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BALANCED COHEN-MACAULAY COMPLEXES
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RICHARD P. STANLEY'

ABSTRACT. A balanced complex of type (a,, ..., a,,) is a finite pure sim-
plicial complex A together with an ordered partition (Vy, ..., V,,) of the
vertices of A such that card(¥, N F) = g; for every maximal face F of A. If
b= (b),...,b,), then define f,(A) to be the number of F € A satisfying
card(¥; N F) = b,. The formal properties of the numbers f,(A) are inves-
tigated in analogy to the f-vector of an arbitrary simplicial complex. For a
special class of balanced complexes known as balanced Cohen-Macaulay
complexes, simple techniques from commutative algebra lead to very strong
conditions on the numbers f,(A). For a certain complex A(P) coming from a
poset P, our results are intimately related to properties of the Mobius
function of P.

1. Introduction. We are concerned with the problem of obtaining
information on the number f = f(A) of i-dimensional faces of a finite
simplicial complex A. (All terminology is defined below.) There are two
significant classes of complexes A for which a complete characterization of
the numbers f, 0 < / < dim A, has been obtained, viz., the class of all
complexes and the class of Cohen-Macaulay complexes. Here we introduce a
new class which we call balanced complexes. Balanced complexes possess
invariants f, more discriminating than the numbers f, and the formal
properties of these invariants will be investigated. In the case of balanced
Cohen-Macaulay complexes A, simple techniques from commutative algebra
lead to conditions on the invariants f, which are considerably stronger than
those obtained merely by assuming A is Cohen-Macaulay. For a certain
complex A(P) coming from a poset P, our results are intimately related to
properties of the Mdbius function of P.

We now proceed to the basic definitions and terminology. We employ the
following notation throughout:

N, set of nonnegative integers,

P, set of positive integers,

[n], {1,2,...,n}, wheren €P,
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T c S, Tisasubsetof S, allowing T =Jor T = S,

e, the i/th unit coordinate vector in N”, ie., e = (g,...,¢t,), where
g = §.

Now let A be a simplicial complex, or complex for short, on the vertex set
V={x,...,x,}. Thus A is a collection of subsets of V satisfying the two
conditions: (i) {x} € A for all x € V, and (ii) if F € A and G C F, then
G € A. If F € A and F has i + 1 elements, then we call F an i-face of A and
write dim F = i. If § = max{dim F: F € A}, then we call A a §-complex and
write dim A = §. If every maximal face of A is a §-face, then we say that A is
pure. Let f;, = f,(A) denote the number of i-faces of A. Thus f, = n. The vector
f=1Q)= (fo f1, .- ., f5) is called the f-vector of A. We will employ the
notation A = {abc, bcd, bde)> to indicate that the maximal faces of A are
{a, b, c}, {b, ¢, d} and {b, d, e}. Hence the f-vector of this A is (5, 7, 3).

The problem often arises of obtaining information about the f-vectors of
various complexes A. The first significant result along these lines, essentially
due to Joseph Kruskal [12] and G. Katona [11] (see [9, §8] for an exposition),
is an explicit characterization of those vectors f = (f, f}, . . . , f;) Which are
the f-vectors of some complex A. We will call such vectors K-vectors. Kruskal
and Katona actually only proved that the condition in Theorem 1.1 below is
necessary; but the sufficiency of this condition is immediate from their
proofs.

1.1 THEOREM. Given positive integers f and i, write

() () )

where n, > m_; > -+ >n >j>1 (such a representation exists and is
unique), and define

ﬂi)=(if1)+(ni;1)+"'+(jijl)'

Then the vector f = (fy, f1, . . ., f;) of positive integers is a K-vector if and only
i <ffYfro<i<é—-1. O

One can now ask for special classes of complexes whose f-vectors have
characterizations analogous to that of Theorem 1.1. One class for which such
a characterization can be given consists of the so-called Cohen-Macaulay
complexes [23]. These may be defined either algebraically or topologically; it
is a basic result of G. Reisner [16] that the two definitions are equivalent.
Both definitions will be of use to us here. First we define the notion of a
Cohen-Macaulay ring in the case of interest to us. Let k be a field, and let m
be a positive integer. Suppose R is a finitely-generated N™-graded k-algebra.
Le., the additive group of R can be written as a direct sum R = Saen Ry
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where R,Rg C R, g, Ry = k, and R is finitely generated as a k-algebra. If
x € R, we say that x is homogeneous of degree a, written deg x = a. If we
wish to emphasize that @ € N™, then we say that x is N"-homogeneous. It
follows from the fact that R is finitely-generated that dim, R, < oo for each
a € N”, and we define the Hilbert function H (R, &) = dim; R,, a € N". If

a=(a,...,a,) let A*=A{--- A% and define the Poincaré series
F(R,AN) =2, H(R, a)A“. It is well known that the formal power series
F(R, M) represents a rational function of A = (A, . . ., A,,). Let d be the Krull

dimension dim R of R, i.e., the maximum number of elements of R which are
algebraically independent over k. (Do not confuse the Krull dimension “dim”
with the vector space dimension “dim,”.) Suppose 8, ..., 8, are homo-
geneous elements of R of nonzero degree such that dim, R/(8,, ..., 60, <
oo, or equivalently, such that dim R/(4,,...,0,) =0. Then @,, ..., 0, are
called a homogeneous system of parameters (h.s.o.p.) for R. Again if we wish to
emphasize that degd, e N", 1 < i < d, then we call §,,...,0, an N"-
homogeneous system of parameters. If m = 1 then the Noether normalization
lemma guarantees the existence of an h.s.o.p. Moreover, if k is infinite and R
is generated by R,, then we can choose each 8, 1 < i < d, to have degree
one. However, when m > 1 an h.s.o.p. usually will not exist; indeed, a crucial
point of this paper concerns the existence of an h.s.o.p. in certain situations
when m > 1 (Theorem 4.1). At any rate, suppose 6,, . . ., 8, is an h.s.o.p. for
R. Let S=R/(,,...,8,). Since 0,, ..., 0, are homogeneous, S inherits
from R the structure of an N™-graded k-algebra. We now say that R is
Cohen-Macaulay if *

d
F(R,A) = F(S,N) I (1 — Ades8)™", (1)
i=1
This is not the usual definition of a Cohen-Macaulay ring, but it is equivalent.
For a reconciliation with the usual definition in terms of R-sequences, see
[24). It is important to realize that the question of whether or not R is
Cohen-Macaulay is independent of the grading chosen for R, though this is
not immediately obvious from (1). Thus once we know that R is Cohen-
Macaulay, we know that (1) holds for whatever grading we choose for R.
From the combinatorial point of view, the importance of Cohen-Macaulay
rings R is that the much smaller ring S carries a lot of combinatorial
information about R, in particular, the Hilbert function of R.

Now given a complex A on V' = {x,, ..., x,}, associate with it a certain
N-graded k-algebra A, as follows. Let 4 = k[x,, ..., x,], the polynomial
ring over k on the vertices of A. Let I, be the ideal generated by all
monomials x; x; -« - x, with iy < i, <- -+ < and {x;,x,,..., %} &A

Define a grading on 4, = A/I, by setting deg x; = 1. We say that A is a



142 R. P. STANLEY

Cohen-Macaulay complex (always with respect to the field k) if 4, is a
Cohen-Macaulay ring. This is the algebraic definition of a Cohen-Macaulay
complex.

To give the topological definition, recall that if F € A, then the /ink of F is
the complex Ik F = {G €A: F N G =&, F U G € A}. In particular, Ik &=
A.

1.2 THEOREM. Let A be a 8-complex and k a field. The following three
conditions are equivalent.

(i) A is Cohen-Macaulay (over k).

(ii) For all F € A, H,(lk F) = 0 if i < dim(k F). (Here H denotes reduced
simplicial homology with coefficient field k.)

(iii) Let X = |A|, the geometric realization of A, so that A is a triangulation of
X. Then H(X)= H(X,X —p)=0 for all i < & and all p € X. (Here H
denotes reduced singular homology and H relative singular homology, both over
k.)

The equivalence of (i) and (i) above is a theorem of G. Reisner [16], while
the equivalence of (ii) and (iii) is a purely topological result first explicitly
proved by J. Munkres [15, Theorem 2.1]. A stronger result was later proved
by Hochster [10, Theorem 4.1].

Let us remark that the following results are immediate consequences of
Theorem 1.2: (a) every Cohen-Macaulay complex is pure, (b) a Cohen-
Macaulay complex of dimension greater than zero is connected, and (c) a
graph (= complex of dimension zero or one) is Cohen-Macaulay if and only
if it has no edges or is connected.

Let H(A, m), m € N, denote the Hilbert function of 4,. It is easy to see
[22, Proposition 3.2] that

1, ifm=0,
_] s
H(4, m) = Zf,.(’”i‘l), itm >0, @)
i=0
where (fy, fi, - . ., f;) is the f-vector of A. An immediate consequence of (2)

(using [1, Theorem 11.4]) is the result dim A, =1 + dim A = 1 + §. Since
H (A, m) is a polynomial in m for m > 1, it follows that there are integers
1= hy hy, ..., hs,, such that

(A =N'"F(Ap,N) = hyg+ BA+ + -« + h A'+E,
The vector h = h(A) = (hy, hy, . . ., hy ) is called the h-vector of A. We wish
to state a characterization analogous to Theorem 1.1 of the h-vector of a
Cohen-Macaulay complex A. To do so, recall that a multiset M on a set S is a

set with repeated elements belonging to S. More precisely, M is a function
S — N, where M (x) is regarded as the number of repetitions of x € S. The
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cardinality of M is card M = 3, . M(x). A multiset M': S—>N is a
submultiset of M (denoted M’ c M) if M'(x) < M(x) for all x € S. A
multicomplex is a collection of multisets such that if M € A and M’ C M,
then M’ € A. The dimension and f-vector of a multicomplex are defined in
the obvious way in analogy with complexes, i.e., f, = card{M € A: card M
=i+ 1} and dim A = max{i: f; # 0}. Any vector (fy, f}, . . ., f;) which is
the f-vector of a multicomplex is called an M-vector. We allow f,,, = f..,
= ... = f; =0 in an M-vector; if also f; # 0 this means that the corre-
sponding multicomplex A has dimension ;.

In analogy with Theorem 1.1 we have the following result essentially due to
Macaulay [13] (explaining our terminology ‘“M-vector”). A common
generalization of Theorems 1.1 and 1.3 appears in [3], and an exposition of
these results appears in [9].

1.3 THEOREM. Given positive integers f and i, write

f=(’;i)+(ini—-11)+ o +(’3)

where n, > m,_ >+ -+ > n; > j > 1 (exactly as in Theorem 1.1); and define
f<,~>=(n,~+1)+.“+ nj+1
i+1 j+1)
with 0% = 0. Then the vector f = ( Jo fis - - - » f3) of nonnegative integers is an

M-vector if and only if f,,, < [P for0<i<8-1. J

We can now give the characterization [23, Theorem 6] of the h-vector of a
Cohen-Macaulay complex.

1.4 THEOREM. A vector (hy, hy, ..., hs,,) is the h-vector of a Cohen-
Macaulay complex of dimension & if and only if hy =1 and (hy, hy, . . ., by, )
is an M-vector. []

2. Balanced complexes. We wish to introduce a class of Cohen-Macaulay
complexes for which Theorem 1.4 can be considerably strengthened and
refined. Recall that an ordered partition of a finite set V is a sequence
V..., V,) of nonvoid, pairwise disjoint subsets of V satisfying V,
Jg---ubv,="V

DEFINITION. A balanced complex of type (ay, ..., a,) is a pair (A, 7)
satisfying:

(i) A is a pure §-complex on a vertex set V,

@()7 = (Vy,...,V,)isan ordered partition of V, and

(iii) for every maximal face F € A and every i € [m], we have card(F N
V)=a. (Hencea, + --- +a,=86+1)



144 R. P. STANLEY

A balanced complex of type (1, 1,..., 1) is called completely balanced.
Note that a balanced complex of type (6 + 1) (i.e., with m = 1) is really
nothing more than a pure §-complex, since condition (iii) holds automati-
cally. We could have altered our definition somewhat so that A need not be
pure, but nothing significant is gained by doing so. In particular, we are
primarily concerned with Cohen-Macaulay complexes, and these are always
pure.

We now give some examples of completely balanced complexes. Let P be a
poset (= partially ordered set) on a finite set ¥, and define A(P) to be the
complex on V whose faces are the chains (= linearly ordered subsets) of P.
We will use such terminology as “P is pure” or “P is Cohen-Macaulay” to
mean the corresponding statement for A(P). Thus P is pure if and only if all
maximal chains of P have the same length, and dim P is the length of the
longest chain in P. Moreover, a Cohen-Macaulay poset P is one for which
A(P) is a Cohen-Macaulay complex. Suppose now that P is pure of
dimension 8. If x € V, let p(x) be the largest integer r for which there is a
chain x; < x, < - - - < x, = x in P. We call p(x) the rank of x and p the
rank function of P. (Some authors would call p(x) — 1 the rank or height of
x) If we set V;={x€P: p(x) =i}, 1 <i<§+1, then clearly = =
Vi, Vo - ., Vi) is an ordered partition of ¥ and (A(P), 7) is completely
balanced. We call 7 the standard ordered partition of P. If A is any complex,
let O = Q(A) be the poset of nonvoid faces of A, ordered by inclusion. Then
A(Q) is just the first barycentric subdivision of A. Hence any space X which
possesses a finite pure triangulation possesses a completely balanced triangu-
lation. There does not seem to be a nice characterization of completely
balanced complexes, though a sufficient condition for A to be completely
balanced is mentioned in [5]. On the other hand, one can characterize
complexes A of the form A(P) for a finite poset P. Namely, it is necessary and
sufficient that A satisfy the following:

(1) any minimal set of vertices which do not form a face of A has two
elements (i.e., the ideal I, is generated by quadratic monomials), and

(i) let T be the 1-skelton of A. Then I' must satisfy the well-known
conditions of Gilmore and Hoffman [8], Ghouila-Houri [7], or Gallai [6] for
being a comparability graph.

3. Numerical invariants of balanced complexes. If (A, #) is a balanced
complex of type a = (a;, a5, ..., a,) and if b= (b,, b,, ..., b,) € N", then
define f, = f,(A, 7) to be the number of faces F € A for which card(F N V))
= b, 1 < i < m. Note that f, = 0 unless b; < g; for all i (written b < a).
Note also that f,(A) = = f,(A, =), where the sum is over all vectors b < a such
that b, = i + 1. Hence the numbers f, are a refinement of the numbers f.
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If S c [m], let (Ag, 75) be the balanced complex defined as follows:
W)Ag={FeEAMFnV=Difig S},

(i) if
S={c,cp...,¢ withe; < ¢, <--+ <g, 3)
thenwg = (V., Vo, ..., V)
Hence (Ag, ws) is balanced of type (a., a,, - - ., a.).

For instance, if P is a pure poset of dimension § and if «# is the standard
ordered partition of P, then A(P)g = A(Ps), where Pg is the poset obtained
from P by removing all elements whose ranks do not belong to S. In
particular, P, is the so-called “rank y upper-truncation of P”. Note that in
general if (A, ) has type (a,, . . ., a,,), then (4, 7)) = (4, 7), and Ay=0.

The following result is an immediate consequence of the definition of
(Ag, 7).

3.1 PropOSITION. Let (A, 7) be a balanced complex of type (ay, ay, . . . , a,,)
=a Let S c[m],say S={cp,cp...,¢}withe, < ¢y, <-+- <c,So that
(Ag, mg) is balanced of type (a,,a.,...,a)=a. If(b,,...,b)=b <a
define (by,...,b,)="b by letting b, =0 if i is not one of the c;. Then

J
Jolls, ms) = fb(A’ m). O

The significance of Proposition 3.1 is the following. If we know the
numbers f(A, 7) for all b, then we also know the numbers f(Ag, 7¢) for all
S c[m]and allb.

We can refine the h-vector of a balanced 8-complex (A, 7), where 7 =
Vi, ..., V,), just as we did the f-vector, as follows. We make the ring 4,
into an N™-graded k-algebra by defining, for a vertex x of A, deg x to be the
ith unit coordinate vector e; € N™. Equivalently, A%t* = ), if x € V.

3.2 PROPOSITION. Let (A, 7) be a balanced complex of type a = (a,, . . ., a,,),
where m = (Vy, ..., V,), and let H(A,, b) denote the Hilbert function of A,
with the above N™-grading. Then for all b = (b, ..., b,) € N™,

Uy =S o 11 (27 1),

b,>0 1
where the sum is over all (¢, ...,c,) =c¢ < asuch that c; =0 b, =0.

Note that Proposition 3.2 reduces to (2) when m = 1.

ProoF oF PropOsITION 3.2. If M = x{'- - - x is a nonzero monomial
appearing in A,, then define the support of M by supp M = {x; € V:
a; > 0}. Note supp M € A. Given F € A with ¢; = card F N V;, the number
of monomials M satisfying supp M = F and deg M =b is I[, , -, (%)),
since there are (c ~1) monomials of degree b, in ¢, variables with each variable
having positive exponent. Summing over all F € A completes the proof. []
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It is an immediate consequence of Proposition 3.2, or can be easily seen
directly, that

F(AA’ A) = 2 H Ato(x)(l - AP(X))_I’ (4)

FEA xeF

where for each x € V, p(x) is defined by x € V(.
Hence we obtain the following result, which will be of use later.

3.3 PROPOSITION. Let (A, ) be a balanced complex of type (ay, . .., a,).
Then F (A, M7= (1 — N)* (or equivalently F(Ap, NI, cr(l — Ay for any
maximal face F of A) is a polynomial P(Ay, N) in Ay, . . ., A,,. Moreover, the
degree of P(A,, N) with respect to N, is no more than a;. In particular, if (A, 7) is
completely balanced then every monomial appearing in P(A,, A) is squarefree.

O

Now if b € N™ define hy, = h,(A, 7) to be the coefficient of A" in the
polynomial F(4,, M)II7.,(1 — A)%. Proposition 3.3 asserts that

h,=0 unlessb < a. %)
Clearly A,(A) = Shy(A, m), where b ranges over all (b,...,b,) EN"
satisfying b, + - - - + b,, = i. Hence the numbers A, are a refinement of the

numbers 4;. Note that

sy ITa-a=[ 3 1T Aot =)' T - 2°

FEA xeF

n

> 3 alla-mr

c FeA i=1
card(FNV,)=¢

n

S s mx a0

i=1

from which we get
. — C

mmmw=§nmmu1«n*%2-ﬁ- (©)

3.4 ExampLE. (a) Let A = <abc, abe, acd, ade, bcg, bef, bfg, cdg, def, dfg),
so |Al~S% Let V,={a,c,efg}, V,={bd} and w = (V, V,). Then
(4, ) is balanced of type (2, 1). We have (writing f, for f, ) foo = 1, f1o = 5,
Jor =2, =5, fi = 10, f5; = 10. Also (writing A = (p, A)),

F(Ap X)) = (1= g’ (1 — ) + 5p(1 — p)(1 = &) + (1 — p)’
+ 5p2(1 = A) + 10pA(1 — p) + 10p2A
=1+43p+ A+ p?+ 3+ p?A
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Hence hyy = hg, = hyo = hyy = 1, hyg = hyy = 3.

(b) Suppose A = {ab,cd) with V, = {a,c}, V, = {b,d}, and 7 =
(V,, V). Then (A, 7) is of type (1, 1), i.e., is completely balanced. We have
Joo =L fio = for = fi = 2. Also

F(Ap M) = (1 — )1 =A) + 201 — p) + 2p(1 = A) + 2pA
=1+p+A—pA

Hence hyg = hyg = hyy =1, ;= — 1.

In general it is difficult to obtain any intuition for the numbers Ay(4, 7).
There are two special circumstances, however, in which they have additional
interpretations. First define the reduced Euler characteristic x(8) of a complex
A by %(A) = x(8) — 1, where x(4) is the usual Euler characteristic. Equiva-
lently, %(8) = —1 + fy(A) — f;(d) + . ... In particular, x(J) = —1. Note
that if the reduced homology of 4 satlsfles H,(A) = 0 fori < § = dim A, then
(= 1P%(A) = dim, Hy(d) > 0.

3.5 PROPOSITION. Let (A, 7) be a balanced complex of type (a,, . . ., a,,). Let
S C [m], and defineb = (b,, . .., b,) by
b = a, ifi€S,
d 0, ifigs.

Let (Ag, mg) be the balanced complex defined by (3). Then hy(4, m) =
(—1°%(Ag), where § = b, + - - - + b, — 1 = dim Aq.

PrOOF. Letc = (¢;, - . -, ¢,) < b. For all i we have (3-%) = 1, since b, = g;
or b; = ¢; = 0. Hence from (6),

hy(8, ™) = ZfMﬂHPW‘

c<b

=(-1y 2 f(Bs)(=1) (withf_, (8) =1)

i=—1

= (=1)’%(s)- O

Note that if (A, 7) is completely balanced then any b < a satisfies the
hypothesis of Proposition 3.5. Hence in the completely balanced case every
hy(A, 7) may be interepreted as a reduced Euler characteristic (up to sign).

For our second alternative interpretation of the numbers (A, 7), we need
to define the notion of “shellability.” Our definition is slightly more general
than that sometimes given, e.g., [4]. If A is a pure §-complex, then a shelling of
Ais an ordering F,, F,, . . ., F, of the §-faces of A (so r = f;(4)) such that for
1<i<r-1,(F,UuFU:---UF)n F,,isanonvoid union of (§ — 1)-
faces of F,, . In exactly the same manner as McMullen’s interpretation [14, p.
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182] of A;(A) when A is shellable (McMullen uses g@, for our k), we obtain
the following result.

3.6 PrOPOSITION. Let (A, ) be a balanced complex where = =
Vis...sV,),andlet F\, F,, . .., F, be a shelling of A. For each i € [r], define
G, to be the unique minimal face of F, which is not contained in F, U F,
U~ U F_. (In particular, G, =B.) Define b(i) = (b,(i), . .., b, (i)) by
b,(i) = card G, N V. Then hy(A, ) is equal to the number of integers i € [m]
Sor which b = b(i).

PROOF. Let F;(A) be the Poincaré series for the pure subcomplex of A whose

maximal faces are Fy, F,, . . ., F;. Then by the definition of G, and b(i),
Fo) = By + — 20
i+1 =1 m a >’
* I, (1 = A)

so that
FAu, M) T (1-2)"= 3 200,
i=1 i=1

The proof now follows from the definition of A,(A, 7). [

3.7 ExaMPLE. Let (A, 7) be the balanced complex of Example 3.4(a). Then
(writing abc for {a, b, c}, etc.) abe, acd, ade, abe, cdg, dfg, def, bef, bfg, bcg is
a shelling of A. We have G, =&, G, = d, G, = e, G, = be, G5 = g, G4 = f,
G; = ¢f, Gy = bf, Gy = bg, G,y = bcg. Since V, = {a, c, e, f, g} and V, =
{b, d}, we have b(1) = (0, 0), b(2) = (0, 1), b(3) = (1, 0), b(4) = (1, 1), b(5) =
(1,0), b(6) = (1, 0), b(7) = (2, 0), b(8) = (1, 1), b9 = (1, 1), b(10) = (2, 1),
and we obtain the same values for A,(A, 7) as before.

Proposition 3.6 shows that Ay (A, 7) > 0 when A is shellable. However, it is
easy to see that all shellable complexes are Cohen-Macaulay, so that the
inequality (A, 7) > 0 is subsumed and generalized by Theorem 4.4 below.
For a survey of some aspects of the subject of shellability, see [4]. Examples
of shellable complexes include: (i) the boundary complex of a simplicial
convex polytope (but not necessarily a triangulation of a sphere), (ii) con-
nected graphs and triangulations of 2-cells, (iii) the independent set complex
and broken circuit complex [23, §7] of a finite matroid, and (iv) the complex
A(P) where P is an admissible lattice in the sense of [21]. Example (iii) is due
to Scott Provan and (iv) to Anders Bjgrner.

There is a somewhat weaker condition than shellability which implies that
hy(4, ) > 0. If A is a complex and if G C F are faces of A, then define the
interval [G,F] by [G, F]1= {F'|G C F' C F}. An upper partition of a pure
d-complex A is a collection [G}, F\], . . ., [G,, F,] of intervals of A satisfying:

W) [G, F]1 N [G, F] =@ if i # j,

@A=[G,F]lu---uU [G,, F],
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(iii) dim F; = § for all i € [r] (so r = f5(A)).
A complex A possessing an upper partiton is said to be partitionable. 1t is
easily seen that every shellable complex is partitionable. The converse is false.
In fact, if A = <ab, cd, ce, de) then A is partitionable but not even Cohen-
Macaulay. An upper partition of A is given by [, ab], [c, cd), [d, de], [e, ce].
We do not know if every Cohen-Macaulay complex is partitionable. Now

assume (A, 7) is balanced with # = (V,, ..., V,), and suppose
[Gy, Fi],...,[G,, F] is an upper partition of A. Then as a slight genera-
lization of Proposition 3.6, it is easily shown that if b = (4, ..., b,), then

hy(4, 7) is equal to the number of j € [r] for which card G, N V; = b, for all
i € [m]. Partitionable complexes were independently considered by Provan
[25, Appendix 4].

4. Balanced Cohen-Macaulay complexes. A balanced complex (A, 7) for
which A is a Cohen-Macaulay complex is called a balanced Cohen- Macaulay
complex. Our main aim is to give restrictions on the numbers A, associated
with a balanced Cohen-Macaulay complex which strengthens and refines
Theorem 1.4. Our results are based on the following fundamental algebraic
property of balanced complexes.

4.1 THEOREM. Let (A, m) be a balanced complex of type (ay, . . ., a,,), where
7=V, ..., V,) Let A stand for the complex A;, of (3), so that A, is just the
restriction of A to V,. Set A; = A, , and give this ring an N-grading by defining
deg x =1 for x € V,. Now give A, the N"-grading deg x = e, if x € V; (as
defined preceding Proposition 3.2). Suppose ¥, is an N-homogeneous system of
parameters for A;. Then ¥ =¥, U - - - U ¥, is an N"-homogeneous system
of parameters for A,.

Proor. If § € ¥, has degree a € N in 4,, then # is N”-homogeneous in 4,
with deg # = ae; € N". Since a, + a, + - - - + a,, = dim 4,, it remains
only to show dim, 4,/(¥) < oo, where (¥) denotes the ideal generated by all
6 € ¥.Now A4, is a quotient ringof 4, ®, 4, ®, - - - @, 4, s0

dim, 4,/ (¥) < ﬁ dim, 4,/ (¥,) < co.

i=1
This completes the proof. [J
4.2 CoROLLARY. Let (A, w) be completely balanced with v = (V,,...,V,).

Let 0, =2 ,.cy x. Then 0, . .., 8, is an N"-homogeneous system of parame-
ters for A,. Indeed, deg 0, = e;.

Proor. We have A4, = k[V;]/ I, where I, is generated by all products xx’
such that x, x’ € ¥, and x # x’. From this it follows that the single element
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6, is a system of parameters for 4;, and the proof follows from Theorem 4.1.
O

REMARK. When (A, ) is completely balanced, Corollary 4.2 gives an
h.s.o.p. for A, consisting of linear forms (i.e., of N-degree one). There is a
more general result which gives a necessary and sufficient condition for a set
of linear forms to be an N-h.s.o.p. for any 4,. Let d = dim A, = 1 + dim A,
and let

n
=2 ;X a; €E k1 <i<d,

be a set of d linear forms in A,. Then @, . . ., 8, is an N-h.s.o.p. if and only if
for every F € A (equivalently, for every maximal F € A) the d X (card F)
matrix (e;), where 1 < i < d and x; € F, has rank equal to card F. We omit
the proof.

Theorem 4.1 allows an easy proof of the next result.

4.3 THEOREM. Let (A, ) be a balanced Cohen-Macaulay complex of type

(ay,...,a,), and let S C [m]. Then (Ag, wg) is a balanced Cohen-Macaulay
complex of type (a, Aoy -5 a),s where S = {c,¢5...,¢} and ¢, < c,
<<,

ProoF. We only need to prove that Ag is Cohen-Macaulay. By Theorem
1.2, the desired result is of a purely topological nature. An almost equivalent
result was first proved by J. Munkres [15, Theorem 6.4] using topological
methods, and his proof straightforwardly extends to Theorem 4.3. However, it
may be of interest to give a simple alternative proof based directly on the
definition (1) of a Cohen-Macaulay ring.

Let 4, have the usual N"-grading defined by deg x = e; if x € V,. Let

¥Y=qy,U--- UV, be ahomogeneous system of parameters of the type
described by Theorem 4.1. Then by (1),
F(dy D) I (1 =A%) = F(4,/ (%), D). ™
v
Since Ag consists of those faces F € A for which x €V, U --- UV,

whenever x € F, it follows that F(4,, A) is obtained from F (A o AN) by
setting A, = 0if / & S and then substltutmg A forA . Let ¥ = U,;cs ¥, By
Theorem 4.1, ¥ is an h.s.o.p. for 4, . If deg (resp. degy) denotes degree in
A, (resp. A, ), it follows that [Tycy (1 — Ades ?) is obtained from [I,cy(1 —

)\d"g %) by the same substitution as above. Now note that A a/(¥s) =
A,/ (¥, X), where X consists of all x € V such that x & V,.for any i € S.
Since A,/(¥) is N™-graded, a k-basis for 4,/ (\If X) consists of those
monomials in 4,/(¥) whose support liesin ¥, U - - + U V. The remaining
monomials in A4,/(¥) are zero modulo X. Hence F (A /¥, X), A) is
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obtained from F(4,/(¥), \) by making once again the same substitution
A, —0if i & S and then A, — A;. Hence when we make this substitution in (7)
we obtain

F(Ay, A) II (1= A58y = F(4, ./ (¥5), A).
9V
By (1), it follows that 4,_is Cohen-Macaulay. [

We are now in a position to discuss the h-vectors of balanced Cohen-
Macaulay complexes.

4.4 THEOREM. Let (A, m) be a balanced Cohen-Macaulay complex of type
a=(ay,...,a,),witha=V,,...,V,). Let v, = card V,, and let T be a set
with 27 (v, — a;) elements, say T = {y;: 1 < i <m, 1 < j < — a} Then
there exists a multicomplex A on T with the following property: For every

(by, . .., b,) € N"™, the number of M € A satisfying
S M(y,) = b, foralli €[m], @)
j=1

is equal to hy(A, 7). Hence by (5),
V’ia’ M(y,) < a, foralli €[m]. )
j=1

Before proving this result, we first discuss its significance. According to
Theorem 1.4, the h-vector of a Cohen-Macaulay complex A is the f-vector of
some multicomplex A. Theorem 4.4 asserts that A must have certain special
properties when (A, ) is balanced of type (a, . .., a,,). It follows from (9)
that M (y;) < @, for all i € [m]. Thus each y; € T has a restriction as to its
multiplicity in any M € A. In general, given a vector ¢ = (¢}, ¢y . .-, C,)
where each ¢, is a positive integer or oo, there is a characterization analogous
to Theorems 1.1 and 1.3 for the f-vector of a multicomplex A on a set
S={yp, ...,y }suchthat M(y;) < ¢ for alli € [r]. This characterization is
essentially due to Clements and Lindstrom [3], although an explicit numerical
statement first appeared in [2] and is restated succinctly in [9]. Note that
Theorem 1.1 corresponds to the case ¢ = (1, 1,..., 1) and Theorem 1.3 to
the case ¢ = (00, o0, ..., ). At any rate, Theorem 4.4 shows that A must
satisfy the characterization with », — g, of the ¢’s equal to a;. But Theorem
4.4 actually asserts a much stronger result, viz., the elements of certain subsets
of T cannot have their combined multiplicities greater than a,. Moreover,
Theorem 4.4 places a restriction not merely on the ordinary A-vector of A, but
on the “refined” numbers Ay (A, 7). Unfortunately the condition which
Theorem 4.4 places on hy(A, 7) is not strong enough to characterize the
number Ay (A, 7) when (4, 7) is balanced of some fixed type (ay,...,a,)
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unless m = 1 (Theorem 1.4), so for m > 1 we do not have as complete a
result as Theorem 1.4.

The completely balanced case of Theorem 4.4 is of special interest and
deserves a separate statement. When (4, 7) is completely balanced, (9) implies
that each M (y;) < 1. In other words, A is actually a complex, not just a
multicomplex, and we obtain:

4.5 COROLLARY. Let (A, m) be a completely balanced Cohen-Macaulay com-
plex. Then the h-vector of A is the f-vector of some complex A and therefore
satisfies Theorem 1.1. (In other words, h(A) is not merely an M-vector, but also a
K-vector.) Even more strongly, there is an ordered partition (T, . . ., T,,) of the
vertex set T of A such that card T, N F < 1| for all F € A, i € [m]. Equiva-
lently, the 1-skeleton of A can be m-colored in the usual graph-theoretical sense.
Moreover, A can be chosen so that for any 0-1 vector b = (b, ..., b,,), there
are exactly hy(A, 7) faces F € A satisfying: T, N F = if and only if b, = 0.
O

As an example to show that the conditions on A given by Corollary 4.5 are
not sufficient to characterize the h-vector of a completely balanced Cohen-
Macaulay complex, let A be the complex on T = {x,, . .., x,;} with maximal
faces {x), x,}, {x3, x4}, {x5}, {x6}, {x7}. Let T\ = {x,, X3, X5, Xg, X7}, T, =
{x5, x4}. Then (A, ) would satisfy hgyy =1, hyg =5, hyy =2, h;; =2. In
particular, (A, 7) would be of type (1, 1) (i.e., a bipartite graph) with 6 vertices
and 10 edges, and no such graph exists.

We remark in passing one additional property of completely balanced
Cohen-Macaulay .complexes (A, ). Namely, 7 is uniquely determined up to
order. In other words, if (A, o) is also completely balanced, then the entries V;
of 7 are a permutation of those of 0. Thus the 1-skeleton of A is a so-called
“uniquely m-colorable graph.” The proof is omitted. The corresponding
statement for arbitrary completely balanced complexes is false, as shown by
the example A = <{ab, cd>.

PrROOF OF THEOREM 4.4. If K is an extension field of k, then the ring
A, ®, K has the same Hilbert function as 4, and is Cohen-Macaulay if and
only if 4, is Cohen-Macaulay. Hence we may assume k is infinite. By
Theorem 4.1 there is an N™-homogeneous system of parameters 4,, ..., 6,
d=a + -+ +a,=1+dimA) for 4,, and our assumption that k is
infinite implies we can choose them so that exactly a; of them have degree
e, €EN". Let B, = A4,/(0,, ..., 6,). Hence by (1) and our assumption that
(A, ) is Cohen-Macaulay, we have

F(A A) ﬁ (1 = A)*= F(By, A).

i=1
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Thus by the definition of A, (A, 7), we have
F(By, A) =2 hy(A, m)A". (10)
b

Now suppose V; = {x;, ..., x, }. Let y; denote the image in B, of x;.
Since the g; parameters of degree e; are linearly independent, it follows that
B, is generated as a k-algebra by the elements y;, 1 <i<m, 1 < j < —
a,. Hence B, has a k-basis consisting of monomials in these y;. A simple
argument due to Macaulay [13] and also given in [24, Theorem 2.1] shows
that we can pick this k-basis to be a multicomplex A on the set of y;. By (10),
it follows that the number of M € A satisfying (8) is A,(A, 7), completing the
proof. []

5. Posets and Mobius functions. In the special case that A = A(P) for some
poset P, our previous results are closely related to certain well-known
concepts associated with P. In this section we will sketch this relation.

Let P be a (finite) pure poset with rank function p, i.e., p(x) is the
cardinality of a saturated chain of P with maximum element x. Let P denote
the poset obtained by adjoining a minimum element 0 and maximum element
1toP,ie,0< x <1forall x € P. Let p denote the Mobius function of P,
as defined in [17]. Thus, u is a function from {(x, y) € PXxXP x<yjtok
satisfying

p(x, x)=1 forallx € P,

> " u(x,y) =0 for all fixed pairs x < zin P.

x<y<z
We also write p(x) for p(0, x) and p(P) for u(0, 1).

If dim P = § (i.e., every maximal chain of P has cardinality § + 1) and
S C [8 + 1], define a(P, S) to be the number of chains x; < x, < - - - < x,
in P such that {p(x,), ..., p(x,)} = S. Thus a(P, &) = 1, a(P, {i}) is the
number of elements in P of rank i, and a(P, [6 + 1]) is the number of
maximal chains of P. Equivalently, a(P, S) is the number of maximal chains
of the poset

Ps={x€P:p(x)ES}
or equivalently, the number of maximal chains of the poset Py consisting of
P, with 0 and 1 adjoined. Now for S C [ + 1] define

B(P, S) — E (_ l)card(S-T)a(P’ T)
TCS
Equivalently, a(P, S) = 2. B(P, T). It is an immediate consequence of
“Philip Hall’s theorem™ [17, Proposition 6] that

B(P,S) = (—1)""" % u(Ps). (11)
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The numbers a(P, S) and B(P, S) were studied for various classes of posets
in 18], [19], [21], where they were shown to have many interesting properties.
For instance, if P is a semimodular lattice then B(P,S)>0forallS C[6+
1]. It comes as no surprise that this result may be regarded as a consequence
of the fact that semimodular lattices are Cohen-Macaulay, and Cohen-
Macaulay posets seem like the right context for obtaining such results.

Many well-known numerical invariants of (pure) posets P can be expressed
in terms of the basic numbers B (P, S). For instance, the “Whitney number of
the second kind” W,(P) is defined by w,(P) = card{x € P: p(x) = i} and is
clearly given by

Wi(P) = a(P, (i}) = B(P, (i}) + 1.
The “Whitney number of the first kind” w,(P) is defined by w.(P) =
2 (=i M(x), and it is not hard to see that
(=Dwi(P) = B(P, [i = 1]) + B(P, [1]).

Another commonly studied invariant is

(=" 2 ) u(x 1) =B(P, [8+1] = (i}) + B(P, [8 + 1]).

p(x)=i
A related invariant of P is the zeta polynomial [20, §3]. If m €N, definAe
Z(P, m) to be the number of chains 0 = x, < x;, < --- < x,=11in P.

Thus Z(P,0) =0, Z(P,1) = 1, and Z (P, 2) = card P. It is easily seen that
Z (P, m) is a polynomial function of m of degree § + 2. It follows that there
are constants ey, ..., e, and hg ..., hs,; such that Z(P, m) =
2t e () and

(1=N""3 Z(@P,mA™ =Nhg+ A+ - - + by, A°HY). (12)

m=0

It is not hard to see that

e= 2 a(P,S) and K= 3 B(P,S).
scls+1] scls+1]
card S=i card S=i
We now discuss the relationship between the numbers 8(P, S) and the
complex A(P). We have already noted in §2 that when P is pure of dimension
8, there is a standard ordered partition 7 = (V,,..., Vs, ,) defined by
V= {x € P: p(x) = i} which makes (A(P), m) completely balanced. Now
Philip Hall’s theorem is equivalent to the formula

p(xy) = x%Ax»),  x<y,

where (x,y) = {z € P: x < z < y} (see [17, p. 346]). In particular, u(Pg) =
X(Pg). It is then an immediate consequence of Proposition 3.5 and (11) (or
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otherwise) that Ay (A(P), ) = B(P, S), where b= (b, ..., b5, ), b;=11if
i€ S, b=0if i & S. Hence we see that if P is a Cohen-Macaulay poset,
then the numbers B(P, S) = h,(A(P), 7) satisfy the stringent requirements of
Corollary 4.5. In particular, we obtain new restrictions on the Whitney
numbers of the first and second kind of a Cohen-Macaulay poset.

Now note that if (x, y) is an open interval of P, then (x, y) is the link of a
face of A(P) of the form x, < x, < -+ <x,=x<y =y, <y,
< - -+ <y, where p(x;) = i and p(y;) = § + 2 — j. Hence by Theorem 1.2,
(x,y) is also a Cohen-Macaulay poset. The fact that B8(P, S) > 0 for any
Cohen-Macaulay poset P then implies the following: Let P be a Cohen-
Macaulay poset, and let (x, y) be an open interval of length / in P. Then
(= 1)u(x,y) > 0, where pu is the Mdbius function of P. Indeed, (— 1)’u(x, »)
is the /th Betti number (with respect to the field k) of the complex A(x, y). In
the terminology of poset theory, the Mobius function of P “alternates in
sign.” Since by Theorem 4.3 each P is Cohen-Macaulay when P is, it follows
that the Mobius function of each Pg also alternates in sign [23, §8].

It should also be pointed out that when P is any pure poset with the
standard ordered partition #, then the numbers a(P, S) are identical to
SHA(P), m), with b;=1if i€ S, b,=0 if i &S. The zeta polynomial
Z(P, m) is just the function H(A, m — 1) of (2), and the vector
(hg, hys - - ., hs, ) of (12) is just the A-vector of A(P).

There are two main classes of Cohen-Macaulay posets known: (i) semi-
modular lattices, or more generally, semimodular posets. (A poset P is
semimodular if for every closed interval I of P, and for every x, y in I such
that x and y cover some element u of I, there is a v € I which covers both x
and y. If P is a lattice, then it suffices to consider only the case [ = P) (ii)
The lattice of faces of a regular cell complex (e.g., a simplicial complex or the
boundary complex (not necessarily simplicial) of a convex polytope) whose
underlying space X satisfies Theorem 1.2(iii). In addition, if P and Q are
Cohen-Macaulay, then so is their ordinal sum P & Q. (P © Q is the partial
order on the disjoint union of P and Q defined by x < y in P @ Q if (i)
x < yinP,or(ii))x < yin Q, or (iii) x € Pand y € Q.) Indeed, A(P & Q)
is just the join A(P) * A(Q), and Ay pag) = Aac) ® Anoy

When P is an admissible lattice there is a combinatorial interpretation of
the numbers 8(P, §) which implies they are nonnegative [21]. To give the
reader the flavor of this result, we mention the interpretation of S(P, S)

when P is the lattice of subspaces of an n-dimensional vector space over
GF(g). In this case,

B(P,S)=224q", (13)
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where the sum is over all permutations 7 = (a,, ..., a,) of [n] satisfying
§=1{i: 4> a.,}, and where i(r) = card{(i,/): i <j and q; > a;}. This
suggests that admissible lattices are Cohen-Macaulay, and indeed this has
been shown by Anders Bjorner (to be published). It would be of considerable
interest to obtain results analogous to (13) for other classes of Cohen-
Macaulay posets, such as the semimodular posets which are not lattices, or
the lattice of faces of a convex polytope.
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