, i.e., Er~IP" 

r~,=O ~ 7E(-IP)". 

Proof (a) is an immediate consequence of the definition of F~,. Now suppose 
=0. To prove (b), we must show that if ~bT=0 and supp 7 + s u p p ~  then 
s u p p _ T a s u p p , ~  for some proper face of ~ Let / ~ E  satisfy s u p p / 3 : s u p p ~  
Let c=p/q be the least rational number for which - 7 + c / 3 > 0 ,  where q~IP. Set 
6=q(-~'+c/3).  Then 6~E and supp6=#supp~, since supp_7+supp~.  But 
supp_7 a supp 6, so the proof of (b) follows. (c) is an immediate consequence of 
(b) since E r IP" :f 0 <~ supp ~ = [n]. 

Note that Proposition 2.12(b) is false if ~:f0. For instance, take 4)=[1, 
- 1 ] ,  ~=1,  7=(0, -1) .  Then E.=O, yet supp_7={2} 4= {1,2} = s u p p ~  

3. Applications 

We certainly would like to be able to deduce Hochster's result that A is a 
Cohen-Macaulay ring from Corollary 2.1 1. 

3.1 Theorem. The ring A is Cohen-Macaulay. 

Proof Let 7~E. By Corollary 2.11, we need to show that either F~ is acyclic or 
F. = 0. There are three cases. 

Case 1. 7~E. Then supp 7=0  so ~= ,~* ,  which is acyclic. 
Case 2. supp_7---supp~ By Proposition 2.12(b), this is the condition for F~ 

Case 3. 7(~E and supp_7+suppg~. Let IR~ be the d-dimensional vector 
space spanned by the cone (6. Let ~ be a hyperplane (of dimension d - 1 )  in 
~cg which separates 7 from %( Let c~, be the portion of c~ "visible" from 7, 
where W is regarded as opaque, i.e., 

(,~ = {/~(~: the line segment {(~,,/3) joining 7 and/3 intersects %~ only in/~}. 

The map (gT- ~' -* ~ which sends /~ to the unique element of/(7,/3) r ~ is a 

homeomorphism from ~ to ~(%~,). Since ~ is convex of dimension d, ~9(~) is a 
(d-1)-dimensional convex subset of H. Since s u p p _ 7 + s u p p ~  it follows that 
~b(~) is a convex cone whose vertex is ~p(0), where 0 is the vertex of (-g. A cross- 
section of ~p(cg,~) is therefore a (d-2)-dimensional ball. But such a cross-section 
is homeomorphic to the portion ~.~-~r of ~ visible from 7, so ~ is 
acyclic. 
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Now let L(~) denote the poset of proper faces of ~, regarded as a sim- 
plicial complex as in Lemma 2.8. The subposet L(~)  consisting of all non-void 
faces of ~i is isomorphic, as a simplicial complex, to the barycentric sub- 
division sd(~y). The complementary poset L ( ~ ) \ L ( ~ . )  is isomorphic to sd(F,.), 
since the faces ~ of ~ not visible from 7 are precisely those which satisfy 
s u p p _ ? c s u p p ~  ~. Since ~y is acyclic, so is sd(~.). It follows from Alexander 
duality that sd(F~), and therefore F~., is also acyclic. 17 

The main idea of the above proof, that of considering the portion of 
visible from ?, was also used in the proof of [St 2, Prop. 8.3]. With a little more 
care, we can adapt the preceding proof to give a relatively tractable sufficient 
(but not necessary) condition for A ~ to be Cohen-Macaulay. A completely 
different proof of a somewhat more general result appears in [Sts, Thm. 3.51. 

3.2 Theorem. Suppose there exists a rational (or equivalently, real) solution fl 
=(ill .... ,ft,) to cb fl=~ satisfying - 1  < fli <O. Then A ~ is Cohen-Macaulay. 

Proof Let 7~E TM, and let qEIP satisfy q f l ~ " .  Then q(y- f l )~F.  Since - 1  <f l i<0,  
we have supp_?=supp_q(7-f l ) .  Since by definition the space F~ depends only 
on supp 6, we have F~=Fqt~_~). By Corollary 2.11 and Theorem 3.1, Fq(~. ,j is 
void or acyctic, so the same is true of F~. Hence by Corollary 2.11, A" is 
Cohen-Macaulay. D 

The example q ) = [ 1 , -  11, c~= l, shows that the converse to Theorem 3.2 is 
false. 

While Theorem 2.10 is rather unwieldly for computing depth A ~ for arbi- 
trary (q~, c~), it can be used to give a simple formula for depth A ~ when r = 1 
(i.e., when 4~ has just one row, or when the torus T is one-dimensional). 

3.3. Theorem. Let a~ .... ,a~, bx,...,bt~lP,, where s,t>O. Let @=[a~,. . . ,a~, 
-b~ , . . . , - b~] ,  and choose e6;g. I f  fl=(fl~ .... ,fls+~)e~ ~+t, then let fi' 
=(fl~,...,fl~), fl"=(fl~+~ ... .  ,fl~+t). Let O < i < d = d i m A = s + t - 1 .  Then 

F(Hi(A~), x)= 

x p, if i=s 
13 e E ~ 

/~' < O,/Y' > 0 

x ~, if i=t  

/~' >__ O , /P "  < 0 

0, otherwise. 

Proof Note that S c I s+  t] is the support of some nonvoid face ~,~ of ~ if and 
only if Sc~[s]=t=O and Sc~[s+l ,  s + t ] + 0 .  Let fleE'. We need to compute 

Case 1: s u p p _ f l = [ s + l ,  s+t],  i.e., i f>0 ,  i f '<0 .  By the definition (7) of F~, 
a face o ~*  of ~* is contained in Fp if and only if s u p p ~ = T w [ s + l ,  s+t],  
where T is a non-void subset of Is]. Hence F~ is the boundary of a simplex of 
dimension s - 1 ,  so 

dimk/~i(Ft~) = {01: i + - s - I  
i = s - 1 .  
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Case 2: supp t i=[s] ,  i.e., ti '<0, t i"~0. By reasoning parallel to the above, 

dimk/:/i(Ft~) = {01: if i = # t - I  
if i = t - 1 .  

Case 3 (supp_ti) c~ Is] 4= 0 and (supp ti) ca [s + 1, s + t] 4= ~. Then supp ti 
= s u p p ~  for some face ~ of ~ so by Theorem 3.1, F~ is acyclic. (Alter- 
natively, one can see directly that F/~ is a simplex.) 

Case 4" supp t i c [ s ]  but supp_ti:4=[s]. Consider the poser L(Ft~ ) of all non- 
void faces Y* of F~, ordered by inclusion, as in the proof of Lemma 2.8. 
Identify the face ,N* of Ft~ with the set [s+t] \supp-Y. Then L(F~) consists of all 
non-void subsets of the set T= Is + t]\(supp_ti) which do not contain Is + 1, s 
+t].  The set of all non-void subsets of T, regarded as a simplicial complex 
(whose faces are chains of subsets ordered by inclusion) is isomorphic to the 
first barycentric subdivision sd(?~a) of the boundary (?a of the simplex a on the 
vertex set T. The subcomplex of sd((?a) consisting of all subsets of T containing 
[s+ 1, s + t ]  is isomorphic to sd(r) for a simplex z with s - t supp  til>0 vertices. 
Hence L(lii)=sd(~?a)\sd(r ) is topologically a sphere of dimension IT[ -2  with a 
(non-void) ball removed of dimension s - l supp_ t i l -1 .  Thus L(F~), and there- 
fore Fl~ , is acyclic. 

Case 5: supp t i c  [ s+  1, s+  t] but supp ti4= [s + 1, s+  t]. By reasoning 
parallel to Case 4, we get that F/~ is acyclic. 

We have computed /4i(Ft~) for all possible ti. Substituting these results into 
Theorem 2.10 completes the proof. D 

3.4 Corollary. Preserve the m)tatiol~ of  Theorem 3.3. Let O < i < d .  Thell Hi(A ~) 
is a finite-dimensiomll vector space, and Hi(A~)=O unless possibly either (a) i = s  
and ~ < O, or (b) i= t amt ~ > O. Moreover, 

0, if ((b, c~) is trivial (i.e., A~= O) 

depthA = s, ![ there exists tieE~ with ti'<O, t i">O (in which case ~<0) 
= t, i f  there exists ti~[:.~ with ti'>=O, ti"<O (in which case oc>O) 

s + t -  1, otherwise (so A ~ is Cohen-Macaulay). 

Proof  If t i '<O and ti">O, then (bti<0. Hence if ti~E~ then :~<0. Clearly given 
cr there are only finitely many flee" satisfying ti '<0, ti">0. Similar reason- 
ing holds for ti'>O, ti" <0, and the proof follows from Theorem 3.3. [7 

4. Reciprocity 

The purpose of this section is to give a formula relating the N-solutions ti of 
q~ti=~ to those solutions ti for which supp ti is "large." First we briefly 
discuss previous work in this area. Recall our notation from Theorem 2.2 - if 
F(x) is a rational function of x = ( x  1 . . . .  ,x ,)  possessing a Laurent series expan- 
sion about 0, then F(x),,  denotes the Laurent series expansion of F(x) about 
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oo. In [St~, Thm. 4.1] it was shown that if EnIP"=#0, then 

F(A, x)~ = ( -  1)a ~, x B, (11) 
BeE 
B<O 

where F(A,x)= 2 x  B as usual. In I-St3, Thm. 7.7] this result was given an 
BeE 

algebraic interpretation. Essentially it is equivalent to computing the canonical 
module O(A) of A (which we will define below). In [St2, Sects. 8-11] it was 
shown that a direct analogue of (11) for A n continues to remain true for certain 
choices of c~2g r (provided Ec~IP"#0). Namely, for certain c~ we have 

F(A n, x)~,. = ( -  1) ~ 2 xB" (12) 
BeE~ 
B<O 

In general, however, the difference between the left- and right-hand sides of 
(12) is non-zero. For the case r =  1, this "error term" was explicitly computed 
in [St2, Prop. 10.5]. In this section we compute the error term for arbitrary 
(q~, ~) and relate it to the structure of the module A n. 

First we have the following immediate corollary of Theorem 2.10 and the 
fact that /~_ l(F)=0 for any space F # 0 ,  while/~_ ~(0)~k. 

4.1 Corollary. The Hilbert series of Hd(A ~) is given by 

F(Hd(An),x)= 2 xL 
,;e E~ 

Fv= O 

(See Proposition 2.12 for a description of when I~=0.) 

Next we come to the main result of this section. 

4.2 Reciprocity Theorem. We have 

F(A~,x)~=(-1) e ~ X T §  2 ~ ( ~ )  XT' 
TeE  ~ TeE  ~ 

FT= 0 F-e * O 

where ~(~) denotes the reduced Euler characteristic of F~. 

Proof By Theorems 2.2 and 2.10, 

d 

F(A ~, x)~ = 2 ( -  1)iF(H'(An), x) 
i = 0  

d 

=2(-  
i=0  

= ( - 1 )  

1) i 2 (dimk/4d l-i(F~)) x~ 
TeE ~ 

d - 1  

x~+ ~, ( -1 ) '  2 (dimkffIa-l-i(F~)) Xe 
y e F  ~ i= 0 TeE  ~ 

(13) 

I'7 = 0 Fv * 0 
d - 1  ) 

= ( -1 ) a  2 x ' + ( - 1 )  e-1 y'  (~o(--1)d-l-idimkISId_, i(F~) xL 
~eE ~ yeE ~ i 

l'z,= 0 F~ * 0 

The proof follows from the definition of ~(~). 
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4.3 Corollary. A necessary and sufficient condition on (4), a) in order jar 

F ( A ~ , x ) ~ = ( - 1 )  '~ ~ x'; (14) 
T E E  ~ 
Fv- 0 

is that ~(F~)= 0 whenever ~ :f O. 

Note that by Corollary 2.11, (14) holds whenever A: is Cohen-Macaulay. 
The converse is false. For instance, it follows from [St2, Ex. 8.6] that if 

0 - 1  
- 1  0 

- 1  0 

1 0 

0 1 

0 - 1  

0 0 

-3 0 
3 0 
4 - 1  

4 ) =  1 - 1  

1 - 1  

4 - 1  

2 - 1  i 
~ =(2,2, 1 , - 1 , -  1, 1, 1), 

then (14) holds but A ~ is not Cohen-Macaulay. (Here 17 denotes the 7 • 
identity matrix.) In general, Theorem 4.2 gives an expression for F(A ~,x)~ in 
which the right-hand side of (14) is the "main term." We may regard the terms 
arising from ~,4:0 (or rather ~(~)4:0) as "error terms." 

We now complement Theorem 4.2 by giving a more precise form of 
Corollary 4.1. Let B be a homomorphic image of a Gorenstein ring A, and let 
d=d imB,  c=d imA.  Then the canonical module (2(B) (also denoted KB) is 
defined to be 

Y2(B) = Ext,-d(B, A). (15) 

(As a B-module, (2(B) does not depend on the choice of A.) Eq. (15) makes 
sense when B is replaced by any finitely-generated A-module M. Hence we 
define in general Y2(M)= Ext~-~(M, A), where A is Gorenstein, M is a finitely- 
generated A-module, c=d imA,  and d = d i m M .  

Suppose A = k [ x  1 . . . . .  Ym], a polynomial ring over the field k, given an IN'- 
grading so that Ao=k.  Let A+ = I_I AIJ be the irrelevant ideal, and suppose 

fl*O 
that M is a finitely-generated 7Z"-graded A-module of dimension d. Let I(A) 
=k[x~  l . . . .  ,x~, 1], the injective envelope of k=A/A+.  Then there is a unique 
finitely-generated (2g'-graded) A-module V2'(M) for which 

I (A)) = ~ (M) @A A, (16) HomA(H~+(M), ~ , 

where A denotes the A +-adic completion of A. It is well-known that f2'(M) 
~(M) [H-K, Ch. 5], so if we wish we can take (16) rather than (15) as the 
definition of t?(M). More generally, the local duality theorem [ibid.] asserts in 
the present context that 

HomA(H~( ~ (M), I(A)) "~ Ext~i(M, A) @A ~:1, (17) 
or equivalently, 

nomA(EXt h- ~(M, A), I(A)) ~ H~+ (M). (18) 
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We also note that it follows from (17) or (18) (in the case i=d)  that the Hilbert 
functions of HaA + (M) and (2(M) are related by 

dim k H~+ (M) ~ ~ dim k O(M)~. (19) 

4.4 Theorem. For" any (cI), c~), let J_~ denote the vector" space kE ~ with basis E ~, 
and regard A~ in an obvious way as a A-module. Then (2(A ~) is isomorphic to the 
submodule ~ o f  A~ generated (in fact, spanned) by the monomials x t ~ 3  ~ such 
that F t~=0. 

Proof  A straightforward generalization of [St 3, Lemma 6.2] shows that f2(A ~) 
is isomorphic, as a 2g"-graded R-module, to a homogeneous submodule of .A~. 
By (19) and Corollary 4.1, the Hilbert functions of 7/ and Q(A ~) agree. But 
since every nonzero homogeneous component A~ of A~ is a one-dimensional 
vector space, every homogeneous submodule of A ~ is uniquely determined by 
its Hilbert function. Hence ~---(2(A~). D 

When c~=0 and (without loss of generality) Ec~IP":t:0, we obtain from 
Theorem 4.4 and Proposition 2.12(c) a simple description of f2(A). This result 
was first proved in [St3, Thin. 6.7]. 

4.5 Corollary. Suppose E c~IP"4:0. Then f2(A) is isomorphic to the ideal ~?[" A 
generated (in Jact, spam~ed) by all x ~ with [ ~ E ~ ] t  ~. [7 

We can now strengthen Corollary 4.1 (and therefore Theorem 4.2) by 
explicitly describing Hd(A~), whose Hilbert series comprises the "main term" of 
the formula for F(A ~, x),~. 

4.6 Corollary. Let  V ~ be the k-vector space with basis {x~: F=O}. Define a A- 
module structure A x V ~ ~ V ~ on V ~ by the rule 

fx  tJ+~ if F~+~=0 (i.e.,x~+~V ~) 
x~'x~=~0, ' otherwise. k .  

Then V ~ ~ Ha(A~). 

Proof  By (18), we have 

H~(A ~) "~ HomA(Q(A~), ] (A)), 

where A = k [ x ~ , . . . , x , , ]  is some polynomial ring over which A is a finitely- 
generated (E"-graded) module. For every fieE~ such tha t / "  B=0, there is (using 
the description of (2(A ~) in Theorem 4.4) a unique q~eHOmA(~2(A~), I(A)) such 
that ~ ( x B ) = l e I ( A ) = k [ x T ~ , . . . , x , , ~ ] .  It is easily checked that the map 
Ha(A ~)-* V ~ which sends qSl~ to x -  ~ is an isomorphism. ~] 

5. A Combinatorial Decomposition 

Suppose that M is a ~7"-graded finitely-generated rnodule over an N"-graded k- 
algebra R. Let a: 2g"-,2g be a homomorphism of abelian groups such that (i) 
a (N")cN,  and (ii) if f isN" and a(fl)=0, then fi=0. Define an N-grading on R 
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by setting degx=a( f l )  whenever xeRt~. We will call this procedure "specializ- 
ing to an IN-grading." Similarly define a N-grading on M and call this "spe- 
cializing to a N-grading." Given such a ://-grading of M, the Noether normal- 
ization lemma (in the graded case) guarantees the existence of a system of 
parameters 01 .. . .  ,0e which is homogeneous with respect to the IN-grading. (In 
general, there need not exist a system of parameters which is homogeneous 
with respect to the original IN"-grading.) It is well-known that M is Cohen- 
Macaulay if and only if M is a free module (necessarily finitely generated) over 
the polynomial ring S=k[O 1 . . . . .  0~]. Moreover, since N-homogeneous elements 
q l , . . . ,q ,  form a basis for M as an S-module if and only if their images in M'  
=M/(O1M+. . .+OdM) are a k-basis for M', it follows that we can choose 
q~ ....  ,q, to be ~"-homogeneous. More generally, if depth M = e  and if 01, ..., 0,, 
is a maximal IN-homogeneous M-sequence, then M is a free k[01,...,0~, I- 
module (but no longer finitely-generated when e < d = d i m  M) which posesses a 
7/"-homogeneous basis. 

There are many circumstances involving combinatorial considerations in 
which one would greatly desire that 0~,...,0,,, as discussed above, are IN n_ 
homogeneous. Since this is in general impossible, we offer the following conjec- 
ture as a possible replacement. 

5.1 Conjecture. Let R be a finitely-generated N"-graded k-algebra (where R o 
= k as usual), and let M be a.finitely-generated ~"-graded R-module. Then there 
exist.finitely many subalgebras S 1 . . . .  , S, of R, each generated by algebraically 
independent IN"-homogeneous elements of R, and there exist 2g"-homogeneous 
elements rll , ..., r h of M, such that 

M = f I  tli Si, (vector space direct sum) 
i= I  

where dimSi>depth M for all i, and where vliSi is a free Si-module (o f  rank 
one). Moreover, if k is infinite and under a given specialization to an N-grading 
R is generated by R1, then we can choose the (iN"-homogeneous) generators of 
each S i to lie in R 1. 0 

This conjecture is valid for n =  1. When M is Cohen-Macaulay we can pick 
S 1 = $ 2 = . . . = S ~ ;  and for general M it follows e.g. from [B-G, Thm. 2.1] that 
there are N-homogeneous elements 0~,. . . ,0 a of R such that S~ 
= k [ 0 1 , 0 2  . . . . .  Os, ] for s o m e  O~si~d. 

The main purpose of this section is to prove Conjecture 5.1 when M = A  
=kE (ignoring the last sentence of the conjecture, which was included so that 
the question raised in [St(,, p. 149, line 6] or [G, Rmk. 5.2] would follow 
affirmatively). Equivalently: 

5.2 Theorem. There exist .free (commutatit;e) submonoids E 1 . . . . .  E, of E, all of 
rank d = dim A, and elements 6~,..., ~, of E, such that 

E = ~) (6 i + El) (disjoint union). (20) 
i=1 

Remark. Note that (20) establishes a "canonical form" for the elements of E. 
More precisely, if 7n,.-.,~'i~ is a basis for E~ (as a free commutative monoid), 
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then for every /~eE there exists a unique integer iE[t] and unique integers 
al,  ..., adEN such that 

f l = 6 i +  ~ aiTij" 
j=l 

If one did not require rank Ei=d in (20), then Theorem 5.2 would follow from 
very general considerations in [C-S]. Actually, Theorem 5.2 was essentially 
proved in I-StT, Sect. 1], but from a different point of view. Here we will sketch 
the argument in I-Sty] using our current notation and terminology. 

Proof of Theorem 5.2 (sketch). Let ~ be the convex ( d -  1)-polytope defined in 
Sect. 1. 

Step I. It follows from the process of "pulling the vertices" [M-S, p. 116] 
that there exists a triangulation A of ~ with the following properties: 

(a) the vertices of A and of ~ coincide, and 
(b) A is the boundary complex of a simplicial convex polytope ~' .  
Step 2. Let v be the vertex that was pulled first in Step l. Let A~. be the 

subcomplex of A consisting of all faces F not containing v. Then the cone 
C(v, Av) from v to A~ forms a (rectilinear) triangulation of 

Step 3. By property (b) above and the techniques of [-B-M] (see [M-S, p. 
177]), there exists a shelling G1, G2, . . . , G  s of A such that if vEG; and i<s, then 
vEGi+ 1. By definition, G1,Gz,...,G~ is a shelling of A if G1,G 2 .... ,G s is a 
linear ordering of the maximal (i.e., (d-2)-dimensional) faces of A such that if 
2 _< i _< s, then (G ~ v; G 2 k)... U G i_ 1) ~ Gi is a union of (d - 3)-faces of G i. 

Step 4. Let j + l  be the least integer for which vEGj+ 1. Then G1,Gz,...,Gj 
is a shelling of A v, so C(v, GO, C(v, G2) . . . .  , C(v, G j) is a shelling of C(v, A~.). 
Write C; = C(v, Gi). 

Step 5. Let Qi be the submonoid of E consisting of all fleE such that the 
ray in IR" with endpoint 0 and containing fl passes through C;. Since C~ is a (d 
-D-simplex,  CF(Qi) consists of d linearly independent vectors fl~l,/~i2,--.,~;d. 
Let IN-CF(Q~) be the free monoid which they generate. Define P~ 

=Qic~ aj~i:  O < a j <  1 . Then IPil < oo and Qi = ~ ( 7 + N .  CF(Q~)). 
j 7~P~ 

Step 6. Let F i be the unique face of Ci minimal with respect to being not 
contained in (C I w.. .  u C~_ ~) c~ C i. Let T/= {tic CF(Qi): the ray from 0 through 
fl intersects F/}. Given 7EP/, define 

~----7+Z{flET~: V is linearly dependent on CF(Qi)-{fl}. 
Then j 

E =  ~ "~ (~+N.CF(Q,)) .  
i=  1 ~cP~ 

This yields the desired decomposition of E. D 
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