The Number of Faces of a Simplicial Convex Polytope*

Richard P. Stanley
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Let P be a simplicial convex d-polytope with $f_{i}=f_{i}(P)$ faces of dimension i. The vector $\mathbf{f}(P)=\left(f_{0}, f_{1}, \ldots, f_{d-1}\right)$ is called the f-vector of P. In 1971 McMullen $\left[6 ; 7\right.$, p. 179] conjectured that a certain condition on a vector $\mathbf{f}=\left(f_{0}, f_{1}, \ldots, f_{d-1}\right)$ of integers was necessary and sufficient for \mathbf{f} to be the f-vector of some simplicial convex d-polytope. Billera and Lee [1] proved the sufficiency of McMullen's condition. In this paper we prove necessity. Thus McMullen's conjecture is completely verified.

First we describe McMullen's condition. Given a simplicial convex d polytope P with $\mathbf{f}(P)=\left(f_{0}, f_{1}, \ldots, f_{d-1}\right)$, define

$$
h_{i}=h_{i}(P)=-\sum_{j=0}^{i}\binom{d-j}{d-i}(-1)^{i-j} f_{j-1}
$$

where we set $f_{-1}=1$. The vector $\mathbf{h}(P)=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ is called the h-vector of P [8]. The Dehn-Sommerville equations, which hold for any simplicial convex polytope, are equivalent to the statement that $h_{i}=h_{d-i}, 0 \leqslant i \leqslant d[7$, Sect. 5.1]. If k and i are positive integers, then k can be written uniquely in the form

$$
k=\binom{n_{i}}{i}+\binom{n_{i-1}}{i-1}+\cdots+\binom{n_{j}}{j}
$$

where $n_{i}>n_{i-1}>\cdots>n_{j} \geqslant j \geqslant 1$. Following [6, 8, 9], define

$$
k^{\langle i\rangle}=\binom{n_{i}+1}{i+1}+\binom{n_{i-1}+1}{i}+\cdots+\binom{n_{j}+1}{j+1}
$$

Also define $0^{\langle i\rangle}=0$. Let us say that a vector $\left(k_{0}, k_{1}, \ldots, k_{d}\right)$ of integers is an M-vector (after F. S. Macaulay) if $k_{0}=1$ and $0 \leqslant k_{i+1} \leqslant k_{i}^{\langle i\rangle}$ for $1 \leqslant i \leqslant d-1$. McMullen's conjecture may now be stated as follows: A sequence ($h_{0}, h_{1}, \ldots, h_{d}$) of integers is the h-vector of a simplicial convex d-polytope if and only if $h_{0}=1$, $h_{i}=h_{d-i}$ for $0 \leqslant i \leqslant d$, and the sequence $\left(h_{0}, h_{1}-h_{0}, h_{2}-h_{1}, \ldots, h_{[d / 2]}-\right.$ $h_{[d / 2]-1}$) is an M-vector. (McMullen [6, 7] writes g_{i} for our $h_{i+1}-h_{i}$.)

[^0]We now show the necessity of this condition. By a result essentially due to Macaulay [5] (stated more explicitly in [9, Theorem 2.2]), a sequence (k_{0}, \ldots, k_{d}) is an M-vector if and only if there exists a graded commutative algebra $R=$ $R_{0} \oplus R_{1} \oplus \cdots \oplus R_{d}$ over a field $K=R_{0}$, generated (as an algebra with identity) by R_{1}, such that the Hilbert function $H(R, n):=\operatorname{dim}_{K} R_{n}$ is given by $H(R, n)=k_{n}$. Let P be a simplicial convex d-polytope in \mathbb{R}^{d}. Since P is simplicial, we do not change the combinatorial structure of P (including the f-vector) by making small perturbations of the vertices of P and the taking the convex hull of these new vertices. Hence we may assume that the vertices of P lie in \mathbb{Q}^{d}. Without loss of generality we may also assume that the origin is in the interior of P. For every proper face α of P, define σ_{α} to be the union of all rays whose vertex is the origin and which intersect α. Thus σ_{α} is a simplicial cone. The set $\left\{\sigma_{\alpha}\right\}$ of all such cones forms a complete simplicial fan $\Sigma[2$, Sect. 5]. To such a fan is associated a complete complex variety $X_{\Sigma}[4 ; 2$, Sect. $5 ; 13$, p. 558]. The cohomology ring $A=H^{*}\left(X_{\Sigma}, \mathbb{Q}\right)$ of this variety satisfies $H^{2 i+1}\left(X_{\Sigma}, \mathbb{Q}\right)=0$ [2, Sect. 10.9], and hence is commutative and may be graded by setting $A_{i}=$ $H^{2 i}\left(X_{\Sigma}, \mathbb{Q}\right)$. With this grading we have that A is generated by A_{1} and that $\operatorname{dim}_{\mathbb{Q}} A_{i}=h_{i}(P)$ [2, Theorem 10.8 and Remark 10.9].

Now define a function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ by $\phi(x)=-\|x\| /\left\|x^{\prime}\right\|$, where $\|\cdot\|$ denotes the Euclidean norm and where x^{\prime} is the intersection of the boundary of P with the ray with vertex at the origin passing through x. Then ϕ is convex, continuous, linear on each cone σ_{α}, and a different linear function on each maximal cone σ_{α}. Hence by the criterion [4, Chap. II, Sect. 2; 2, Sect. 6.9; 13, p. 570] for projectivity of X_{Ω}, where Ω is a complete fan, we conclude that X_{Σ} is projective. It then follows by a result of Steenbrink [11, Theorem 1.13] that the hard Lefschetz theorem (see, e.g., [3, p. 122]) holds for X_{Σ}. This means that there is an element $\omega \in H^{2}(X, \mathbb{Q})=A_{1}$ (the class of a hyperplane section) such that for $0 \leqslant i \leqslant[d / 2]$ the map $A_{i} \rightarrow A_{d-i}$ given by multiplication by $\omega^{d-2 i}$ is a bijection. In particular, the map $A_{i} \rightarrow A_{i+1}$ given by multiplication by ω is injective if $0 \leqslant i \leqslant[d / 2]$. Now let I be the ideal of A generated by ω and $A_{[d / 2]+1}$. It follows that the Hilbert function of the quotient ring $R=A / I$ is given by $H(R, i)=h_{i}-h_{i-1}$, $1 \leqslant i \leqslant[d / 2]$. Hence $\left(h_{0}, h_{1}-h_{0}, \ldots, h_{[d / 2]}-h_{[d / 2]-1}\right)$ is an M-vector, and the proof is complete.

The above proof relies on two developments from algebraic geometry: the varieties X_{Σ} first defined in [13] and [4], and the hard Lefschetz theorem. The close connection between the varieties X_{Σ} and the combinatorics of convex polytopes has been apparent since [4,13], while in fact a direct application of these varieties to combinatorics has been given by Teissier [12]. On the other hand, an application of the hard Lefschetz theorem to combinatorics appears in [10].

Let Δ be a triangulation of the sphere \mathbb{S}^{d-1}. We can define the f-vector and h-vector of Δ exactly as for simplicial convex polytopes, and it is natural to ask [6, p. 569] whether McMullen's conjecture extends to this situation. It is well known that the Dehn-Sommerville equations $h_{i}=h_{d-i}$ continue to hold for Δ,
and in [8] it was shown that the h-vector $\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ of Δ is an ${ }_{3}^{\prime} M$-vector. However, it remains open whether ($\left.h_{0}, h_{1}-h_{0}, \ldots, h_{[d / 2]}-h_{[d / 2]-1}\right)$ is always an M-vector.

Acknowledgment

I am grateful to M. Artin, S. Kleiman, and D. Mumford for invaluable technical assistance.

References

1. L. J. Billera and C. W. Lee, Sufficiency of McMullen's conditions for f-vectors of simplicial polytopes, preprint.
2. V. I. Danilov, The geometry of toric varieties, Russian Math. Surveys 33, No. 2 (1978), 97-154; translated from Uspekhi Mat. Nauk. 33, No. 2 (1978), 85-134.
3. P. Griffiths and J. Harris, "Principles of Algebraic Geometry," Wiley, New York, 1978.
4. G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, "Toroidal Embeddings I," Lecture Notes in Mathematics No. 339, Springer-Verlag, Berlin/Heidelberg/ New York, 1973.
5. F. S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531-555.
6. P. McMullen, The numbers of faces of simplicial polytopes, Israel J. Math. 9 (1971), 559-570.
7. P. McMullen and G. C. Shephard, "Convex Polytopes and the Upper Bound Conjecture," London Math. Soc. Lecture Note Series, Vol. 3, Cambridge Univ. Press, London/New York, 1971.
8. R. Stanley, The upper bound conjecture and Cohen-Macaulay rings, Studies in Applied Math. 54 (1975), 135-142.
9. R. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), 57-83.
10. R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods, in press.
11. J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, in "Real and complex singularities, Oslo 1976" (P. Holm, Ed.), pp. 525-563, Sijthoff \& Noordhoff, Alphen aan den Rijn, The Netherlands, 1977.
12. B. Teissier, Du théorème de l'index de Hodge aux inégalités isopérimétriques, C. R. Acad. Sci. Paris Ser. A 288 (1979), 287-289.
13. M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Scient. Éc. Norm. Sup. 3 (1970), 507-588.

[^0]: * Supported in part by the National Science Foundation.

