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WEYL GROUPS, THE HARD LEFSCHETZ THEOREM, AND THE
SPERNER PROPERTY*

RICHARD P. STANLEY?

Abstract. Techniques from algebraic geometry, in particular the hard Lefschetz theorem, are used to
show that certain finite partially ordered sets Ox derived from a class of algebraic varieties X have the
k-Sperner property for all k. This in effect means that there is a simple description of the cardinality of the
largest subset of C)x containing no (k + 1)-element chain. We analyze, in some detail, the case when
X G/P, where G is a complex semisimple algebraic group and P is a parabolic subgroup. In this case, Qx is
defined in terms of the "Bruhat order" of the Weyl group of G. In particular, taking P to be a certain maximal
parabolic subgroup of G SO(2n + 1), we deduce the following conjecture of Erd6s and Moser: Let S be a
set of 2 + 1 distinct real numbers, and let T1, , Tk be subsets of S whose element sums are all equal. Then
k does not exceed the middle coefficient of the polynomial 2(1 + q)2(1 + q2)2... (1 + qe)2, and this bound is
best possible.

1. The Sperner property. Let P be a finite partially ordered set (or poser, for short),
and assume that every maximal chain of P has length n. We say that P is graded ofrank
n. Thus P has a unique rank function p:P- {0, 1,..., n} satisfying p(x)= 0 if x is a
minimal element of P, and p(y) p(x) + 1 if y covers x in P (i.e., if y > x and no z 6 P
satisfies y > z > x). If p (x) i, then we say that x has rank i. Define Pi {x P: p (x) i}
and set pi pi(P) card Pi. The polynomial F(P, q) po + plq +" + Pnq is called the
rank-generating function of P. We say that P is rank-symmetric if pi pn- for all i, and
that P is rank-unimodal if po <= pl <=" <= pi >= p+ >=" >= pn for some i.

An antichain (also called a Spernerfamily or clutter) is a subset A of P, such that.no
two distinct elements of A are comparable. The poset P is said to have the Sperner
property (or property $1) if the largest size of an antichain is equal to max {pi: 0 <= <- n}.
More generally, if k is a positive integer then P is said to have the k-Sperner property (or
property Sk) if the largest subset of P containing no (k + 1)-element chain has
cardinality max {PI +" "+ Pik 0 <= i <. < ik <= n}. If P has property S for all k =< n,
then following [21] we say that P has property S. For further information concerning the
Sperner property and related concepts, see for instance [15], [16], [17].

Using some results from algebraic geometry, we will give several new classes of
graded posets which have property S. These posets will all be rank-symmetric and
rank-unimodal. First we must consider a property of posets related to property S.
Suppose P is graded of rank n and is rank-symmetric. Again following [21], we say that
P has property T if for all 0 -< i-< [n/2], there exist p pairwise disjoint saturated chains

xi < xi+a <" < xn-i where xj P.. It is clear that P is then rank-unimodal.
LEMMA 1.1. Let P be a finite graded rank-symmetric poset of rank n. The following

three conditions are equivalent:
(i) P is rank-unimodal and has property S.
(ii) P has property T.
(iii) Let Vi be the complex vector space with basis Pi. Then for 0 <= < n, there exist

linear transformations : V V+a satisfying the following two properties:
(a) If 0 <= <= In/2], then the composite transformation qn-i-xqn-i-2

qi+lqi: Vi V-i is invertible.
(b) Let x Pi and qi(x) Yyp:., cyy. Then cy 0 unless x < y.
Proof. (i):(ii). This is a special case of [21, Thms. 2 and 3].
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(iii) =), (ii). (I am grateful to Joseph Kung for supplying the following argument,
which is considerably simpler than my original proof.) Assume (iii). Identify i with its
matrix with respect to the bases Pi and Pi+l. If is a matrix whose rows are indexed by a
set S and whose columns are indexed by T, and if S’ c S and T’ c T, then let [S’, T’]
denote the submatrix of with rows indexed by S’ and columns by T’. By the
Binet-Cauchy theorem (e.g., [1, 36]) we have

det (-i-1 i)= 2 (det i[(i, Oi+1])

(det i+111i+1, 1i+2])""" (det n--i--l[(n--i-l[(n--i]),

where the sum is over all sequences of subsets l[i ei, Oi+l ei+l,
0i+2 Pi+2, 0-- P-g-1, On-i Pn- such that Io /11-10// ] Io - -11-
pi. By (a), some term in the above sum is nonzero. Hence, the expansion of each factor
det Ck[Ok, Ok/] in this term contains a nonzero term. By (b), this nonzero term defines
a map r: Ok Ok/ such that x < o’(x) for all x Ok. Piecing together these two-
element chains over all k yields (ii).

(ii) =), (iii). The steps of the above argument can be reversed, provided we pick the
i’s as generically as possible, i.e., all the entries of the matrices 0, 1, , n-1 should
be chosen to be algebraically independent over Q, except for entries forced to equal 0 by
condition (b). This completes the proof.

2. Varieties with cellular decompositions. We now are in a position to invoke
algebraic geometry. Let X be a complex projective variety of complex dimension n.
Suppose that there are finitely many pairwise-disjoint subsets Ci of X, each isomorphic
as an algebraic variety to complex affine space of some dimension hi, such that (i) the
union of the Ci’s is X, and (ii) Ci Ci is a union of some of the Q’s. (Here Ci denotes the
closure of Ci either in the Hausdorff or Zariski topology--under the present circum-
stances the two closures coincide.) Following [4, p. 500], we then say that the Ci’s form a
cellular decomposition of X. The simplest and most familiar example is complex
projective space Pn itself. Recall that P may be regarded as the set of nonzero
(n + 1)-tuples x (x0, Xl, , x) Cn/l, modulo the equivalence relation x
/x (, C*). The set of elements of of the form (0, ..., O, 1, xn-i/,’", x)
forms a subvariety isomorphic to C i. Hence we have the cellular decomposition
p=CUC-U ...UC.

If X is any complex projective variety and Y is a closed subvariety, then e.g., by [4]
or [18, Chap. 5, 4], Y represents an element (cocycle) [Y] of the cohomology group
H*(X, C). If X is irreducible of (complex) dimension n, and Y is irreducible of
dimension m, then in fact Y] H:Z(n-m)(x, C). If X is irreducible of dimension n and
has a cellular decomposition {Ci}, it follows that the closures Ci represent cohomology
classes [i] H2(n-")(X, C) where C Cm. (For this fact, we don’t need condition (ii) in
our definition of cellular decomposition.) The following fundamental result concerning
varieties with a cellular decomposition appears in [4, p. 501], [22, 6] in the case when
X is nonsingular. The extension to singular varieties follows from [14]. (Again,
condition (ii) is not actually necessary.)

THEOREM 2.1. LetX be a complex projective variety of complex dimension n, and
suppose thatXhas a cellular deomposition {Ci}. Then the cohomology classes [Ci] form a
basis (over C) for H*(X, C). In particular, H2"+I(X, C) 0 for all m 7/, while ifX is
irreducible then H2("-m(X, C) has a basis consisting of those classes [i] for which
Ci.Cm.

Now given a cellular decomposition {Ci} of X, define a partial ordering 0x=
0x(C, C:,. .) on the Ci’s by setting Ci >= C in 0x if Ci c i. If X is irreducible of
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dimension n, then it can be shown, using standard techniques from algebraic geometry,
that ox is graded of rank n, with the rank function given by p(C)= n-dim C. If,
moreover, X is nonsingular, then Poincar6 duality implies that QX is rank-symmetric.
Theorem 2.1 then implies that we may identify the vector space V of Lemma 1.1 (iii)
with H2i (X, C) by identifying C oX with [(] H2i (X, C).

We now wish to define linear transformations qi" V- V/ (or equivalently,
qi" H2i (X, C) --> H2(i+)(X, C)) satisfying conditions (a) and (b) of Lemma 1.1 (iii). This
will enable us to conclude that QX has property S. Let Y be a hyperplane section of X,
i.e., the intersection of X (regarded as being imbedded in some projective space
with a hyperplane of Ps. If X is irreducible, then Y is a closed subvariety of X of
dimension n 1 which represents a cohomology class Y] H(X, C). The cup product
operation on cohomology then yields a linear transformation pg’H(X, C)-
n2(i+l)(x, C) defined as multiplication by Y]. In other words, (.pi(K) Y]" K. We now
verify that when X is nonsingular and irreducible (so QX is graded and rank-
symmetric), then these linear transformations i satisfy conditions (a) and (b) of Lemma
1.1 (iii). First we dispose of condition (b). I am grateful to Steve Kleiman for providing a
proof of this result.

LEMMA 2.2. LetXbe a complex profective variety with a cellular decomposition {Ci},
and let Y be a hyperplane section (or in fact any closed subvariety) ofX. If [Y]. [Ci]=
Y crj[Cj] in H*(X, C), then aj 0 unless Ci c Ci.

Proof. Let A(W) denote the Chow group of the variety W, i.e., the group of cycles
modulo rational equivalence. If W is nonsingular and has a cellular decomposition {Di},
then it is mentioned in [22, 6] that the cycles Di form a basis for A(W), and that the
corresponding map A(W)H*(W, 7/) is an isomorphism of groups. It follows from
[14] that this result continues to hold when W is singular. Now returning to our
hypotheses, the C.’s contained in Ci form a cellular decomposition of Ci. Hence a
hyperplane section of Ci is rationally equivalent to a linear combination of the C that
are contained in Ci. A priori, the rational equivalence is on Ci, but it may be considered
as a rational equivalence on X. Hence ce 0 unless Cj Ci because the [Ci] are linearly
independent in H*(X, C).

Lemma 2.2 shows that condition (b) of Lemma 1.1 (iii) holds for QX (assumingX is

nonsingular and irreducible, so we know QX is graded and rank-symmetric). Condition
(a) is implied by the following basic result, known as the "hard Lefschetz theorem"
(although the first rigorous proof was given by Hodge). See [34] for a brief history and
survey of this theorem, and for its extension to characteristic p. Other references include
[24, p. 187], [29], [10, Corollary, p. 75], [30, p. 44], [19, Chap. 0, 7].

LEMMA 2.3 (the hard Lefschetz theorem). Let X be a nonsingular irreducible
complex proective variety of complex dimension n. Let Ybe a hyperplane section ofX. I"
0 <-- <= n, then the linear transformation H (X, C) -H2n-i (X, C) given by multiplication
by y]n-i is an isomorphism.

Putting Lemmas 1.1, 2.2, and 2.3 together, we obtain the main result of this paper.
THEOREM 2.4. Let X be a nonsingular irreducible complex projective variety of

complex dimension n with a cellular decomposition {Ci}. Then QX is graded of rank n,
rank-symmetric, rank-unimodal, and has property S.

For future use, we record the following simple result. The proof is evident.
PROPOSITION 2.5. Let X and Y be complex profective varieties, with cellular

decompositions {Ci} and {Di} respectively. Then the product variety X x Yhas a cellular
decomposition with cells Ci x Di, and QXY QX X Q Y.

It follows from Theorem 2.4 and Proposition 2.5 that if P QX and P’= QY for
nonsingular irreducible complex projective varieties X and Y, each having a cellular
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decomposition, then P x P’ has property S. More generally, Canfield [7] and indepen-
dently Proctor, Saks, and Sturtevant [36] have shown that the product P x P’ of any two
graded, rank-symmetric, rank-unimodal posets P and P’, each with property S, also has
property S. (An even more general result has subsequently been proved by Saks
[37].) For our purposes, however, it suffices to consider only Proposition 2.5.

3. Weyl groups. It remains to find interesting examples of varieties X with cellular
decompositions and to describe the resulting posets ox. The best known examples of
such varieties are the following. Let G be a complex semisimple algebraic group, and let
P be a parabolic subgroup of G (i.e., a closed subgroup which contains a maximal
solvable subgroup B of G. B is known as a Borel subgroup.) Then the coset space G/P
has the structure of a non-singular irreducible complex projective variety, and the
Bruhat decomposition of G affords a cellular decomposition {Ci} of G/P. The cells Ci
are known as generalized Schubert cells. See [5, 3] for further details.

When X G/P, a description of the poset ox can be given in terms of the Weyl
groups W of G, and W of P [5, 3], [11] as follows. Every Weyl group W is a finite
Coxeter group, i.e., W is a finite group with a finite set S {sl,..., sin} of generators
such that for all 1 <- k <= m, 1 <= < j <= m and certain integers nii >= 2, W is defined by the
relations s 1 and (sisj) n’i 1. The pair (W, S) is called a Coxeter system.

A parabolic subgroup of W (with respect to $) is any subgroup WI generated by a
subset J of S. Thus W6 {1} and Ws W. The length g(w) of an element w W is the
smallest integer q -> 0 for which w is a product of q elements of S. Define a partial order,
called the Bruhat order, on W as follows. We say w-< w’ if there exist conjugates
tl,’’’, tj of the elements of S such that w’=wtlt2...t and vF(wtlt2.., ti+l)>
(Wtxt2"" ti) for all 0_-<i <f. The following properties (among others) of the Bruhat
order of a finite Coxeter group W are known"

1. The Bruhat order makes W into a graded poset (which we still call W).
2. The function is the rank function of W, and the rank-generating function of W

is given by

(1) F(W,q)= 1--[ (l+q+q2+’" .+qe,)
i=1

for certain positive integers ei known as the exponents of W. One may regard (1) as the
definition of the exponents. For other equivalent definitions, see, e.g., [6, Chap. 5, 6.2]
or I-8, Chap. 10]. Note that (1) implies the well-known fact that WI 1-[ (e + 1), and that
W has rank el +. + era.

3. If J c S, then each coset wW of Wj in W contains a unique element wj of
minimal length. For any v Wj we have F(wjv)= ((wj)+ F(v).

4. Let WJ be the set of minimal length coset representatives wl. Then WJ is a
graded subposet of W such that the rank function of WJ is the restriction of the rank
function of W.

5. (Wj, J) is itself a finite Coxeter system, say with exponents f, , ft. Then WJ

has the rank-generating function

(2) F(WJ, q)
F(W, q) _Hi=I (1 + q + q2 +... + qei)
F(WI, q) I-[;= (1 + q +q +... + qf)"

For proofs of these results and further information on Coxeter groups, see e.g., [6],
[8], [11]. For a connection between the posets WJ and combinatorics, different from the
one given here, see [23].

Now we return to the varieties X G/P, where G is a complex semisimple
algebraic group and P a parabolic subgroup of G. It is known [6, p. 29], [5, 3] that the
parabolic subgroups of G containing a given Borel subgroup B are in one-to-one
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correspondence with the parabolic subgroups Wj of the Weyl group W of G (with
respect to a fixed set S of Coxeter generators of W). Moreover, the poset 0x

corresponding to the cellular decomposition of X G/P obtained from the Bruhat
decomposition of G is isomorphic to the partial order on WJ defined above. Hence
from Theorem 2.4 we conclude:

THEOREM 3.1. Let W, S) be a Coxeter systemfor which Wis a Weyl group. LetJ c S
and let W be the poset defined above. Then W is rank-symmetric, rank-unimodal, and
has property S.

A Coxeter system (W, $) is irreducible if one cannot write S as a nontrivial disjoint
union T U T’ such that W Wr Wr,. If (W, S) is reducible, say W Wr x Wr,, then
we also have W Wr x Wr, as posets, and similarly for W. Thus by Proposition 2.5
nothing is lost by considering only irreducible Coxeter systems. Now all finite irreduci-
ble Coxeter systems are known (e.g., [6, p. 193]). There are the infinite families of type
An (n => 1), Bn (n => 2), and Dn (n => 4), together with seven "exceptional" systems E6, E7,
E8, F4, G2, H3, H4 and the dihedral groups I2(p) of order 2p for p 5 or p ->_ 7. (I2(3)
coincides with A2, I2(4) with B2, and I2(6) with G2.) For all of these systems (W, S), W is
a Weyl group except for H3, H4, I2(p), p 5 or p >-_ 7. It is easy to check that Theorem
3.1 remains valid for the dihedral groups I2(p), and for H3. Presumably the remaining
case H4 can also be checked directly, so in fact one could determine those finite Coxeter
systems (probably all of them) for which Theorem 3.1 remains valid.

4. Type A,. We now want to describe the posets W in greater detail, for the types
A,, Bn, Dn. First consider An-1. Then W is the symmetric group n of all permutations
of {1, 2,. , n}. The exponents are 1, 2,. , n 1, and as Coxeter generators we may
take the "adjacent transpositions" si (i, + 1), 1 =< _<- n 1. Regard a permutation
rr n as a linear array ala2"" a,,, where r(i)= ai. Then a direct translation of the
definition of the Bruhat order yields the following: r _-< r in W if r can be obtained
from r by a sequence of operations which interchange and f in a permutation
axa2 an provided appears to the left of f and <]. We abbreviate this operation as

(3) < j------j > i.

Thus the notation "i < j" in (3) means that and ] appear in the given order (i.e., to the
left of j) and <]. For instance, 213 312 (obtained by 2 < 3 3>2) and 24153 <

35241 (obtained, e.g., by 2<33<2, 1<22>1,4<55>4). The rank g(r) of
"tr ala2" an W is equal to the number i(r) of inversions of r, i.e., the number of
pairs (i,/’) for which < ] and ai > aj. Thus 12 n is the unique permutation of rank 0
and n 21 is the unique permutation of highest rank (). It is well-known (e.g., [9,
6.4]) that

Z qi(=)=(l+q)(l+q+q2) (l+q+...+q,-1),

which of course agrees with (1). Figure 1 depicts the Bruhat order of 3.
321

512 231

213

125
FIG.
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Now let J S={s1, Sn-} where si =(i, i+ 1). If we let (a, b) denote the
group of all permutations of {a,a+l,...,b}, then it is clear that WI=
@(1, Cl) x (Cl + 1, c2) x. x (c/_a + 1, n) for some integers 1 <_- Cl < c2 <" < c._ <
n, where / n -]J[. If rr ala2 an W, then the coset rrWj consists of all c!(c2-
Cl)!’" (n-c/_1)! permutations obtained from rr by permuting among themselves
the elements within the sets Xl {1, 2, ..., cl}, N2 {Cl-1-1, ..., C2},""", N/--
{c._+ 1, , n}. The coset representative rrj rWj with the least number of
inversions is that element of rrWj for which the elements of the above sets Ni appear in
their natural order. Hence WJ consists of those n!/c!(c2-ca)!... (n-c/-1)! permu-
tations for which the elements of each of the sets N appear in their natural order; or, as
it is sometimes called, the set of shuffles of NI, X/. The rank-generating function of
WJ is given by

(4) F(WJ, q)
(n)!

(c)!(c2-c)!’’" (n-c/_)!

where (k)!=(1-q)(1-q2) (1-qk). The right-hand side of (4) is known as a

q-multinomial coefficient and is commonly denoted [ n . Figure 2
k Cl, C2--Cl, F/--Cj-1 _l

illustrates the poset Wj
in the case n 4, J {(12)}.

4312

3412

4123 3142

3124 1342

1324./
1243

1234
FIG. 2

If we take Wj to be a maximal parabolic subgroup above, i.e., [J[-- n 2, then the
poset WJ has an interesting alternative description. Suppose J S -{(n k, n k + 1)},
so Nl={1,2,’",n-k} and Nz={n-k+l,’",n}. If r=alaz...an6W and
1 <- _-< k, then set

(5) dg(r) card {/: appears to the right of n + 1 and / < n + 1}.

Clearly ((r) /= i(r). The mapping r -* (l(r), , k(r)) is a bijection between
WJ and all integer sequences 0 -<_ ( -<_. -<_ -<_ n k. Moreover, r -< r’ in WJ if and
only if (i--< g for 1 <_-i _-< k. Hence, WI is isomorphic to the poser of all partitions of
integers into at most k parts, with largest part at most n- k, i.e., a partition whose
Ferrers diagram (e.g., [9, 2.4]) fits into a k x (n- k) rectangle. These partitions are
ordered by inclusion of their Ferrers diagrams. Since the union and intersection of
Ferrers diagrams is again a Ferrers diagram, it follows that the poset WJ is actually a
distributive lattice, which we will denote by L(k, n -k). Figure 3 depicts L(2, 3).
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FIG. 3

In terms of the characterization [3, Thm. 3, p. 46] of a finite distributive lattice L as
the lattice 2e of semi-ideals (also called "order ideals" or "decreasing subsets") of a
poset P, we have L(k,n-k)=2’n-’), where denotes an /-element chain. The
rank-generating function of this lattice is the q-binomial coefficient []=
(n)!/(k)!(n-k)!. It is by no means a priori obvious that W is rank-unimodal; this was
first shown essentially by Sylvester in 1878 (see [40] for historical details) and no
combinatorial proof is known. I am grateful to Tony Iarrobino for originally calling
to my attention that the hard Lefschetz theorem implies the unimodality of the
coefficients of []. It was my attempt to understand this fact which eventually led to the
present paper.

By applying Theorem 3.1 to the lattice L(k, m), we can deduce a "multiset
analogue" to a conjecture of ErdiSs and Moser [13, (12)]. (Regarding their actual
conjecture, see Corollary 5.3 below.) I am grateful to Ranee Gupta for her comments
on this result.

COROLLARY 4.1. Fix positive integers k, m, andj. LetA {ao, al, , a,,} be a set

ofm + 1 distinct real numbers. LetB, , Bbe subsets ofA with exactly k elements with
repeated elements allowed. (One may think orbs as being an m + 1 -tuple (Ceo, , c,,) of
nonnegative integers such that ci k, where ci is the number of repetitions of ai.) Let
Bs denote the sum o1 the elements orB, i.e., Bs Y aiai. Suppose that them are at most

j distinct numbers among B, , Y’. Br. Then r is less than or equal to the sum o] the ]

middle coecients o]’ the polynomial[m" + k]" Moreover, this value of r is achieved by
k _"

takingA {0, 1, , m} andB, , B to have element sums consisting o[ the ] middle
elements o]’the set {0, 1,. , km}. (If kin -] is even, then there are two equivalent choices
of the "/" middle coefficients" and "i middle elements.")

Proof. Regarding B=(o," .,a,,) associate with B the sequence A=
(, , ) L(k, m) defined by setting exactly c of the ’s equal to i. It is easy to see
that the subset { a,. , } of L(k, m) contains no (j + 1)-element chain provided there
are only /" distinct numbers among B,..., B. The proof now follows from

Theorem 3 1 and the fact that the rank-generating function of L(k, m)is"lk +m/. k "
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As a variation of the preceding corollary, we have
COROLLARY 4.2. Fix positive integers k, m, andi. LetA’ {al, , a,} be a set ofm

distinct nonzero real numbers. LetB1, , B, be subsets ofA’ with at most k elements with
repeated elements allowed. Suppose that there are at most distinct numbers among, B1, , B,. Then r is less than or equal to the sum of the i middle coefficients of the

polynomial[m+k]k
Moroever, this value ofr is achieved by taking A’ {1, , m} and

B1,"’, B, to have element sums consisting of the ] middle elements of the set
{0, 1,... ,kin).

Proof. Apply Corollary 4.1 to the set A A’ {0}. lq

Remark. The cellular decomposition of G/P in the case W(G) n and W(P)
k n-k can be described quite concretely. The group G is given by SL(n, C), which
acts linearly on n-dimensional complex projective space p,-1. Let V be a (k-1)-
dimensional subspace (or (k 1)-plane) of p-l, and let P be the subgroup of G leaving
V invariant. (Then P is a maximal parabolic subgroup of G.) The coset bP transforms V
into the subspace b V, and this sets up a one-to-one correspondence between X G/P
and the (k- 1)-planes in p-l. Hence X is the Grassmann manifold G(k- 1, n 1) of
all (k-1)-planes in p,-1. Regard the elements of n-1 as (equivalence classes of)
n-tuples (xl, , x,) C -{0}. A (k 1)-plane V in p,-1 has a unique ordered basis

w1, , wk for which the matrix is in row-reduced echelon form. Choose integers

0 <_- al --< a-<_. <_- a _<- n k, and suppose we specify that for each i, the first 1 in w
occurs in coordinate a+i. The set of all such V forms a subset C(al,"’, a) of
G(k 1, n 1) isomorphic to C(n--’ ; indeed, there are n k a coordinates
in w which can be specified arbitrarily, and the remaining coordinates are pre-
determined. By considering all sequences 0 _-< a -<. _-< ak N n k, we obtain a cellular
decomposition of G(k-1, n-l). Thus the cells C(al,..’, a) are in one-to-one
correspondence with the elements (al, , a) of L(k, n k). For instance, when k 2
and n 4 the cells correspond to the following row-reduced echelon matrices:

0 1 * * 0 0 1 0 0 0

C(O, O) C(O, 1) C(O, 2)

[0 1 0 :] [0 1 * 01] [ 0 1 ]0 0 1 0 0 0 0 0

C(1, 1) C(1, 2) C(2, 2)

A little thought shows that C(al,’.., ak)f(bl, ., bk) if and only if ai <=bi for
l<-i<=k. Thus we see directly that oX_L(k,n_k). The closure of the cell
C(al, , a) is called a Schubert variety, and its cohomology class is called a Schubert
cycle, which we shall denote by fi(al,..., ak). (A more common notation is
f(a,...,a,) where ai=n-k+i-l-a-i+l.) The Schubert cycle to=

I’t(O, 0,. , O, 1) Ha(X, C) turns out to be the class of a hyperplane section. Accord-
ing to a special case of Pieri’s formula in the Schubert calculus, the product of
fi(a, , ak) with to in H*(X, C) is equal to the sum of all (bl,’", bk) such that
bi >- ai and bi 1 + Y. ai. In other words, to 12(al, , a) I(bl, , b), where
the sum is over all sequences (bl," , bk) covering (al," , ak) in L(k, n k). Thus we
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have a direct verification of Lemma 2.2. For further information on these matters, see,
for example, [26], [27], [41].

5. Type B,. We next turn our attention to type B,. In this case W is the group of all
n x n signed permutation matrices (i.e., matrices with entries 0, +1 with one nonzero
entry in every row and column). W has order 2nn! and exponents 1, 3, 5, , 2n 1.
Identify the matrix (mii) W with the ordered pair (-, e), where r 6 n is given by
mi,-(i)-- +1 and e (61, ", en) {+1} by ei-- mi,(i). We then have the multiplication
rule (r, e)(r’, e’) (r’, B), where Bi e,(i)e/.We sometimes will abbreviate a group
element such as (24513, (-1, 1, -1, -1, 1)) by 2 4 5 1 3, and thus regard W as
consisting of all "barred permutations" of {1, 2, , n}. For the Coxeter generators of
W we take the set S {sl, , sn}, where si is the adjacent transposition (i, + 1), 1 <_-
i_<-n-1, and sn 1 2 3...n. A little thought shows that r_-<o in W if o" can be
obtained from r by a sequence of the following seven types of operations on barred
permutations:

a)
b) <f ;j> i,
c) <i j> i,
d) </" /’>i,
e) i>] ,i<i,
f) i>]-----+]< i,
g) i>i ,/" < i.

For instance, Fig. 4 illustrates W when n 2.

I 2T

T2 21

2

FIG. 4

If (r, e) W, then one can check that

(6) ((rr) i(rr)+ E (2di + 1),

where i(r) is the number of inversions of r, f ranges over all integers for which e. -1,
and d. is the number of k’s appearing in - ala2 an to the left of a. for which k < ai.
For instance, (3 1 5 4 2) 11, since i(r) 5, dl= 0, d4 2. It is easy to give a direct
combinatorial proof that

Z qe(-= 1--I (l+q+q2+’" .+q2i-),
"rrW i=1

agreeing with (1).
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Now let J c S. Let @(a, b) denote the group of all signed permutations of
{a, a + 1,..., b}. Then Wj has the form

(7) Wj @(1, cl) x @(c1 -}- 1, c2) x (c2 q- 1, c3) x. x @(cj-1 q- 1, n),

where O<=ca<c2<’’’<Cj_l<n. The case Cl--0 corresponds to Sne!J. If Cl=0
then j=n-IJI; otherwise j=n-IJl+l. Set N1={1,2,..., Cl}, N2
{ca+l,"’,c2},’",Ni={Ci-l+l,’",n}. One can check that Wj

consists of all
(ala2" an, e) W satisfying"

(i) ei l if ai 6 N1.
(ii) If ar, as Ni with r < s and E:r s 1, then ar <

(iii) If a, as 6 Ni with r < s and er es -1, then
(iv) If a,., as Ni and er 1, es =-1, then ar > as.
For instance, if Wj @(1, 2) x @(3, 7) x @(8, 9), then a typical element of WJ is

5 4 1 8 6 2 7 9 3. The letters 1, 2 are unbarred and appear in increasing order.
Similarly 3, 4 are barred and decrease, 5, 6, 7 are unbarred and increase, 8 is barred and
"decreases," and 9 is unbarred and "increases."

213

FIG. 5

Figure 5 illustrates WJ when n 3 and J {S 1, $3}. We see that, unlike the situation
for An, WJ need not be a distributive lattice (or even just a lattice) when J is a maximal
subset of $. There is one case, however, in which WJ is a distributive lattice, viz.,
J {Sl, s2, , sn-1}, so Wj @(1, n). In this case we will denote WJ by M(n). To see
that M(n) is indeed a distributive lattice, observe that for every sequence e

(e ," , en) { + 1}, there is a unique r for which (rr, e M(n). Identify e with the
subset of { 1, 2, , n} consisting of those integers for which 1. Then the par-
tial order on M(n) is given by {al," , a} <- {bl," , b} if al <" < a, bl <" < b,
j =< k, and a_ -<_ be_ for 0 -<_ -< j 1. It is then easily seen that M(n) is a distributive
lattice. The poset P for which M(n) 2e is given by P 2x"-. Figure 6 illustrates M
(4).
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FIG. 6

Lindstr6m [30] conjectured that M(n) has property S1, while in fact we now know
that M(n) has property S and is rank-unimodal. (I am grateful to Larry Harper for
calling my attention to LindstriSm’s conjecture.) The rank-generating function of M(n)
is (1 + q)(1 + q) (1 + qn). The unimodality of the coefficients of this polynomial was
first explicitly proved by Hughes [25], based on a result of Dynkin (see [40] for further
information). Presumably, however, this result could also be proved analytically using
the methods of 12]. Lindstr6m [30], [31 shows that the structure of M(n) is related to a
conjecture [13, (12)] of Erd6s and Moser (see also [12], [38], [42]). In fact, Corollary 5.3
below provides a more general result. I am grateful to Ranee Gupta for pointing out an
error in my original treatment of the Erd6s-Moser conjecture.

COROLLARY 5.1. LetA be a set ofdistinct real numbers. Assume that , elements ofA
are negative, are equal to 0 (so 0 or 1), and r are positive. LetB1, , Br be subsets
ofA whose element sums take on at most k distinct values. Then r does not exceed the sum
of the k middle coefficients of the polynomial

G,,c.(q) 2c(1 +q)(1 +q2)... (1 +q"). (1 +q)(1 +q2)... (1 +q)

(there being two equivalent choices of the k middle coefficients when (’+ 1)2

2
-k is even). Moreover, this value of r is achieved by taking A=

{- 1, -2,. , -,} U {1, 2,. ., rr} U Z, where Z 49 or {0} depending on whether ( 0
or 1.
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Proof. Since 0 can be adjoined to a set without affecting its element sum we may
assume sr 0. Let M(u)* denote the order-dual of M(u).(The elements of M(,) and
M(u)* coincide, but C <= C’ in M(,)* if and only if C -> C’ in M(,).) Regard elements of
the product M(v)* M(Tr) as consisting of pairs (C, D), where C is a subset of
{1, 2,..., u}, and D is a subset of {1, 2,..., r}. Suppose that the elements of A are
a, <" < al < 0 <1 <" < -n" and that Bs {oli1, Oilh, [].l," ]m}" Associate
with Bs the set (Cs, Ds) ({il, ", ih}, {/’1, ",/’,,}) M(u)* x M(Tr). It is easy to see
that the subset {(C1, D1), , (Cr, Dr)} of M(u)* x M(vr) contains no (k + 1)-element
chain provided there are most k distinct element sums of B1,’", Br. Now it is not
difficult to see that M(u)* M(u). (For instance, given the set T {il," , ih} M(u)
with 1 <= il <’" < ih <= u, define T* to be the set of nonzero parts of the partition h
which is conjugate (in the sense of [9, p. 100]) to the partition whose parts are
u ih, u 1 ih-, ", U h + 1 il, u h, u h 1, , 1. Then the mapping T - T*
is an isomorphism M(,) M(u)*. See also 7 for a more general result.) The proof now
follows from Theorem 3.1 and Proposition 2.5 (or from Theorem 3.1 alone applied to
the appropriate reducible Weyl group) and the fact that the rank-generating function of
M(u)* x M(’) is Go,(q). 71

We now want to consider the situation where , + sr + 7r is fixed, but ,, sr, and r can
vary. First we need"

LEMMA 5.2. Let G(q) be a polynomial of degree d with symmetric unimodal
coefficients. Fix positive integers j and k. Then the sum of the middle k coeffi-
cients of G(q)(1 +q/+l) does not exceed the sum of the middle k coefficients of
G(q)(1 + q).

Proof. Let G(q)=a(O)+a(1)q+...+a(d)q a. For simplicity of notation we
assume d 2d’,/" 2/", k 2k’. The other cases are done similarly. The middle k
coefficients of G(q)(1 + qi) are

a(d’ +j’-k’ + i)+a(d’-j’-k’ + i),

The middle k coefficients of G(q)(1 + qj+l) are

O<=i<=k-1.

o(d’ +f’-k’ + + 1)+a(d’-f’-k’ + i), O<=i<=k-1.

(Here we set a (t) 0 if < 0.) If f applied to a polynomial denotes the sum of its middle
k coefficients, then

fG(q)(1 + qi)-fG(q)(1 + qi+X) a(d’ +j’- k’)-a(d’ +j’ + k’).

Since ce(i)=a(d-i) and a(O)<-a(1)<=...<-a(d’), it follows that a(d’+j’-k’) >-

a(d’+j’+ k’), completing the proof. [3
COROLLARY 5.3. Let A be a set of n distinct real numbers, and let Ba,..., Br

be subsets ofA whose element sums take on at most k distinct values. Let u [(n 1)/2]
and 7r In/2]. Then r does not exceed the sum of the k middle coefficients of the
polynomial

2(1+q)(l+q2)... (1 +q). (l+q)(1 +q2)... (1 +q=).

Moreover, this value of r is achieved by choosing A {-,, -p + 1, , 7r}.
Proof. For fixed n u + sr + rr, it follows from Lemma 5.2 that the sum of the middle

k coefficients of Gc,(q) is maximized by choosing sr 1, u [(n 1)/2], 7r In/2]. The
proof follows from Corollary 5.1.

The actual conjecture [13, (12)] of Erd6s and Moser is equivalent to the case k 1,
and n odd, of Corollary 5.3. A purely combinatorial derivation of the Erd6s-Moser
conjecture from the fact that M(n) has property S appears in [35].
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6. Type D,. If (W, S) is a Coxeter system of type D,, then W is the subgroup of the
group W’ of type B, consisting of all (Tr, e) such that 1-[i=1 eg +1. W has order
and exponents 1, 3, 5, , 2n 5, 2n 3, n 1. We may take S {Sl, , s,} where
si (i, + 1) if 1-<_ i-<_ n- 1 (as in type Bn) and s, 2 1 3 4... n. We then have the
following seven transformation rules for obtaining w’ from w when w <-_ w’ in W:

a) i<i -f> ,
b) i<j----.j>i,
c) <j-----,i> i,
d) <y-----j>i,
e) i>j .>j< i,
f) i>j ,f<i,
g) i>i

Note that rules b-g coincide with those for B,, and that rule a for D, is obtained by
applying rule b and rule a twice for Bn. It follows that if r _-< o" in W then r -<_ cr in W’.
The converse, however, is false. For instance, 21<21 in W’ but 21 and 21 are
incomparable in W. Figure 7 depicts W when n 2.

FIO. 7

If (zr, e) W, then

g(Tr) i(r) + 2 Y di,

where i(r) and dj have the same meaning as in (6). For instance, g(3 1 5 4 2) 9 for
Ds, while g(3 1 5 4 2)= 11 for B5.

Now let J S. In so far as describing the poset WJ is concerned, we may assume
that if s =2134.’.n J then also sa=213""n J, since interchanging sa and s,
induces an automorphism of the Coxeter system (W, S). Thus if we let (a, b) denote
the group of all signed permutations of {a, a + 1,. , b} with an even number of -l’s,
then Wj has the form

Wj @(1, ca) x (ca + 1, ca) x. x (cj-a + 1, n),

where O<=Cl<C2<’’’<Ci-I<t’t and C11. The case c1=0 corresponds to snJ.
Defining N1 {1, 2,. , Cl}, N2 {ca + 1,. , c2}," , Ni {ci-a + 1,. , n}, one can
check that Wj

consists of all (ala2" an, e)6 W satisfying:
(i) el =lifaiNlandag>l.

(ii)-(iv) Same as for type B,.
(v) 1 precedes every other element of N1 (even if 1 is barred).

For instance, Fig. 8 depicts WJ when n=3 and J={12}, i.e., Wj=
@(1, 2) x (3, 3), so N1 b, N2 {1, 2}, N3 {3}. Note that this poset is isomorphic to
that of Fig. 2; this is no accident since Coxeter systems of types A3 and D3 are
isomorphic. (Recall that to obtain nonisomorphic systems, one may take A for n _-> 1,
B, for n >_-2, and D, for n >-_ 4.)
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FIG. 8

As in the case of B,, WJ need not be a distributive lattice when J is maximal. For
instance, take n 4 and J {Sl, s3, s4} S {(23)}, so Wj @(1, 2) x (3, 4). Then the
rank-generating function of WJ is given by

F(W, q)= 1 +q + 3q2+ 3q 3 +4q4 +4q + 3q6+ 3q7 + q8 + q9,
and it is easy to check that there does not exist a distributive lattice with this
rank-generating function. As in the situation for B,, there is one special case for which
W is a distributive lattice. Take J {Sl, s2, , s,-1}, so Wj (1, n). If we regard
M(n) (as defined in the previous section) as consisting of all subsets of {1, 2,. , n},
then WJ turns out to be the subposet of M(n) consisting of all sets of even cardinality.
But it is easily seen that this subposet is isomorphic to M(n- 1), so nothing new is
obtained.

7. Final comments. In view of the examples L(m, n) and M(n), it is natural to ask
under what circumstances is WJ a distributive lattice. I am grateful to Robert Proctor
for supplying the following answer to this question. The Coxeter generators S of an
irreducible Weyl group W correspond to the fundamental representations Ai(1 _-< <-n)
of a certain complex simple Lie algebra . By direct computation facilitated by
representation theory, Proctor has shown that (except for the representations A and 2

of G2) WJ is distributive if and only if the irreducible representation of g with highest
weight Yi/i is miniscule, as defined in [6, p. 226]. These representations have special
significance in other contexts; see [39] and more generally [28]. It turns out that for all
the distributive WJ’s except L(m, n) and M(n), it is easy to check Property S directly.

Proctor has also shown that if W is a Weyl group with largest element v (in the
Bruhat order) and if WJ (for any J c S) has largest element y, then the bijection from
WJ to WJ given by w - vwy-lv- is an anti-automorphism of WJ. Thus WJ is self-dual
whenever W is a Weyl group. We do not know whether the more general posets 0x of
Theorem 2.4 need always be self-dual.

We conclude with an open problem. Let P be a finite graded rank-symmetric poset
of rank n, with rank function p. P is called a symmetric chain order (e.g., [17, 3], [20],
[21]) if it can be partitioned into pairwise disjoint saturated chains xi < xi+a <" < x,-i

such that p (xi) =/i It is easy to see that a symmetric chain order satisfies Property T and
hence is rank-unimodal. Easy examples show that a rank-symmetric poset satisfying
Property T need not be a symmetric chain order.
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Our open problem is the following: Are all the posets QX of Theorem 2.4 (or at
least the special cases WJ of Theorem 3.1) symmetric chain orders? Since any poset QX
given by Theorem 2.4 has property T, there are pairwise disjoint chains connecting all
of O/x to oXi+l when < n/2, and all of Ox to O1 when > n/2. Piecing together these
chains yields a partition of 0x into saturated chains all of which pass through the
middle rank (when n is even) or middle two ranks (when n is odd). However, it is by no
means clear whether these chains may be chosen to be symmetric about the middle.

Emden Gansner has pointed out to me that for type An, there is a rank-preserving,
order-preserving bijection 1 x 2 x. x n -> W n, where 1 x 2 x. x n
{(bl, , bn): 0 <_- bi < i}. Namely, q(bl, b,) is that permutation ,r aaa2. an, such that b is the number of elements/" appearing in 7r to the right of and satisfying
] < i. Since any product of chains is a symmetric chain order (e.g., [17, pp. 30-31]), it
follows that n (with the Bruhat order) is also a symmetric chain order. A similar
argument for types Bn and Dn produces rank-preserving order-preservin bijections
2 x 4 x. x 2n-> @n and 2 x 4 x. x 2(n- 1) x n-> {n. Hence @n and n are also
symmetric chain orders. However, we do not know for instance whether L(m, n) and
M(n) are always symmetric chain orders. Lindstr6m [32] has shown that L(3, n) is a
symmetric chain order, and D. West [44] has shown that L(4, n) is a symmetric chain
order. Littlewood [33, pp. 193-203] claims to prove that L(m, n) is indeed a symmetric
chain order for all m and n. However, his proof is invalid. Specifically, it relies on the
"method of chains" of Aitken [45], and this method is not correct as stated by Aitken.
For the reader’s benefit we will discuss the nature of Aitken’s error in more detail. Let
P {X1, Xnt be a finite poset, and let (a) be the n x n matrix defined by a 0
unless x < x in P; otherwise the ai’s are independent indeterminates over . Remove
a chain C1 of maximum cardinality c from P, then remove a chain C2 of maximum
cardinality c2 from P-C, etc. Aitken essentially claims first that the numbers
Cl, c2,. , are independent of the choice of chains C, C2,..., and second that the
numbers cl, c2, are the sizes of the Jordan blocks of . The first claim is clearly false.
However, Littlewood’s proof would still be valid if there were some way of choosing
C, C2, so that the second claim is true. Even this weaker result is false. Let P be the
poset of Fig. 9. We have no choice but to take c 4, c. 1, c3 1. However, the Jordan
block sizes of are 4 and 2. A corrected version of Aitken’s result appears in [37]. If this
corrected result is used in conjunction with Littlewood’s method, it yields the result that
L(m, n) has property T. Thus we have an alternative proof, avoiding the hard Lefschetz
theorem (though actually Littlewood’s method essentially proves the hard Lefschetz
theorem for the Grassmann variety), that L(m, n) has property T.

A further property of posets which implies the Sperner property is the LYM
property [17, 4]. However, Griggs has observed that L(4, 3) fails to satisfy the LYM
property.

FIG. 9
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Note added in proof. A proof that L(3, m) and L(4, m) have symmetric chain
decompositions was first given by W. Riess, Zwei Optimierungsprobleme auf
Ordnungen, Arbeitsberichte des Institute fiir Mathematische Maschinen und Daten-
verarbeitung (Informatik) 11, Number 5, Erlangen, April 1978.
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