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COMBINATORICS AND INVARIANT THEORY

Richard P. Stanleyl

ABSTRACT. Let p:G*GL(V) be a representation of a compact Lie group
on a finite-dimensional complex vector space V. The action of G extends
to the polynomial ring R= {[V]. If x is an irreducible character of G,
then let Ri denote the module of y-invariants of G over the ring RG of
absolute invariants. Combinatorial techniques are used to investigate
the Molien series (or Poincaré series) of Ri and conditions for Ri to
be Cohen-Macaulay.

1. PRELIMINARIES. Invariant theory is for the main part concerned
with the following situation. Let G be a group, and let p: G+GL(V) be a
representation of G as a group of linear transformations of a vector
space V of dimension m<» over a field k. When geG and veV, we write
gev for p(g) (v). Let KyreeorXpy be a basis for V. Then G acts on the
polynomial ring R = k[xl""'xm] by g-f(xl,...,xm) = f(g-xl,...,g-xm).

A polynomial f in R is an invariant of G (or more precisely, of the
pair (G,p)) if g+f = £ for all geG. The set of all invariants forms a
subalgebra r® of R called the ring of invariants of G. We are concerned

with the problem of "determining" RG, or at least saying as much as pos-
sible about the structure of RG.

In order to say anything nice one must put additional restrictions
on G and p. Here we will assume that k = Q:, that G is a compact Lie
group,and that p is continuous. (This latter assumption on p will be
automatically assumed without further comment.) Under these assumptions,
the representation of G on R breaks up (uniquely) into irreducible re-
presentations, so we have a vector space direct sum R = ll Qi’ where
each Q4 is an irreducible G-invariant subspace. Each irreducible re-
presentation of G is determined by its character x: G+ C . Let RG
denote the direct sum of those Qi which correspond to the irreducible
character x. Note that if x is the trivial character (x(g) = 1 for

all geG), then RG = Ri. It follows from Schur's lemma that each Ri
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is a module over the ring RG, called the module of invariants relative

to x or the module of x-invariants. Note that R = ll R , where x ranges
over all irreducible characters of G. Note also th;% 1f X is a linear
character of G (i.e., a homomorphism G+ C* = C-{0}), then Ri =

{feR: g-f=x(g)f for all geG}.

Let Rn denote the vector space of all polynomials in R (including 0)
which are homogeneous of degree n . Then R becomes a graded algebra,
i.e., R = llﬁ Ryr RjRyCR; +j R, = C . since R -is clearly a G-invariant
subspace, it follows that RG has the structure of a graded algebra (viz.,

RS = RG[)Rn) and that each RS has the structure of a graded gf module,

. G _ G G,,G . .
i.e., R = nlA(RX)n, Ri(RX)jCj(RX)1+] The Molien series (also called

G

the Poincaré series, Hilbert series, or generating function) of RX is the

formal power series
©o

F_(G,A\) = (deg X) £ c_(n)A"
X n=0 X

where c_(n) is the multiplicity of x in the action of G on Rn‘ Thus
dimm(Rx)n = (deg x)cx(n). When x is trivial we write F(G,\) for FX(G,X).
Note that
TF (GA) = (1-0)" .
X X

A theorem of Molien [9][3,8§227]) gives an expression for FX(G,X) when
G is finite. This result generalizes immediately to compact groups once
the rudiments of the representation theory of such groups is known.

1.1 THEOREM. Let G be a compact Lie group acting on V, and let
x be an irreducible character of G . Then

- J X(g)d
F (GA) = (deg X)geG Ter(ionay (1)

where the integral is the Haar integral and the bar denotes complex con-
jugation.
For instance, when G is finite then (1) reduces to

_ de X(g)
F, (Gy2) "F%Tlgﬁc tioyeT - (2)

A fundamental result of invariant theory states that when G is
compact, RC is a finitely-generated C -algebra (see [10] for a brief
history of this problem). The same techniques can be used to show that

Ri is a finitely-generated rC®

-module. It follows from a standard result
of commutative algebra [2,Ch.1ll1l] that F_(G,)A) is a rational function of

A . The Krull dimension of Ri, denoted dim Rg, is defined to be the
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order of the pole of FX(G,A) at A = 1. It follows from a well-known
property of Krull dimension that dim rC = dim(RG/Ann Ri), where

G

Ann Rg = {feR: ng = 0}. Clearly Ann Rg =0 if RX is non-void, so we

have
aim BY = aim R®, if R0 # 4 . (3)

Let 4 = dim RG. It follows from the Noether normalization lemma
that there exist homogeneous elements el,...,ed € RG, necessarily alge-
braically independent over T, such that rC is a finitely-generated
module over the polynomial ring d:[el,...,ed]. The polynomiali el,...,ed
are called a homogeneous system of parameters (h.s.o.p.) for R]. From
(3) it follows that if Ri # @, then ©,,...,0, is an h.s.o.p. for R® if
and only if CIRARRRA-F is an h.s.o.p. for Ri. A basic result of commu-
tative algebra [11,p.IV-20, Thm.2] states that RG
module for some h.s.o.p. el,...,ed if and only if R’ is a free
d:[el,...,ed]-module for every h.i.o.p. 91,...,6d. 1f Ri is indeed a
free éf[el,...,ed]-module, then R’ is called a Cohen-Macaulay module.

(If R’ itself is a free G:[Gl,...,ed]-module, then RG is called a Cohen-

Macaulay ring.) Suppose that Rg

h.s.o.p., and that Nyreeesrny is a homogeneous basis for RX as a

is a free ([el,...,ed]—

is Cohen-Macaulay, that eé,...,ed is an

Gj[el,...,ed]-module. This may be written symbolically as

t
gG = L _Cley,...,841n0, . (4)
X 1=1
One reason that it is nice for (4) to hold is that every element f of Ri
can be put in a simple canonical form, viz., £ = I pi(el,...,ed)ni, where
p; € Cjel,...,ed]. Let c; = deg Qi, e, = deg n; . A simple combina-
torial argument shows that

e, d Cc.
A H/ma-a . (5)
1

=™t

F_(G,\) =
X( )

1.2 EXAMPLE. Let G be the group of order 2 generated by
g = diag(-1,-1]) (with respect to some basis x,y for V). Let X be de-
fined by x(g) = -1. Then we have

RC = Cx%,v%1 (1 @ xy)

R = (i’ v i x oy,

X

Hence R® and R® are Cohen-Macaulay, and we have F(G,A)=(1+X2)/(1—X2)2,
FX(G,A)=2A/(1-A2)2. Note that F(G,A)+FX(G,A)=1/(1-A)2.

G

1.3 EXAMPLE. Let G be the one-dimensional torus G = {g(u) =

-1y, [ul = 1}. For i e Z , let X; be defined by

xi(g(u)) = u'. Then it can be shown that Rg

diag(u,u,u-l,u
is Cohen-Macaulay if and

i

only if i = -1, 0, or 1. The "if" part follows from Theorem 3.5 below.
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It is not hard to compute that F (G,A) = F, (G,A) = 32221 7 (1-22) 3
2 -2
There is no way to write this in the form (5) (e.g., the numerator will

G

always have the positive root v3). Hence RX and RS are not Cohen-

2 X_2

is not Cohen-Macaulay for |i| > 3.
5 2

Macaulay. We omit the proof that RS

G

Suppose that R” is Cohen-Macaulay, so that it has a decomposition
t

Rg = Ié}q:[el,...,ed]ni. There is then a useful and important RG—module

G

Q(Rg) associated with R which is a kind of "dual"” module. The simplest

description of Q(Rg) is the following. Let B =(E[el,...,ed], and let
Q(Ri) = HomB(Rg,B). This defines Q(Ri) as a B-module. The RG—module

structure is given by (£f¢) (g) = ¢ (fg) where feRG, ¢EQ(RG), geRG. It turns

out that Q(Ri), considered as an RG—module, is independent of the choice
of the h.s.o.p. 91,...,ed. When x is trivial so Ri = RG, one calls

G

Q(RG) the canonical module of R°. See, e.qg., [5]1[15,§7] for further in-

formation. A basic combinatorial property of Q(Ri) which follows from

the technlques of [14] is that Q(R ) has a natural grading such that its

Poincaré series F (G,)) is given by

F, (6,0 = -1NIF, (6,1/3) (6)
for some gq € ZZ, where 4 = dim RG. If the module Q(RG) is a free RG—
module of rank one (i.e., isomorphic to RG as an RG—module), then RG is

called a Gorenstein ring. It follows from (6) that if RG is Gorenstein

then F(G,1/A) = (-1)99Fr(G,\) for some q ¢ /. . It follows from [14,
Thm. 4.4] and Theorem 4.1 below that the converse is true:

1.4 THEOREM. A necessary and sufficient condition for R® to be

Gorenstein is that F(G,1/)) = (-1)39F(G,\) for some ae 7 .

2. FINITE GROUPS. We wish to describe two interesting properties
of the modules RS when G is finite. When G is not finite these properties
need not hold, and in Sections 3 and 4 we will discuss some combinatorial
techniques for verifying these properties in special cases.

Consider the following two properties of the pair (G,x), where G is
a compact Lie group acting on V , and where x is an irreducible character
of G .

Property 1. The module RG is Cohen-Macaulay, and the "dual module"

v’ where Yy is the character defined by y(g) =

X (g) (det g), the bars denoting complex conjugation. (By det g, we mean

Q(Ri) is isomorphic to RG

the determinant of the action of g on V.)

Property 2. Let d = dim Rg, m = dim¢ V, and let y be as above. Then

— d
F, (Gs1/3) = (-1) xmpw(c,x).
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Note that Property 2 yields an expression for the degree of FX(G,A)
(as a rational function), viz., deg FX(X) = - (m +2), where % is the
least degree of a y-invariant of G. This in turn implies that the
largest ey in (5) is equal to cl+...+cd-m—l. For instance, if p:G+SL (V)
then deg F(G,A) = -m when Property 2 holds.

It follows from (6) and an examination of the way in which Q(RG) is
graded that Property 1 implies that F_(G,1/\) = (—l)quFw(G,X) for gggg
integer g. However, in general it need not follow that g = m (see Ex-
ample 3.7). When Property 2 holds, this yields strong evidence for
Property 1.

For finite groups it is relatively easy to verify Properties 1 and 2.

2.1 THEOREM. If G is finite, then all the pairs (G,x) satisfy
Properties 1 and 2.

Proof. Hochster and Eagon [6,Prop.l3] showed that RG is Cohen-
Macaulay. For a relatively self-contained proof, see [15,§3]. The same
techniques show RG is Cohen-Macaulay. Alternatively, we can use Lemma
3.2 below, togethér with the finite sum decomposition R = ll R;, to show

that Rg is Cohen-Macaulay. The computation of Q(Rg) follows from the

techniques of Watanabe [16] or by a direct argument shown to me by David
Eisenbud. It remains to prove Property 2. In view of (2) this is a
formal calculation. One immediately sees that

1/det (1-2"1g) = (-1)™™(det g~ 1) /det(1-2g™1).

Summing on g_l instead of g gives

= 1y m (g) (det g)= _qymym

Since it is easy to see that dim Ré = m or FX(X) = Fw(X) = 0, and since

deg X = deg Y, the proof is complete.

3. TORUS GROUPS. We now turn to the case where G is an s-dimen-
sional torus, i.e., isomorphic to the group T=Ts={q(u)=diag(ul,u2,...,us):
|ui| = 1}. Every continuous representation of T of degree m may be

described (after a suitable choice of basis for V) by m vectgrs

s . s . w 1 s
a; € 77, 1igs. If w = (wy,...,05) € /7, then write u'=u; “...u, ~.
Then the representation p = p(al,...,am) is defined by g(u)  diag

o Q

u 7,.ee.,u m). The representation p is faithful if and only if the
a
1
greatest common divisor of the sxs minors of the matrix |: is equal to
o
m

one. We denote the image of T in GL(V) by T(a) = T(al,...,am). Every
irreducible character yx of 'I‘S is linear and may be described by a vector
B = (ByreeesBy) € ZZS. The character x = g is given by x(g(u)) = uB.

Conversely, if p is faithful then any such B defines a character. The
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a a
module R§ has as a vector space basis all monomials xll...xmm such that
8

+...+ = .
% a0, = B

3.1 EXAMPLE. Let s =2, m= 3, oy = (1,1), o,

(1,-1), ay = (-1,0),
B = (1,0), so T(a) = {diag (uv, uv_l, u-l):lul = |v|

1}. The module

RY is spanned (as a vector space) by all monomials x ybzc with a+b-c=1

Xg

[

and a-b=0. Hence Rz

= G:[xyzzlxyz.
B
T

We have seen in Example 1.3 that RX
B8

need not be Cohen-Macaulay. A

result of Hochster [7] states that RT

result is generalized in [8] and also proved in [4]. We will use

is always Cohen-Macaulay. This

Hochster's result to give a sufficient (but not necessary) condition for
Rz to be Cohen-Macaulay. First we require a simple result from commu-

B8
tative algebra, whose proof is omitted.

3.2 LEMMA, Let A = Ao ® Al ® ... be a Cohen-Macaulay graded alge-
bra over the field k = Ag. Suppose that A = Mo &M @ ... 8 Mr—l' where
Mo = B is a graded subalgebra of A and each Mi is a graded B-module.
Then each M; is a Cohen-Macaulay B-module.

3.3 EXAMPLE. Let r be a positive integer and let 0<i<r. Given

0 <] Al ® ..., let Mi = Ai @ Ar+i (5] A2r+i

Lemma 3.2 clearly hold, so each M, is Cohen-Macaulay if A is Cohen-

A=A ® ... . The assumptions of

Macaulay. The subalgebra B = M0 is called a Veronese subalgebra of A,
and we may call Mi a Veronese module.

a V1
3.4 DEFINITION. Let T(a) denote the torus diag(u l,...,u ™). De-

fine a character Xg of T(a) to be critical if the system of linear
equations z;o0,+...+z a = B has a rational solution (zl,...,zm) =
(al,...,am) with the following two properties:

(1) aiio for 1<i<m
(ii) If (bl,...,bm) is an integer solution to
zlal+...+zmam = B such that bizgi for all i , then bizp for all i.

We now come to the main result of this section.

3.5 THEOREM. 1If Xg is a critical character of T , then R§ is

Cohen-Macaulay. 8

Proof. Suppose in the notation of Definition 3.4 that ai=--pi/q.1 for
integers piio and qi>0' Let y be the least common multiple of Qyrdpreses
e and define ai = (u/qi)ai. Let T' be the torus T' = T(ai,...,a&).

For any vector v = (vl,...,vm) of integers satisfying Ofyi<qi, let

' c c
R' (v) be the subspace of RT spanned by all monomials xll...xmm such that

.
ey = vy (mod qi). Clearly R'(0,0,...,0) = B is a subalgebra of R , each
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]
R'(v) is a B-module, and R® = Il R'"(v). (The modules R'(v) are "gene-
ralized Veronese modules.") Letvoi be the least non-negative residue of
p; modulo q;, and let o = (ol,...,om). We claim that B = R' and

~ T

]
R' (o) = RX . Since RT is Cohen-Macaulay by Hochster's result [7], it
B

will follow from Lemma 3.2 that Ri is a Cohen-Macaulay RT—module.
B
To prove the claim, first note that B = RT is clear, since this fol-

lows from the statement that (zl,...,zm) is a solution to Zziai = 0 in
non-negative integers z; if and only if (qlzl,...,qmzm) is a solution to
Zyiai = 0 in non-negative integers ¥y with vy = 0 (mod q;). Now suppose

: . . : - :
(qlzl + Oyrece, quz, + am) is a solution to Zyial = 0 in non-negative

integers. Hence Z(qizi + ci)(u/qi)ai = 0, which is equivalent to

X(zi a i

p;—05 p.-0
Now z.1 - > - (pi/qi) = a;. Hence by assumption zi -

It follows that the linear transformation R' (o) = R§ defined by xll...

B
x:mr—*xl(cl/ql)+al...xm(cm/qm)+am is an isomorphism of RT—modules, so the
proof is complete.

Note that the condition on (al,...,am) in Definition 3.4 is automa-
tically satisfied if —l<ai§p. In other words, Xg is critical if B lies
in the interior of the convex polytope (actually a zonotope) AT =

{inai: -1<hy < 0}, called the critical zonotope of T. For instance, if

% ar —By ~Bg
T is the one-dimensional torus {diag(u ~,...,u ~,u yees,u )} with

o > 0 and Bj > 0, then an integer B belongs to AT if and only if
—Zui < B < ZBj. In general, it can be shown that the number of integer
vectors B in the interior of AT is given by I (—l)s_lxlh(x), where X

X
ranges over all linearly independent subsets of {al,...,am} and where

h(X) is equal to the greatest common divisor of the sxs minors of the
matrix whose rows are the elements of X. For instance, if s=1, al=l,
u2=l, a3=—l, a4=-l (as in Example 1.3), then we obtain 1+1+1+1-1 = 3,
If s=2, a1=(l,0), a,=(-1,1), a3=(—2,—4), a,=(0,1), then we obtain
1+4+1+6+1+2=-1-1-2-1+1=11.

REMARK. It should be possible to prove Theorem 3.5 using the tech-

niques of [18], but the proof we have given is certainly more elementary.

3.6 EXAMPLE. Let s=1, al=6, a2=—2, a3=—3, B=6. Then B is critical
(e.g., let (aj,a,,az) = (0,- 3, -1)) but 8 ¢ A

3.7 EXAMPLE. Let s=1, al=l, a,==1, B = 1. Then (T,XB) satisfies
Property 1 but not Property 2.



352 RICHARD P, STANLEY

3.9 EXAMPLE. [13, Ex.8.6] can be used to produce a pair (T'XB)
which satisfies Property 2 but for which Ri is not Cohen-Macaulay. For

B
this example one has s = dim T = 7, dim Ri =4, and m = 11.
We now state a strengthening of Theorem 3.5.

3.10 THEOREM. Let Xg be a critical character of the torus T. Then
(T'XB) satisfies Properties 1 and 2.

Sketch of proof. Property 2 can be deduced from [13, Thm. 10.2].

Property 1 follows from Theorem 3.5 and the techniques used to prove
[14, Thm. 6.7].

4. COMPACT GROUPS. We now turn to the consideration of arbitrary
compact groups. First we state what is perhaps the deepest known result
in invariant theory.

4.1 THEOREM (Hochster and Roberts [8]). Let the compact group G act
on a finite-dimensional vector space V. Then RG is a Cohen-Macaulay ring.

REMARK. Hochster and Roberts state their result for linearly re-
ductive linear algebraic groups, but this easily yields the result for
compact groups.

As we did for toruses we can ask for a generalization of Theorem 4.1
to yx-invariants. We do not know how to prove an analogue of Theorem 3.5
for arbitrary compact G, but by combinatorial reasoning we can give a
plausible conjecture. To do so we now consider Property 2. Recall
(Theorem 2.1) that Property 2 was verified for finite groups simply by
substituting 1/) for X in (2).  Unfortunately the same proof does not
work for arbitrary compact groups because the operation of substituting
1/) for A does not commute with the integral in (1). In fact, we know
such a proof cannot work because Property 2 need not hold (Examples 1.3
and 3.7). We can use Theorem 3.10, however, to give a sufficient con-
dition for Property 2 to hold. First we need to review some facts con-
cerning integration on compact groups.

Let G be compact and connected, and let T be a maximal torus of G.
Thus T is isomorphic to {diag (uj,uy,...,ug): |ul| =...=|us| = 1}. Suppose
we have an action p: G » GL(V). With respect to a suitable basis for Vv,
the image p(T) will be of the form T(a) = T(al,...,am), with Ogreces
on € ZZS. (The vectors Ojreee 0 are the "weights" of p with respect to
an appropriate basis.) Then there exist non-zero vectors Bl,...,Br € ZZS
depending only on G and not on p (the "roots" of G with respect to an
appropriate basis - the roots are the non-zero weights of the adjoint
representation of G) such that for any irreducible character x of G we
have _

(l—xsl(g) Yeuo (l—xsr(g) )x (g)dg

Jet (I=79) "N

_ de

geT (a)
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where W is the Weyl group of G. Equation (7) is an immediate consequence
of the Weyl integration formula [17, Thm. 7.4.D.] [1, Thm. 6.1] and
Theorem 1.1, For an example of the use of (7) in computing FX(G,A), see
[12, Appendix]. If G is not connected then there is a straightforward
generalization of (7) involving a sum over the components of G. For
simplicity's sake we will assume henceforth that G is connected, though
our results can be extended to arbitrary compact G .

The character x when restricted to T breaks up into irreducible
characters of T , say

x(g) = xYl(g)+...+th(q).

We now define x to be a critical character of the representation
p: G + GL(V) if for all 1<i<t and all subsets S of {Bl,...,Br}, the

character x of the torus T(a) defined by w =y, - I B. is a critical
m 1 jes

character of T(a).

4.2 EXAMPLE., Let G = SU(2,C). Then s=1, r=2, Bl
each positive integer m there is a unique irreducible representation P

=-2, 82=2. For

of degree m, and al=—m+l,a2=-m+3, a3=-m+5,..., am=m—l. Take, for instance,
the case m=6 and let x have degree 8. Then al=—5, a2=—3, a3=—l, a4=l,
(15=3l 06=51 Yl=_7l Y2="'51 Y3="3r Y4=-ll Y5=ll Y6=3r Y7=51 Y8=70 Let

w= 7=-(~-2) = 9. Now Xu is not a critical character of the torus diag

(u—5,u-3,u-l,u,u3,u5), so X is not a critical character of p,. However,
any character x of SU(2,C ) of degree <8 is a critical character of Pge
More generally, any irreducible character x of SU(2,C ) of degree
< % m2—2 is a critical character of P

4.3 THEOREM. Let p: G+GL(V) be a representation of the compact
connected Lie group G on V. If yx is a critical character of p , then
(G,x) has Property 2.

Proof. Write the numerator (l—xB (g))...(l-xB (9))X(g) of the inte-
1 r

grand of (7) as a linear combination of characters of T. Thus FX(G,A)
is a linear combination of terms of the form

f X, (9)dg
)= e TETTGT

The definition of critical character insures that each XY is a critical
character of T(a). Hence by Theorem 3.10 we have

Xl}g)(det g)dg
det (1-Ag) !

d
F_(1/2) = (-1) " J
L T (a)

where dY = dim Ri . Since by (3) the numbers dY are all equal (say to d)
Y
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T . .
whenever R is non-void, we get

ﬂﬁ%MHndb%(QHWHﬁtQQ
r

FX(G.l/k)=(deg X)(-l)dxm J

T(a) det (I-1g)

= (-n4H" F,(GA)

since a well-known property of roots states that B is a root if and only

if -B is a root. Since dim RG = dim RG (the above formula showing that
Ri is void if and only if R$ is void), it follows from our original de-

d

di
finition of Krull dimension that (-1) = (-1) RX, completing the proof.

(Remark: It is not necessarily true that 4 = dim RG, but when x is

critical we have shown that d = dim RG

(mod 2). If x is not critical
then this congruence need not hold, e.g., for the adjoint representation
of su(2, ) when yx is trivial).

Theorem 4.3, together with (6), suggest the following conjecture.

CONJECTURE. Let p be as in Theorem 4.3, and let x be a critical
character of p. Then (G,x) satisfies Property 1.

There is one special case for which we can verify the above con-
jecture. This is when x is trivial and p: G + SL(V). In this case,
X = ¥ and Theorem 4.3 states that when x is critical we have

F(G,1/)) = + A\"F(G,\). (8)

~ »G

G R and RG has Property 1.

Then by Theorem 1.4 R
This writer and independently M. Hochster conjecture that for any

is Gorenstein, so Q(RG)

p: G +- SL(V), the ring RG is Gorenstein. Theorems 1.4 and 4.3 establish
this for finite G and toroidal G. 1In these cases independent algebraic
proofs can be given [4] [16]. Hochster and Roberts [8, Cor.1l.9] show
that R®
For instance, for the representations Pm of SU(2,( ) defined above, we

is Gorenstein when G is semisimple, although (8) need not hold.

have (8) for m>4 by Theorem 4.3. However, when m=2 we have F(G,1/)) =
F(G,)), and when m=3 we have F(G,1/\) = —AzF(G,X).

Presumably algebraic techniques will be required to resolve the
above conjecture, but at least combinatorial reasoning has led to its
formulation and enhanced its believability.
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