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The Aleksandrov-Fenchel inequalities from the theory of mixed volumes are 
used to prove that certain sequences of combinatorial interest are log concave (and 
therefore unimodal). 

1. MIXED VOLUMES 

We wish to show how the Aleksandrov-Fenchel inequalities from the 
theory of mixed volumes can be used to prove that certain sequences of 
combinatorial interest are log concave (and therefore unimodal). In 
particular, we prove the following two results (all terminology will be defined 
later): 

(a) Let M be a unimodular (= regular) matroid of rank n on a finite 
set S, and let T G S. Let fi be the number of bases B of M satisfying 
1 B n Tj = i, and set g, = fi/( 1). Then the sequence g,, g, ,..., g, is log 
concave. 

(b) Let P be a finite poset (= partially ordered set) with n elements, 
and let x E P. Let Ni be the number of order-preserving bijections 
u: P -+ ( 1, 2,..., n) satisfying a(x) = i. Then the sequence N, , N2 ,..., N,, is log 
concave. This confirms a conjecture of Chung et al. [5], which is a 
strengthening of an unpublished conjecture of R. Rivest that N,,..., N, is 
unimodal. 

We first review the salient facts from the theory of mixed volumes. Let 
K , ,..., KS be convex bodies (= non-empty compact convex sets) in II?“. If 
1 , ,..., 1, > 0 then define the convex body 

K = (A,v, + ... + As v, : vt E K,}. 
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The n-dimensional measure or volume of K is denoted by V(K). As a 
function of 1 i ,..., A,, the volume of K is a homogeneous polynomial of degree 
n, 

V(K) = 2 i 
i,=l iz=l 

where the coefficients Vi,. . . i. are uniquely determined by requiring that they 
are symmetric in their subscripts. Then Vi,. . , in depends only on the bodies 
K i,,..., Kin and not on the remaining bodies Kj, so we may write 
V(Ki, v*-, Kin) for Vil...i, and call it the mixed volume of Ki, ,..., Kin. 
Equivalently, we have 

n. I 
V(K)= x 

o,+“.+o,=n a,! ***a 
V(K, ,..., K, ,..., K, ,..., K&y’ ..a @. 

J - - 
(1) 

a1 as 

We also mention that V(Kr,,..., K,,) > 0. A good survey of these and other 
facts about mixed volumes appears in [4, Chap. II] or [8, Chap. 51. A more 
comprehensive reference is [ 31. 

The basic result we need about mixed volume was proved independently 
by Fenchel [9, lo] and Aleksandrov [l]. See also [4(7.7, 13, 15, 18, 191 for 
various ramifications and extensions. Given 0 Q k < m < n and convex 
bodies C, ,..., C,-,, K, L c R”, define C = (C, ,..., C,-,) and 

V,(C, K, L) = V(C, ,..., C,-,, K ,..., K, L ,..., L). 
-- 
m-k k 

A sequence a,, a ,,..., a,,, of non-negative real numbers is said to be log 
concave if uf > a,-i ai+ I for 1 <i < m - 1. In particular, a log concave 
sequence is unimodal, i.e., for some j we have a, <a, < ... < aj and 
aj>,aj+l> *-. >a,. 

1.1. THEOREM. (The Aleksandrov-Fenchel inequalities.) The sequence 
V,,(C, K, L), V,(C, K, L),..., V,,,(C, K, L) is log concave. m 

2. AN APPLICATION TO MATROID THEORY 

Let M be a matroid on a (finite) set S = {x, ,..., x,}. By definition [6,20], 
M is a pair (S, Y), where J’ is a non-empty collection of subsets of S 
satisfying (a) if X E J’ and Ys X, then YE Y, and (b) if X, YE 3 with 
IX] = ] Y] + 1 then there exists x E X - Y such that Y U x E J. Elements of 
3’ are called independent sets, and maximal independent sets are called 
buses. All bases have the same cardinality n, called the rank of M. 
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The matroid M is called unimodufur (or regular) if there exists a mapping 
4: S -+ R” such that (a) a subset T of S is independent if and only if the / T] 
column vectors 4(x), x E T, are linear independent, and (b) the n X I matrix 
[4(x,) ... #(x,)] is totally unimodulur, i.e., every minor has determinant 0 or 
f 1. The mapping 4 is called a unimodulur coordinutizution of M. The most 
familiar class of unimodular matroids are the graphic matroids. Here S is the 
set of edges of a graph G, and a subset T of S is independent if it contains 
no cycle. Thus if G is connected, then a basis for the corresponding graphic 
matroid is just a spanning tree. For further properties of unimodular 
matroids and for any undefined matroid theory terminology used below, see 
[6] or [lo]. 

If A4 is a matroid of rank n on S, then let T, ,..., T, be any n subsets (not 
necessarily distinct) of S. Define B(T, ,..., T,) to be the number of sequences 
(Y i ,..., y,) E S” such that (a) yi E T, for 1 < i < n, and (b) { y, ,..., y,} is a 
basis of M. Let 0 <kg m < n and T, ,..., T,-,, Q, R ES. Set 
T = (T, ,..., T,,-,) and define 

B,(T, Q, R) = B(T, ,..., T,-,, Q,..., Q, R,..., R). 
-- 
m-k k 

We now come to the main result of this section. 

2.1. THEOREM. Let M be u unimodulur mutroid rank n on the set S. 
Fix T, Q, R us above. Then the sequence B,(T, Q, R), B,(T, Q, R) ,..., 
B,(T, Q, R) is log concave. 

Theorem 2.1 will be proved by finding convex polytopes K, ,..., K, for 
which n! V(K, ,..., K,) = B(T, ,..., T,), so that Theorem 1.1 applies. Let 
v, ,..-3 v, be any (column) vectors (not necessarily distinct) in R”, and define 
a convex polytope 

Z(V * )...) VJ = {a, v, + * * * + cf,V( : 0 < ai < 1 }. 

Thus Z(v i ,..., v,) is a vector sum of line segments and hence by definition a 
zonotope. The following result is attributed by Shephard [ 16, p. 32 1 ] to 
McMullen. 

2.2. THEOREM. The volume of the zonotope Z = Z(v, ,..., v,) is given by 

Jw= c ]det[vi,,..., Vi,]]. I 
I<i,<...<i,</ 

2.3. COROLLARY. Let 4: S + W be a unimodular coordinatization of 
the unimodular matroid M of rank n on the set S. If T= { y1 ,..., y,} c S, 
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then set Z, = Z(#(y,),..., #(y,)). Then for any subsets T, ,..., T,, of S we have 

n! qz,, ,..., Z,J = B(T, ,..., T,,). 

Proof Let L, ,..., 1, > 0. Then 

q,, + * ** + &A, = qn, f$(X,l),..., A, +1t,>, ~,&Ql>Y.., 

A2 ~hz>Y~ 4l~(X”lL U(-%,“)>~ 

where Ti = {xi1 , xi2 ,..., xiii}. Hence by Theorem 2.2, and the unimodularity of 
M 

where C(a, ,..., a,) is the number of ways of choosing subsets Qi C_ Ti 
such that 1 Qil = ui and Q, U . .. u Q, is a basis of M. Thus 
B(T, ,..., T,) = C( I,..., 1). Comparing (1) and (2), we see C(l)..., 1) = 
n! V(Z,, ,..., ZT,), completing the proof. 1 

Proof of Theorem 2.1. According to Corollary 2.3, n! V,(Z, Z,, Z,) = 
B,(T, Q, R), where Z = (G,,..., ZTn-, ). The proof follows from Theorem 1.1 
(the factor n! being irrelevant). 1 

A special case of Theorem 2.1 deserves a separate statement. 

2.4. COROLLARY. Let M be a unimodulur mutroid of rank n on the set 
S, and let T, ,..., T,., Q, R be puirwise disjoint subsets of S whose union is S. 
Fix non-negative integers a, ,..., a, such that m = n - II, - . . . - a, > 0, and 
for 0 <k < m define fk to be the number of bases B of M such that 
IBnTiI=u, for l<i<r, and IBnRI=k (so IBnQI=m-k). Set 
g, = fk/(r). Then the sequence g, , g, ,..., g, (and hence a fortiori f. ,..., f,) is 
log concave. 

ProoJ: Set 

T = (T, ,..., T,, Tz ,..., T, ,..., T, ,..., T,). 
-vyv v 

a1 Q2 a, 

Clearly B,(T, Q, R) = a,! -+- a,! k!(m - k)! fk, so g, = B,(T, Q, R)/u,! . . . 
a,! m!. Since a constant non-negative multiple of a log concave sequence is 
log concave, the proof follows from Theorem 2.1 .I 

Further inequalities involving the numbers B(T, ,..., T,,) (for unimodular 
matroids) can be obtained by using known mixed volume inequalities other 
than Theorem 1.1, such as those in [4, 13, 151. We will not state these 
inequalities here. 
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It is natural to ask when equality can hold in Theorem 2.1, i.e., when 
B,(T, Q, R)’ = Bk-,(T, Q, R) Bk+ ,(T, Q, R). A partial answer to this 
question is given by a result of Minkowski-Siiss-Bonnesen (e.g., [3, p.91; 4, 
p. 481, but stated carelessly in these two references in the degenerate case (ii) 
below), which may be stated as follows: 

2.5. THEOREM. Let K and L be convex bodies in F?” (the case n = m of 
Theorem 1.1). The following two conditions are equivalent: 

(a) V,(K, L)” = V,(K, L)“-‘V,(K, L). 

(b) Either of the following two conditions hold: 

(i) K and L are homothetic (i.e., K = v + aL for some v E R” and 
a > 0) and do not lie in parallel hyperplanes. This is equivalent to 
0 # V,(K, L) = V,(K, L) = V,(K, L) = ..a = V,(K, L). 

(ii) V,(K, L) =0 (so also V,,(K, L) =0 or V,,(K, L)= 0). This is 
equivalent to the fact that one of the following three conditions hold: (a) K 
and L lie in parallel hyperplanes, or equivalently 0 = V,(K, L) = 
V,(K, L) = . . . = V,(K, L), or (p) dim K < n - 2 (so V,(K, L) = 0), or (y) L 
is a point (so V,,(K, L) = 0). 

To apply this result to Theorem 2.1, we need the following two lemmas. 

2.6. LEMMA. Let K and L be conuex bodies in R”, and let 1 be the line 
segment from the origin to a point v. If I+ K = 1 i- L then K = L. 

Proof Let x E R”. We claim x E K if and only if x E I+ K and 
x + v E I+ K, from which the proof will follow. Clearly, if x E K then 
xEl+K and x+vEl+K. Hence assume xEl+K and x+vEl+K. 
Since xEl+K, we have x= y+sv for some yEK and O<s< 1. Thus 
x-suEK. Sincex+vEI+K, wehavex+v=z+tvforsomezEKand 
0 < t < 1. Hence x + (1 - t)v E K. But x is on the line segment joining 
x - sv and x + (1 - t)v, so x E K since K is convex. fl 

2.7. LEMMA. Let v, ,..., vr, w, ,..., w, be vectors in R” with non-negative 
coordinates. Let vi ,..., vi be the vectors obtained from v, ,..., v, by discarding 
any vi = 0 and by adding together all remaining vj’s which are scalar 
multipies of each other. Similarly define w; ,..., wk. The zonotopes Z(v, ,..., v,) 
and Z(w, ,..., wS) are homothetic if and only tf t = u and after suitable 
indexing vi = yw; for all 1 < i < t and some fixed y > 0. 

Proof: Let Z, = Z(v, ,..., v,) and Z, = Z(w, ,..., ws). The “if’ part is clear 
so assume Z, and Z, are homothetic. Since Z(au,, Bul, Us,,.., u,J = 
Z((a + P) u, , uz ,..., up) if a/I> 0, it suffices to assume that {vi,..., v,} = 
iv; 7**., vi) and {w ,,..., w,} = {w; ,..., w;). Since the coordinates of each vi and 
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wj are non-negative, the origin is a vertex of 2, and Z,, and Z, and Z, are 
homothetic if and only if Z, = yZ, for some y > 0. We may then assume (by 
multiplying Z, by a suitable scalar) that Z, = Z, . 

Let u be a vertex of Z, which is connected to the origin by an edge of Z,. 
Then u = ui for some i since no ui is a scalar multiple of another. Since 
Z, = Z, we also have u = wj for somej. Let f be the line segment joining the 
origin to U. Then 2, = I + Z(V, ,..., Di-l, vi+1 ,..., u,) = 1 + Z(W, ,..., Wj-1) 

wj+ I3...3 w,). The proof follows from Lemma 2.6 and induction on r. I 

We may now directly apply Theorem 2.5 and Lemma 2.7 to the situation 
of Corollary 2.3 in the case (T, ,..., T,) = (Q ,..., Q, R ,..., R). 

2.8. THEOREM. Let M be u&nodular matroid of rank n on the finite set 
S, and let R G S. Without loss of generality assume that M has no ioops. Let 
fi be the number of bases B of M satisfying 1 B n R 1 = i, and set gi = f;./( 1). 
(Thus by Corollary 2.4 we have gf > gi-, gi+ 1 so in particular 
g: > g:- ‘g,- ,). The following two conditions are equivalent: 

(a> g: = d-k. 
(b) One of the following two conditions hold: 

(i) f,=O (so eitherf,=O orfn=O). 

(ii) For some integer k > 1, the closure X of every point x of S has ka, 
elements for some positive integer a,. Moreover, for some j satisfying 
O<j<kandforallx~S,lRnZl=ja,. 

Proof Let Q=S -R. By Corollary 2.3 we have gi=Bi(Q,R)= 
n! Vi(Z,, Z,). It now follows from Theorem 2.5 that g: = gi-‘g, if and only 
if either Z, and Z, are homothetic (note that Z, and Z, cannot lie in 
parallel hyperplanes since Za + Z, = Z,), or else f, = 0. If #: S + IR” is a 
unimodular coordinatization of M, then y E R if and only if 4(x) = o(y). 
Moreover, x is a loop if and only if o(x) = (0,O ,..., 0). Hence, by Lemma 2.7, 
Z, and Z, are homothetic if and only if for some /3 > 0 and for every x E S, 
we have ( 1n Ql = /? ].Vn R I. From this the proof is immediate. m 

If Ii denotes the number of i-element independent sets of the finite matroid 
M of rank n, then Mason [ 12; 14, p. 491; 20, p. 2981 has conjectured that 
the sequence I,, I, ,..., n I is log concave. For some recent progress on this 
conjecture, see [7]. We remark that this conjecture would follow if 
Theorem 2.1 were valid for all finite matroids. More precisely, let us say that 
M has Property P if the conclusion of Corollary 2.4 holds in the case i = 0. 
In other words, for any fixed R E S define (as in Theorem 2.8) fi, 0 < i < n, 
to be the number of bases B of M satisfying ] B n R ) = i, and set gi = A/( 7 ). 
Then M has Property P if the sequence g,, g, ,..., g, is log concave for all 
choices R C_ S. Thus unimodular matroids have Property P by Corollary 2.4. 
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2.9. THEOREM. Let M be a matroid of rank n on the set S, with Ii i- 
element independent sets. Let F,, be a free matroid of rank n and define N to 
be the rank n truncation of the direct sum M + F,. If N has Property P, then 
I,, I, ,***, I, is log concave. 

Proof. A basis 3 for N is obtained by taking the union of an independent 
set of M, say with i elements, with any n - i points of F,. Hence the number 
fi of bases B of N satisfying (B n S I= i is li( 1). The proof follows from the 
definition of Property P. I 

In conclusion we mention a strengthening of a special case of 
Corollary 2.4. Let G be a graph, and let H be the graph obtained from G by 
adjoining a new vertex x and connecting it to each vertex of G. Let R be the 
set of edges of H incident to x. The number fk of spanning trees of H which 
intersect R in k elements is just the number of rooted forests of G (i.e., 
spanning forests in which every component is a rooted tree) with p - k 
edges, where p is the number of vertices of G. It follows from [2, 
Theorem 7.51 that the polynomial fpxp + f,- rxp- ’ + ..a + f. is the charac- 
teristic polynomial of a symmetric matrix and hence has real roots. This is 
stronger than the statement that the numbers gi = A/( 7) are log concave, 
where n is the rank of the cycle matroid of G. We have been unable to decide 
whether the numbers f,, f, ,..., f, of Corollary 2.4 have in genera1 the 
property that the polynomial fmxm + f,- rx”-’ + ... + f. has real roots. 

3. AN APPLICATION TO POSETS 

Let P be a finite poset (= partially ordered set) with n elements, and let x 
be a fixed element of P. Let Ni be the number of order-preserving bijections 
u: P -+ { 1, 2,..., n} satisfying a(x) = i. R. Rivest conjectured (unpublished) 
that the sequence N, , Nz ,..., N, is unimodal. Chung et al. [5] conjectured the 
stronger result that N,, N2 ,..., N,, is log concave and proved this in the case 
that P is a union of two chains. For some related results, see [ 11, 171. Here 
we will prove the conjecture of Chung, et al. In fact, we have the following 
more general result. 

3.1. THEOREM. Let x1 < . . . < xk be a fixed chain in the n-element poset 
P. If 1 < i, < . . . < ik < n, then define N(i L ,..., ik) to be the number of order- 
preserving bijections a: P -+ { 1,2,..., n} such that o(xj) = ii for 1 < j < k. 
Suppose l<j<k and ij-,+l<ij<ij+r-1, where we set i,,=O and 

4+1= n+l. Then 

N(i I 3-7 id* > N(i, ,**v ij- 1, ij - 1, ij+ I,... , ik) N(i, ,..., ii- ,, ij + 1, ii+ 1 ,..., ik). 
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In particular, the case k = 1 yields Nr 2 Ni-,Ni+ ,, which is the conjecture 
of Chung et al. 

The proof of Theorem 3.1 is an immediate consequence of Theorem 1.1 
and the next result. 

3.2. THEOREM. Preserve the notation of Theorem 3.1. Suppose 
p = {x, ,***, xk, yl ,***, ynek}. If 0 < i < k, let Ki be the convex polytope of all 
points (tI ,..., tn-k) E lWpk such that (a) 0 < tj < 1, (b) tj < t, ifyj < y, in P, 
(c) tj = 0 if yj < xi in P (this condition being vacuous when i = 0), and (d) 
tj= 1 ifyj > xi+, in P (this condition being vacuous when i = k). Then 

(n - k)! V(K, ,,.., K,, K, ,..., K, , K, ,..., K2 ,..., K, ,..., Kk) = N(i,, i, ,..., ik)’ 
vyv- v___ ___j 

ii- 1 i, - i, - 1 i, - i, - 1 n - i, 

ProoJ Let A, ,..., 1, > 0 and set K = 1,K, + ... +I,K,. For each order- 
preserving bijection cr: P+ { 1, 2,..., n}, define A, to be the set of all 

(t 1 ,..., tnpk) E K such that (a) ti < tj if a( yi) < a( yj) and (b) A, + A, + ..a + 
lj-l<ti<A,+n,+‘m’ + Aj if a(xj) < U( yi) < a(xj+ ,), where 0 < j < k and 
where we set a(~,,) = 0, u(xk+ ,) = n + 1. Suppose u(xj) = ii and let n be the 
permutation of { 1,2,..., n -k} defined by a( y,(,,) < a( yn& < ... < 
u(yncnek)). Then A, consists of all points (t,,..., c+~) E iRnWk such that 

Thus A, is a simplex of dimension n -k and volume 

J;-ik 

(n - i,)! 

Moreover, the simplices A,, as u ranges over the set Y(P) of all order- 
preserving bijections u: P -+ ( 1, 2,..., n}, have pairwise disjoint interiors and 
have union K. (In fact, they form the maximal faces of a triangulation of K.) 
Hence 

V(K) = T‘ V(A,) 
SW) 

v N(i, , i, ,..., ik) 
Ail-1 . . . A;-‘& 

= 
l<i,<~<i,<n (i, -‘I)! . . . (n-i,)! * 

Comparing with (1) proves the theorem, and thus also Theorem 3.1. g 
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One special case of Theorem 3.1 is of independent combinatorial interest. 
Given n > 1, define the descent set D(n) of a permutation 71 = a, a, . . . a, of 
{ 1, z..., n) by D(z) = {i: a, > a,, 1 }. 

3.3. COROLLARY. Let S be a subset of { 1, 2 ,..., n - 1 } and let 1 < j < n. 
Define wi = cUi(S, j) to be the number of permutations n = a,a2 . . . a,, of { 1, 
2 ,..., n) such that D(n) = S and aj = i. Then the sequence o,, co2 ,..., W, is log 
concave. 

Proof Suppose the elements of S are 1 < d, < d, < . . . < d, < n - 1, and 
define a poset P with elements x, ,..., X, by 

Xl < “‘~xd,~xd,+l~xd,+2~“~~xd~~xdl+, 

( xd,+2 < *-* <x,,> ..* <x,. 

An order-preserving bijection u: P+ (1,2,..., n} such that u(xj) = i 
corresponds to a permutation a(~,), 0(x2),..., a(~,,) enumerated by wi. The 
proof follows from Theorem 3.1. 1 

As in the last section, we can ask about the conditions for equality in 
Theorem 3.1. Although the result analogous to Theorem 2.8 turns out to be 
trivial (and requiring no facts about convexity), we state it for the sake of 
completeness. 

3.4. THEOREM. Let P be a &rite n-element poset (n > 3), and let x E P. 
Let Ni be the number of order-preserving bijections o: P-+ { 1,2,..., n) 
satisfying u(x) = i. The following four conditions are equivalent: 

(i) N,#OandN,#O, 

(ii) N, = N, = . . . = N,, 

(iii) NY-’ = N:-‘N, and N, # 0, 

(iv) x is comparable to no other elements of P. 

Proof. Clearly N, # 0 if and only if x is a minimal element of P, and 
N, # 0 if and only if x is maximal. Hence (i) and (iv) are equivalent. But the 
implications (iii) => (i), (iv) * (ii), (ii) 3 (iii) are trivial, and the proof 
foiiows. 1 

REFERENCES 

A. D. ALEKSANDROV, “Zur Theorie der Gemischten Volumina von konvexen Korpern,” 

Russian, German summaries, Parts I, II, III, IV. I. Verallgemeinerung einiger Begriffe der 
Theorie der Konvexen Korper, Mat. Sbornik N.S. 2 (1937), 947-972. II. Neue 
Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen, Mat. Sbornik 
N.S. 2 (1937), 1205-1238. III. Die Erweiterung zweier Lehrsiitze Minkowskis ilber die 
Konvexen Polyeder auf beliebige Konvexe Fliichen, Mat. Sbornik N.S. 3 (1938), 2748. 
IV. Die gemischten Diskriminanten und die gemischten Volumina, Mat. Sbornik N.S. 3 
(1938). 227-251. 



TWO COMBINATORIAL APPLICATIONS 65 

2. N BIGGS, “Algebraic Graph Theory,” Cambridge Univ. Press, Cambridge, 1974. 
3. J. BONNESEN AND W. FENCHEL, “Theorie der konvexen K&per,” Springer, Berlin, 1934, 

or New York, 1948. 
4. H. BUSEMANN, “Convex Surfaces,” Interscience, New York, 1958. 
5. F. R. K. CHUNG, P. C. FISHBURN, AND R. L. GRAHAM, On unimodality for linear exten- 

sions of partial orders, SIAM J. Algebraic and Discrete Methods 1(1980), 405-410. 
6. H. H. CRAPO AND G.-C. ROTA, “On the Foundations of Combinatorial Theory: Com- 

binatorial Geometries,” MIT Press, Cambridge, Mass., 1976. 
7. T. A. DOWLING, On the independent set numbers of a finite matroid, preprint. 
8. H. G. EGGLESTON, “Convexity,” Cambridge Univ. Press, Cambridge, 1958. 
9. W. FENCHEL, Inegalitis quadratiques entre les volumes mixtes des corps convexes, C. R. 

Acad. Sci. Paris 203 (1936), 647-650. 
10. W. FENCHEL, Generalizations du theoreme de Brunn et Minkowski concernant les corps 

convexes, C. R. Acad. Sci. Paris 203 (1936), 764-766. 
Il. R. L. GRAHAM, A. C. YAO, AND F. F. YAO, Some monotonicity properties of partial 

orders, SIAM J. Algebraic and Discrete Methods 1 (1980), 25 l-258. 
12. J. H. MASON, Matroids:Unimodal conjectures and Motzkin’s theorem, in “Com- 

binatorics” (D. J. A. Welsh and D. R. Woodall, Eds.), pp. 207-221, Oxford Univ. Press, 
Oxford, 1972. 

13. V. P. PHEDOTOV, A new method of proving inequalities between mixed volumes, and a 
generalization of the Aleksandrov-Fenchel-Shephard inequalities, Soviet Math. Dokl. 20 
(1979). 268-271. 

14. P. D. SEYMOUR AND D. J. A. WELSH, Combinatorial applications of an inequality from 
statistical mechanics, Math. Proc. Cambridge Philos. Sot. 77 (1975), 485-495. 

15. G. C. SHEPHARD, Inequalities between mixed volumes of convex sets, Mathematika7 

(1960), 125-138. 
16. G. C. SHEPHARD, Combinatorial properties of associated zonotopes, Canad. J. Math. 26 

(1974), 302-321. 
17. L. A. SHEPP, The FKG inequality and some monotonicity properties of partial orders, 

SIAM J. Algebraic and Discrete Methods 1 (1980), 295-299. 
18. B. TEISSIER, Du theoreme de l’index de Hodge aux inegalites isoperimetriques, C. R. 

Acad. Sci. Paris 288 (1979) 287-289. 
19. B. TEISSIER, Bonnesen-type inequalities in algebraic geometry, I: Introduction to the 

problem, preprint. 
20. D. J. A. WELSH. “Matroid Theory,” Academic Press, London/New York, 1976. 


