UNIMODAL SEQUENCES ARISING FROM LIE ALGEBRAS

Richard P. Stanley

We wish to discuss a connection between combinatorial theory
and the representation theory of complex semisimple Lie algebras,
known in principle since 1950 but not previously explieitly formu-
lated., Define s seguence a.o,a.l,...,a.d of real numbers to be sym-
metric if 8; = 84 4
we have 8,58, L. 28, 28,0 > ... 28, Of course if the
Sequence A.,85..+58; is both symmetric end unimodal, then

for 0 < i <4, and unimodal if for scme i

<A < .,..%a *a

I

o4l 2 ver 2By if d = 2e

e e4] > 0t 28y iT d=2e +1
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A polynomial a,. + a9 + ... adqd of degree & is said to be

0
symmetric (resp., unimodal) if the correspording sequence ao,&l,

w..,2, is symmetric (resp., unimodal}. Perhaps the best-known

unimogal polynomial is (l+q)d. In this case, unimodality is easy
to prove because we have a gimple explicit formula for the coeffi-
cients. In general, it may be quite difficuwlt to show that a2 se-
quence is unimodal {e.g., [19]), and there are an abundance of se-
guences conjectured to be unimodal but for which no idea of a proof
is known.

Here we will describe a large class of symmetric vnimodal pol-~
ynomials arising from Lie algebras, We will describe these polyno-—
mials in a way which does not require knowledge of Lie algebras.
The proof of unimodality will be omitted, since it regquires a kmowl-
edge of the representation theory of Lie algebras such as may be
found in [11. The proof may be attributed essentially to Dynkin
[T]l. He showed that certain polynomials arising from Lie algebras
are unimodal. These polynomials had previously been known (e.g.,
by B. Weyl) to have a simple expression as a product. Hughes [10]
was the first to realize the relevance of Dynkin's result to combi-
natorics., Hughes was unawere of the product formula and worked out
some special cases on his own. The only contribution of the pres-
ent paper is to describe these results in a form which will meke
them immediately accessible to combinatorialists, and to mention
some open problems suggested by the results.

Recall that a root system {called by some writers a "reduced
root system") is a finite set R of vectors in a real vector space
V satisfying certain axioms, What will be of interest to us here
is not the actual axioms, but rather the classification of root sys-
tems which follows from the axioms. For further information on
root systems, see for example [L3, [111.

A root system R 1is said to be irredocible if it cammot be
written as a non-trivial disjoint union R, u R, of two root sys-

1 2

tems Rl and B2 such that every wvector in Rl

every vector in R2. Every root system is a unigue disjoint union

is orthogonal to
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of irreducible root systems. To classify all root systems it suf-
fices to eclassify the irreducible ones, There sre four infinite
families of irreducible root systems, aenoted An, Bn’ Cn’ Dn’ and
exactly five other irreducible root systems, denoted E6’ ET’ EB’
Fh’ G2. The subscript refers to the dimension of the space spsnned
by the root system R and is called the rapk of R, For small val-

nes of n some overlap occurs among the root systems An’ Bn, Cn
Dn' To insure all root systems are distinct, one may take An for
n>1,B for n>2,C for n>3,and D for n > 4, For our
purposes it is best to describe a root system R as follows, If R
has rank n, then there exists a certain subset {ul,...,un} of R
{not unique) called & base. Once a base has been chosen, R decom
poses into two subsets E+ and R _, whose elements are called the

positive roots and negative roots, regpectively., Every vector BeR+

can be written uniquely in the form
n
B = Z B,0., (1)

where a, is a non-negative integer. A vector 8 lies in R, it

and only if -8¢R . For future use we introduce the notation

where XyseersX are independent indeterminates and 8 is given
vy (1).

We may now describe a root system R by listing the vectors
BER+ in the form (1). We will give this deseription for the root
systems An, Bn' Cn’ Dn’ 62’ referring the reader to the tables in
{4} for the remsining four irredncible root systems, For conven-
ience we @enote the vector Gy O ¥ 4 uJ by [i,31. In

particular, (i,i-11 =0 and {i,i] = o .
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An: [i,31,
Bn: 1,31,
fi,J-11
Cn: [i,31,
[i sj"l]
Dn: [i,]),
[i,n-2]
[i ’J-l]
Gy 30,
Qal + GE
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1lzizj=<nm
lzi<J<n
+ 2{j,nl, 1<i<js<n
sizisn
+2[.},n—l]+un, 15_133_‘}_1’1—1
1 <i<$<n, omitting (i,3) = (n-1,n)
+a ., l]<i<n-2
n I1E
+203,n-2] + [n-1l,n], 1l<i< J<n-2.
l<izs<j=s2
s 3al + ays 3al + 2&2.

Given a root system R of rank n, define a polynomial

B
P{R;X,40--2%x ) = I (1ax")}.
1 n BER+
For instance,
P(A3;x,y,z) = (1-x)(1-y)(1-2)(1-xy) (1-yz) (1-xyz)
P(Bysx,¥,2) = (1-x}(2-y)(1-2) (1) (1=yz){1-xyz)
3 2 22 2
o (L-xyz=) {1-xy"z% )} (1-y2°)
P{C 3xXy¥s2) = {1=x)(1-y){1-z)}(1-xy)}(1-yz){1l-xyz)
3 2 22 >
© (1-xyz)(1-x“y"z ) {1-y"z)
P(D3;x,y,z) = (1-x)(1-y}{i-z){(1-xy}(1l-xyz){1-xz)

H

(1-x) (1-y ) { Loxy ) (1-x7y ) (1-xy ) (1-x¥©)
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Fote that P(D3;x,y,z) = P(AB;y,x,z). This is because A, and Dy
are isomorphic, as alluded to above.

We now come to the theorem of Dynkin.

THEOREM 1 Zet R be a root system of rank n, and let ml,...,mh

be any positive integers. Define

- T
) _ P(R;q 30 aeee3d )
Q(R,ml,mas---smn) = P(R3q,0,.+.,9) ‘

Then Q(R;ml,me,...,mn) is 2 symmetric unimodal polynomial in the
variable q with nonnegative integer coefficients.,

EXAMPLE 1

(1-9) 1-¢°)2 (10> (1-g") (3-0°) |
(1-0)31-¢"13(2-0%)

1l +2g + 3q2 + hqs + hqh + 3q5 + 2q6 + qT.

Q(Agiesasl) =

REMARK Let {i] =1 - q* and [i]! = [i][i-1]...[1]. Then

P{R3G.Qs+..,q) = le;1!...fe 1!,

where € 2vevs€ ~are certain integers known as the exponents of R. .

REMARK If R 4is reduecible, say R = Rl uR

s then

P(R;xl,...,xn) = P(Rl;xl"‘"xk)P(R2;xk+1""’xn)'

Since the product of two symmetric unimodal pelynomials is easily
seen to be symmetric and unimodal {e.g., [2]), we could have con-

fined cur attention to irreducible root systems.
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EXAMPLE 2 There is a combinatorial deseription of the polynomial
{(?) when R = A - Given m o,-.s5M, let X be the partition with
m, - 1 parts equal to i, and let 1A' = (H,Aé,...,xa) be the con=
Jugate partition to A. Then

ci+n+1
Hil:ﬂ______l (3}

Q(An;mls---smn) = L. )
1(1-q¢ *)

where the ci's are the contents and the hi‘s are the hook
lengths of XA', as defined in [16, Def. 15.1}. Tt follows from
{16, Thm, 15.3] that the coefficient of qj in {3} is equal to
the pumber of column-strict plane partitions of J + Eili of shape
A' and largest part at most n + 1. 1In the special case m, = k+1,

m,=my= ... =m =1, (3) reduces to the Caussian coefficient

[k * n] _ _[k+n}!

u ETYHGE

Hence we recover the known result that the Gaussian coefficients are
unimodal polynomials., This was first mentioned explicitiy by
Eliiott [8,5129) as a conseqguence of the Cayley-Sylvester theorem

of invariant theory, stated by Cayley [5.,p. 265} in 1856 and proved
by Sylvester [18] in 1878. A modern treatment of the Cayley-
Sylvester theorem appears in [15, Thm. 3.3.4] and uses the same bas-
ic ideas necessary to prove Theorem 1. For further aspects of the
Cayley-Sylvester theorem, see [12]. The unimodality of the Gaus-
sian coefficients was one of the special cases of Theorem 1 worked
out by Hughes [10]. HNo purely combinatorial proof of this unimodal-
ity result is known, though several other noncombinatorial proofs
have been given besides those mentioned above. For instance, there
is a proof using Hodge theory applied to the Grassmann manifold, and
a proof of Almkvist-Fossum using invariant theory in characteristic

p (1, p. 111.5, Bmk. 1.81. All these proofs are closely related



UNIMODAL SEQUENCES ARISING FROM LIE ALGEEBRAS 133

+o one another and are based on the same underlying principle, viz.,
the representation theory of the Lie algebra s1(2,I) or the Lie
group SL{2,C). Recently R. Proctor has analyzed the above proofs
and from this has produced a proof (te be published) of the unimed-
ality of the Gaussian coefficients using only elementary linear

algebra.

EXAMPLE 3 A simple computation shows
2 n
Q(C 31,1,...,1,2) = (1+q)(1+q")... (14q").

This is another case worked oﬁt by Hughes [101. More generally,
the coefficient of qj in Q(Cn;l,l,...,l,m) is the number of
column-strict plane partiticns of J with less than m columms
and largest part at most n. This follows from the Bender-Knuth
conjecture, proved by Andrews in [3]. Alterpatively, I. G. Mac-
donald {unpublished) has given a Lie-theoretic proof of this inter—
pretation of the coefficients of Q(Cn;l,l,...,l,m), thereby
yielding another proof of the Bender-Knuth conjecture.

PROBLEM 1 ILet & be a finite set of non-zero vectors in R°
with non-negative integer coordinates., Form the polynomial

F(S;xl,...,xh) = I (l—xﬁ}. For what sets S is the rational
mBeS
functions F(S;q ~,...,q J/¥(8:9,...,2) a polynomial in q for

all positive integers ml,...,mn? This is similsr t¢ a problem
considered by MacMshon [14, Section VIII, Ch. 5].

FROBLEM 2 Iet R = An. Given Wysees® s jet A' be defined as
in Example 2. Iet L{(A') be the poset (partially ordered set)
ij) of
shape A' and largest part at most mn + 1, ordered by setting

T<w' if Ty E_ﬂid for 811 (i,j). Tt is easily seen that L

whose elements are column-gtriet plane partitions = = (w
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is a distributive lattice. If L has a; elements of rank i,
then it follows from Example 2 that

Zaiql = Q(An;ml, “re ,mn)

In other words, {3) is the "rank generating fumction™ of L{A").
VWhenever we have g poset L whose rank generating function is
symmetric and unimodal, we can ask whether I has s symmetric
chain decomposition, i.e., a partition into saturated chains

¥y < Y5 < L. < Fies where if p 43 the rank function of I, then
D(Yl) + p(?k) = P(L}- Such symmetric chein decompositions have
been found for a variety of posets {a survey of this subject appears
in [9]1), but it remains open for the lattices L{A'}. A somewhat
weaker result in the special case that A' has one part is proved
in [17]. One unususl feature of this problem is that although the
rark generating function of L{A') is symmetric and unimedel, it
need not be true that L{A') 1is self-dual. For instance, if n =
2, (ml,mQ} = {2,3), ' = (3,2}, then L{x') is given by
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In a similar manner one can interpret Q(Cngl,l,...,l,m) as the

rank generating function of a certain finite distributive lattice.

PROBLEM 3 Which other of the polynomials {2} are the rank gen-
erating functions for distributive lattices {or perhaps just pos-
ets) Mnaturslly associated" with the root system R? The results

of [13] are closely related to this question.
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