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A simple combinatorial method for writing the character generator of SU(#n) is described.

1. INTRODUCTION

Generating functions have proved to be a useful tool in
the representation theory of continuous and discrete
groups.' In the case of a compact semisimple Lie group G,
the character generator is the starting point for obtaining
many other generating functions of interest. The character
generator for irreducible representations of a connected sim-
ply-connected semisimple Lie group G is defined by

Xy@) =Yy, @A 74},

where [ is the rank of G, the summation extends over all
nonnegative integers r,,...,;, and y, () is the character of
the finite irreducible representation of G with highest weight
A=rA,+ -+ rA, Herei,,.. A, are the fundamental
weights of G. Thus the coefficient of 4 -4 ;' X at' -t}
(which we abbreviate as 4 'a*) in X , (a) is the multiplicity of
the weight u = (u,...,.4;) (written with respect to some basis
for the weight space). It follows easily from Weyl’s character
formula that X, () is a rational function of 4 and a. For
many applications it is desirable to write X, (@) as a sum of
terms of the form

d
A/ (1 — 4,0, ,a,,), )
i=1

wherej, h,and /,,1,,...,1, depend on i, and where d is the same
for all terms and is necessarily equal to § (dim G + rank G).
The method' used for computing X, (@) does not directly
yield a sum of terms of the form (1), and it is unknown in
general whether X, (@) can always be written in this form.
We will describe a different method for computing X , (@)
when G = SU(n), which automatically expresses X ,(a) as a
sum of terms (1). Each term can be read off by inspection
from a certain type of tableau, and we state a formula for the
total number of terms. Our derivation will be purely combin-
atorial, based on the well-known description of the charac-
ters of SU(n) in terms of Young tableaux.

2. BASIC CONCEPTS AND FUNDAMENTAL THEOREMS

We now introduce the necessary combinatorial con-
cepts and terminology. Fix integers m, > m, > -->m, >0,
and set m = (m,,...,m,; ). Let r = (r,,...,7,.) be a k—tuple of
nonnegative integers, and let ¥, be the Young diagram with
r; columns of length i. Thus Y, is a left-justified array of
squares, with 7, 4+ r;, |, + -+ + r, squares in row i. Let p be
an array obtained by inserting positive integers into the
squares of Y, subject to the rules: (i) Every row is non-in-
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creasing, (ii) every column is strictly decreasing, and (iii) no
entry in row / exceeds m,. For instance, if m = (5,4,2) and
r = (4,2,3), then a typical p looks like

554443111
33222
211

We call p a column-strict plane partition® of type (m,r). Intro-
duce new variables X, . X.,..., and set

M(p)=X7X5..,
where a; parts of p are equal to i. Thus, for the above exam-
ple, M(p)=X31X3X3X3}X2 Ingeneral,a, =0ifi>m,,
and 2 a; = 2 ir,. Given m = (m,,...,m, ), define the generat-
ing function

F,(4,X)=Y4"M(p), @

where the sum is over all column-strict plane partitions p of
type (m,r) for some r = (ry,...,7,. ). We will give a method for
computing F,, (4,X) as a sum of terms of the form

AX™ H (1 -4,X, X)), 3)
i=1
where j and /,,...,/; depend on i, and where m = m,
+ «+ + m,. From this it will be easy to obtain the character
generator for SU(n).

We now define the type of tableaux necessary to de-
scribe the terms (3) of F,,(4,X). A shifted Young diagram
Z,, of shape m = (m,...,m, ) consists of an array of
m = m, + - 4+ m, squares, with m, squares in row i, and
with row / 41 indented one space to the right from row i. A
standard shifted Young tableau (SSYT) of shape m is ob-
tained by inserting the integers 1,2,...,m into the squares of
Z,, without repetition such that every row and column is
increasing. For instance, an example of an SSYT of shape
(7,4,3,2) is given by

123 5 91416
46 710
81113
12 15.

If wis an SSYT, define the sub-SSYT 7 to be the SSYT
obtained from 7 by deleting all entries > i. For instance, if 7
is given by (4), then 7'’ = 77, 73 = 123, and

@

1 2 3 5§
™= 4 6 7
8.
© 1980 American Institute of Physics 2321

Downloaded 24 Dec 2005 to 143.248.80.40. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



If risan SSYT of shape m = (r,,...,m, ), define a monomial
Ir'(my=A4,.X, X, ~X,, . Forinstance, if 7 is given by (4),
thenI"(7) = A X, XX Xoand I (7'Y) = 4, X, X, X,. Wenow
state the fundamental theorem which explains how a formu-
la for F,,(A4,X) can be read off from the set of all SSYT of
shape m.

Theorem: (i) We have

FoX)=Y " @ /[ [1 - T @), ®)

7 €K, i=1
where 7 ranges over all SSYT of shape m, and X, is the set of
those 7 for which i 41 appears in 7 in a row above /.

(ii) To obtain the character generator for SU(n) in the
form (1), with respect to the basis 4 ,...,4, _, of fundamental
weights, takem = (7,7 — 1,...,2) in (5)and set X, = o, ,
for 1<i<n (where we set a, = a,, = 1). (If one prefers the
characters with respect to a different basis for the weight
space, replace each a, by an appropriate a|"--a,"_{*.) More
generally, if 4,,...,4,, _ are the fundamental weights of
SU(n) in their usual order, then to get the generating func-
tion for those characters of SU(r) corresponding to a highest
weight r A, + - + r, A, for some fixed k<n —1, take
m=nn—1,.,n—k +1)and X, =a,” a;, 1<i<n.

(iii) The number g™ of terras in the sum (5) (equivalent-
ly, the number of SSYT of shape m) is given by

g = m! m;, —m;

mylemy )l <iSick M + My '
where m = (m,,...,m, ). In particular,
("5 D24l (n — 2)t

»_ )] (1 +Din 4 3Y-2n —1)!
= (n2+ 1)12!4!...(,1 — 1)!
n(n +2)k-(2n — 1)

, n even
{nn—1,.,
g

, noodd.

3. PROOF OF FUNDAMENTAL THEOREM
(i) The right-hand side of (5) may be rewritten as

z Z r(’rr”’j"...]‘(ﬁ("-))bu.’ ©

T Dygeens
whereb,,...,b,, ranges aver all sequences of nonnegative inte-
gers such that b, >0 if ieK .. To each term I" (7' "'}"
(7)Y’ of (6), associate a column-strict plane partition p
by defining p to have &, columns with entries [, > - >},
where 7*? has shape (/},...,/)). If p is of type (m,r) then
'@y ...n (17-(,,,))""' is just the monomial 4 "M ( p) appear-
ing in (2). Hence to prove (i), we need to show that the map
(7, b)—p defined above between (a) ordered pairs (,b)
where 77is a SSYT of shape m and b is a sequence of nonnega-
tive integers &,,...,b, such that b, >0if icK_, and (b) col-
umn-strict plane partitions p of type (m,r) for somer, isa
one-to-one correspondence.

Given (m,b) definea; = b, + b, ., + -+ b,,. Thus
a;»->a,, »0,andq, >a,,, ifick,. Clearly we can recover
b from a = (a,,...,-, a,,) by b, = a, — a, . Now let & be the
array obtained by replacing  in 7 by a,. Then o is a shifted
plane partition® of shape m, i.e., an array obtained by insert-
ing nonnegative integers into the squares of Z,, so that every
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row and column is nonincreasing.

We can recover p from o by defining the /th column of p
to be the shape of the shifted plane partition consisting of all
entries of o which are >{. Hence we need to show that the
map (7r,8)—0 just defined between (a) ordered pairs (7,a)
where 7 is a SSYT of shape m and a is a sequence a, >+>4,,
>0 of integers such that ¢, > a,  , if ieX,, and (b) shifted
plane partitions o of shape m, is a one-to-one correspon-
dence. This will follow from a general result about partially
ordered sets which we now describe.

Let P be any finite partially ordered set (poset) with m
elements, and let @:P—{1,2,...,m} be a fixed order-preserv-
ing bijection (so x<y in P implies o(x)<w(y)). Let . (P) be
the set of all order-preserving bijections m:P—{1,2,....m}. If
we.L(P),let S, denote the set of all integer sequences
a;>->a,>0suchthata; >a, , for ' O>wer ' +1).
Finally, let &/ (P) consist of all order-reversing maps
o:P—{0,1,2,...] [i.e,, x<p in P implies o(x)>0(y)). Accord-
ing to Ref. 4 or Theorem 6.2 of Ref. 5, we have:

Lemma: Define a map & (7,a) = o between ordered
pairs (7,a) where €.’ (P) and a€S,, and the set .7 (P), by
the rule o(x) = a_ Then @ is a one-to-one
correspondence.

We may regard the shifted Young diagram Z_, as a po-
set, with the elements (squares) increasing as we read left-to-
right or top-to-bottom. Choose :Z_,—{1,2,...m} toin-
crease by unit amounts along each row. E.g., form = (5,3,1),
@ is given by

e

I 2 3 4 5
6 7 8
S.

It is clear that a map g€/ (Z,,) is nothing more than a shift-
ed plane partition of shape m, and that an order-preserving
bijection 7€.%°(Z,,) is just an SSYT. It follows from the
lemma and our choice of @ that we have exactly the one-to-
one correspondence (1r,a)—0 needed to complete the proof
of (i).

(ii) This follows immediately from (i) and the well-
known description of the irreducible representations of
SU(#) in terms of Young tableaux.

(iii) The number g™ of SSYT of shape m has been calcu-
lated implicitly by Schur,” and more explicitly in Refs. 3 and
8.

4. EXAMPLES

We will use the Fundamental Theorem to compute the
character generators of SU(3) and SU(4). These two cases
are at least implicit in Ref. 6.

For the case of SU(3), there are two SSYT 7 of shape
(3,2). For each of these 7, we need to compute (by inspec-
tion) the shape (f,,...,;) of each of the five sub-SSYT
7V, 7% and hence obtain the monomial I"(7”)

= A, X, -X,. We also compute by inspection the set K, ofi
in 7 such that / +1 appears in a higher row than i. Then 7
will contribute a term I, I"(7®)/II7L  [1 — I ()] to
F,(4,X). Substituting X, = a,, X, =a; 'a, X; =a;'
yields the character generator X, (a). The table below gives
the relevant information for each SSYT 7.
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1 2 3
= K =
1 T 4 s L=
i 1 2 3 4 5
123 123
a9 1 12 123 4 45
@) 4.X, 4.X, A4.X; A X\ X; AX:X5
1 2 4
2. wm= 3 s K, ={3}
i 1 2 3 4 5
12 124 124
7® 1 12 3 3 35
@) 4.X, A.X, AX\ X, AX,X; A XX
Hence
1
F(3,2)(A»X) =

(1 —4,X)(1 — 4, X)(1 — 4,X,)(1 — 4:X,X;5)(1 — 4,X5X5)
A XX,

+ .
(1 —4,X)(1 — A4 X)(1 — 4,X, X)(1 — 4,X X5)(1 — 4,X,X5)
Thus the character generator for SU(3) is given by:

1

X ()=

(A—ad)( —a, 7 'od)1 —a, 'A)( —aa, ' 4)(1 —a, " '4,)
a4,

+ .
(1 —a4)(1 —a, ' d )1 —ad)(l — e, 7 '4,)(1 —a, ™ '4,)
For the case of SU(4), there are 12 SSYT of shape (4, 3, 2). For each one we list the set K, and the shapes (/,,...,/;) of each

7,50 I'(7°) = 4,X, X, .

1 2 3 4
M) == 5 6 71 K, =¢
8 9
i 1 2 3 5 6 7 8 9
Ly d 1 2 3 4,1 4,2 4,3 4,3,1 4,32
1 2 3 4
2 7= 5 6 8 K, ={T7)
79
i 1 2 3 5 6 7 8 9
Lyl 1 2 3 4,1 4,2 4,2,1 4,3,1 4,32
1 2 3 5
3 7= 4 6 71 K, =1{4}
8 9
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i 1 2 3 4 5 6 7 8 9
T 1 2 3 3,1 4,1 4,2 4,3 4,3,1 43,2
3 5
@ 7= 6 8 K,={4,7]
7 9
i 1 2 3 4 5 6 7 8 9
T 1 2 3 31 4,1 4,2 42,1 43,1 4,3,2
3 6
5 7= 5 7 K,=1{5}
8 9
i 1 2 3 4 5 6 7 8 9
Lyed; 1 2 3 31 3,2 4,2 43 43,1 4,32
3 6
© 7= 5 8 K,=1{57]
7 9
i 1 2 3 4 5 6 7 8 9
Liyend; 1 2 3 3,1 3,2 4,2 42,1 4,3,1 4,32
3 7
7 == 5 8 K,={6}
6 9
i 1 2 3 4 5 6 7 8 9
Lyeod; 1 2 3 3,1 3,2 3,2,1 4,2,1 4,3,1 43,2
4 5
®) = 6 7 K,={3]
8 9
i 1 2 3 4 5 6 7 8 9
Lok, 1 2 2,1 3,1 4,1 4,2 4,3 4,3,1 4,3,2
4 5
9 7= 6 8 K,=1{(37)
7 9
i 1 2 3 4 5 6 7 8 9
Lol 1 2 2,1 31 4,1 4,2 4,2,1 4,3,1 43,2
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(1) 7= 3 5 7 K,=1{35]
8 9
; 1 2 3 4 5 6 7 8 9
lLyo, 1 2 21 3,1 3,2 4,2 4,3 4,3,1 43,2
1 2 6
(a1 == 3 5 8 K,=1{357}
7 9
i 1 2 3 4 5 6 7 8 9
Iyl 1 2 2,1 3,1 3,2 4,2 4,2,1 4,3,1 4,3,
1 2 7
(12) 7= 3 5 8 K,=1{3,6}
9
i 1 2 3 4 5 6 7 8 9
Leod, 1 2 2,1 3,1 32 32,1 42,1 4,3,1 4,32

Thus we obtain the following expression for the character generator X, (@) of SU(4):

(1—ad4)1—a; 1‘12-'41)(1 —a,a; lAs)(l —a; '4)X ()

1
N (1—a; 'ad)(1 —a; '4)(1 —aa; ') —a 'aa; ' 4,)(1 —a; '4)

" a,a; ',

(1 —a;'ad )1 — a7 41 —aya; ' A)(1 — ey 'aya; '4,)(1 — ayay '4y)
s aai ‘ast,

(1 —a; 'ad))(1 —a1a; o)) (1 — aja; ' 4)(1 —af 'aya; ' 41 —a; '4)y)
+ a, 4,4,

(1 —a; 'ad X1 —aa; 'ad))(1 — aja; 'A)1 — e 'aya; ' 4)(1 — ey '45)
+ a'ad, v

(1 —a; 'ad )1 — aa; 'ayd)(1 — a; 'asd)( — af 'aya; ' 4)(1 — a7 '4)y)
+ @ 'ady4,

(1 —a; 'ad )1 — aa; 'asd (1 —a 'asd)(1 — a7 'aya ' A)(1 — aye;'4,)
+ a4,

(1 —a; 'ad M1 — aa; 'asd)(1 —af ' asd ) (1 — aad;)X(1 — asas'45)
+ a4,

(1 —a4)(1 — aye; 'ad)(1 — ajey '4)(1 — e 'a,a; '4,)(1 —a; '4,)
+ aa; 'AA,

(1 — @)1 — aya; 'asd )1 — aja; ' A)(1 — a7 'aya; ' A)(1 — aas '45)

a; e,

N (1 — o)1 — @05 'ayd )1 — a7 lasd X1 — af 'y ' A1 — a5 '4y)
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a 'azd34,

+
(1 — a4 )1 — a5 ')A — a7 'asd)(1 — a7 'ayas ' 4,)(1 — aya; ' 45)

a,034,4,

+ .
(1 — a)(1 — aya; 'asd )1 — a7 'asd,)(1 — asd )1 — ay057 ' 45)
There seems little point in writing down the character generator of SU(5), which by part (iii) of the theorem has 286
terms. Even more impractical is the character generator of SU(6), with 33592 terms.

5. CONCLUSIONS

The generating function F,, (4,X ) has some additional
properties of interest. If m = (n,n —1,...,2) then write F,,
AX)=F,(4,X). If weseteach A, = 1in F,(4,X), then it
follows, e.g., from Eq. (11.9;6) of Ref. 9 or Corollary 8.3 of
Ref. 2 that

F,(1,1,.,1,X)

—(—xxex) [IIa-2) [[ a-xx).
i=1 I<i<cj<n

IfweseteachX;, =land A, =AinF, (4,X), thenit

follows from (5) that the coefficient of 4 7 in

F,(4,...,4,1,...,1) is a polynomial function P,,(g) of g of de-

gree m —1 and leading coefficient g”/(rm — 1)l When

m = (n,n —1,...,n — k +1), this polynomial P, , (g) is given

by

P,i(@) = Ydim@A, + - + a,A,), ™

where the sum is over all k-tuples of nonnegative integers
(ays...,a; ) such that a, + - + @, = g, and where dim A de-
notes the dimension of the irreducible representation of
SU(n) with highest weight A. When & = n —1, the sum (7)
can be explicitly evaluated using a result of Andrews'® and
independently Macdonald'' (pp. 50-52). Namely,

L@+n+2i—2)44

42 , ifn=2I+1
P @ il=-[0 (7 +204i 41
nn—1 q = .
. 2 — )
Azﬂ (@+n+2 3)4;-1’ if n=2l

=1 (m+2i—1)4_,
where (r), = H(r —1)(r —2)-«(r — 5 +1), and where 4 % is
the second-difference operator, defined by 4 2Q (¢)
= Q(q +2) —2Q (g +1) + Q(q). Alternatively, we have
P,,._.(q) =4?%dim((g —2)A,), where 4, is the highest
weight of the spin representation of the Lie algebra
so(2n 41,C). A theoretical explanation of this fact can be
given by considering the decomposition of g/ (n,C)
Cso(2n +1,C) in the representation (g —2)A4,, . We will not
enter into the details here.

We have described a method for writing F, (4,X) as a
sum of g™ terms of the form (3). One may wonder whether
there is some alternative way to write F,, (4,X) as a sum of
fewer terms of the form (3). If we have any such representa-
tion of F,,(4,X ) then setting 4, = A and X; = 1as above, we
obtain

Al
A,.,A41,..,1) =y ——
Fnldodide) =2
54Y
-4’

2326 J. Math. Phys., Vol. 21, No. 9, September 1980

for certain integers #; >0. Hence the integers ¢; are uniquely
determined by F, (4,X ), not by the way in which F,, (4,X ) is
written as a sum of terms (3). In particular, the number of
terms is always the same, namely, g™.

Let us mentions that the numbers g™ were shown by
Schur to be the degrees of the irreducible projective repre-
sentations of the symmetric group S,,. We don’t know if this
connection between SU(n) and S, is just a coincidence.

It is natural to ask whether our results for SU(n) can be
extended to other simple Lie groups, in particular O(n) and
Sp(2n). We have been unable to write the character gener-
ator for these groups in the form (1) because of the lack of a
combinatorial description of the characters which would al-
low the use of the lemma on posets. Though there exist com-
binatorial descriptions of the characters of these groups (e.g.,
Ref. 9, p. 240, and Ref. 12), they seem unsuitable for the
implementaion of the Lemma.

ACKNOWLEDGMENT

I am grateful to J. Patera and R. T. Sharp for encourag-
ing me to write this paper, and to the referee for his helpful
comments regarding exposition.

'R. Gaskell, A. Peccia, and R. T. Sharp, J. Math. Phys. 19, 727 (1978); J.
Patera, R. T. Sharp, and P. Winternitz, J. Math. Phys. 19, 2362 (1978); P.
E. Desmier and R. T. Sharp, J. Math. Phys. 20, 74 (1979); J. Patera and R.
T. Sharp, “Generating Function Techniques Pertinent to Spectroscopy
and Crystal Physics,” in Recent Advances in Group Theory and their Appli-
cation to Spectroscopy (Plenum, New York, 1979), pp. 219-248; J. Patera
and R. T. Sharp, “Generating Functions for Characters of Group Repre-
sentations and Their Applications,” in Lectures Notes in Physics, Vol. 94,
(Springer, New York, 1979), pp. 175-183; J. Patera and R. T. Sharp, J.
Phys. A: Math. Gen. 13, 397 (1980).

?R. P. Stanley, Stud. Appl. Math. 50, 167 (1971) and 50, 259 (1971).

*E. Gansner, “Matrix Correspondences and the Enumeration of Plane Par-
titions,” Ph.D. thesis, M.L.T., 1978.

“D. E. Knuth, Math. Comp. 24, 955 (1970).

°R. P. Stanley, Mem. Amer. Math. Soc., No. 119 (1972).

°R. T. Sharp and D. Lee, Rev. Mex. Fisica 20, 203 (1971).

"I. Schur, J. Reine Angew. Math. 139, 155 (1911).

®R. M. Thrall, Michigan Math. J. 1, 81 (1952); D. E. Rutherford, Proc.
Royal Soc. Edinburgh A 67, 215 (1966); D. E. Knuth, The Art of Comput-
er Programming, Vol. 3 (Addison-Wesley, Reading, Massachusetts,
1973}, pp. 71 and 592; B. E. Sagan, “Partially Ordered Sets with Hook-
lengths--An Algorithmic Approach,” Ph.D. Thesis, M.L.T., 1979.

°D. E. Littlewood, The Theory of Group Characters, Second Edition (Ox-
ford, 1950).

Y9G. E. Andrews, Proc. Natl. Acad. Sci. USA 74, 426 (1977).

"'I. G. Macdonald, Symmetric Functions and Hall Polynomials (Oxford,
1979).

'2C. DeConcini, Adv. Math. 34, 1 (1979).

Richard P. Staniey 2326

Downloaded 24 Dec 2005 to 143.248.80.40. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



