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In the preceding paper Dominique Foata mentions the result,
implicit in the work of Laplace, that the volume of the region
Rk ©f the unit hypercube [0,17" contained between the two
hyperplanes ¢ x; = k-} and 3F x; = k is given by 1 A:’Pk s where

is an Eulerian number, On the other hand, itﬁ-lf_o ows from

the well-known combinatorial interpretation of A} as the numbe
of permutations of {1,2,..4,n} with k rises (counting one rise
at the start) that i Api is also the volume of the set S5, of al
points (xl, cens )HTE ro, 1= for whi;q::h x; < Xj+] for exactly k
values of "i (including by convention i = of + Foata raises the
problem of whether there is some explicit measure-preserving
map o : [0,1]" o [0,1]7 which takes Sy onto Rpg , except
possibly on a set of measure zero, We claim that such a map is
given as follows ; Define @i [0,1]% 4 [0,17" by
:P(xlso--sx-n) = (Yl....,yn) » where
{xi-l - X, if X <X g

+ x, - X. i . .
1 .9 - % 1fxl>x1_1

¥; =

Here we set x3 = 0, and we leave @ undefined on the set of
measure zero Consisting of points where some x;_; = x; . If
(% )eS then 3 y; = k-x_ . Hence ( }eR

l"'.’)&l. nk ¢t Yi . Yisenas ¥V c P
Moreover, in each of the 2n-~1 nregions of 1[(}, l]nn1:‘lef:e:|f'1.}<
mined by whether x; <x; | or x;>x; 7 for 2<ign, ¢ is
an affine transformation of determinant (-1)", Hence ¢ is
measure-preserving, Finally, the inverse of ¢ is defined
‘except for the set of measure zero where some yl-i'yz'h oo tyg

s an integer) by x; = 1+ [Y1tyateestyi] « ¥1~Y2meae-¥i «
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1. SIMPLICIAL COMPLEXES

Let A be a finite simplicial complex (or complex for short) on
the vertex set V = {x;,...,xn}. Thus, A is a collection of sub-
sets of V satisfying the two conditions: (i) {x4} € A for all
x; €V, and (1i) if F e A and GC P, then G £ A. There is a
certain commutative ring Aﬁ which is closely associated with the
combinatorial and topological properties of -A. We will discuss
this association in the special case when Ap is a Cohen-Macaulay
ring. Lack of space prevents us from giving most of the proofs
and from commenting on a number of interesting sidelights. How-
ever, a greatly expanded version of this paper is being planned.

Let A be a complex (= finite simplicial complex). If P £ A,
we call F a face of A, If F has i + 1 elements (denoted card
F=1i+41), we say dimF=1i. Letd =38 + 1 = max {card F|F e A}.
We write dim A = § = d - 1. If every maximal face of A has di-
wension &, then A is called pure (or homogeneous by topologists).
Let £; be the number of i-dimensional faces of A. Thus f£5 = n.
The vector £ = (fn,fl,---sfs) is called the f-vector of A. Now
define a function on the non-negative integers by

1, m=0
H(A,m) =4 &
o 1iZo £;(%' m >0 w

Define integers hi by

x
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a-»% 7 BAmA= | B A
w=0 1=0

It is easily seen that hj = 0 if £ > d. The vector h=(hn,h1,...,hd)
is called the h-vector of A. Knowing the f-vector of A is equiv-
alent to knowing its h-vector.

Let |A| denote the underlying topological space of A, as de-
fined in topology. The notation A = <abe, acd, bed, bde> means
that the maximal faces of A are {a,b,c}, {a,c,d}, {b,c,d}, and
{b,d,e}. Tor this A, the f-vector is (5,8,4}, the h-vector is
(1,2,1,0), and |A| is a 2-cell.

Let k be a field, fixed once and for all. All homology groups
appearing in this paper are taken over the ccefficient field k.

Let A = k[x,,...,xn] be the polynomial ring over k whose variables
are the vertices of A. Let Ip be the ideal of A generated by all
squarefree monomials Xi,Xji,...Xij such that {Xi,,...,Xij} ¢ A

For instance, if A = <abg, acd, bed, bde>, then I, = (ae,ce,abd).
(We only need to include the minimal "non-faces'" of A as genera-
tors of I,, since Ip is an ideal.) Let Ap = A/Ip. This ring was
first considered Iy M. Hochster (who suggested it to his student
G. Reisner {10] for further study) and independently by this
writer [14] [15}. In order to study the algebraic properties of
AA, we will require some concepts from commutative algebra. We
will survey these concepts in the context of "standard k-algebras,"
although much of what we say can be generalized considerably.

2. BRETTI NUMBERS OF RINGS

Let A = k[x,,...,%n] as above, and let I be any homogeneous ideal
of A (i.e., T is generated by-homogeneous polynomials). Set R=4/I.
We call such a ring R a standard k-algebra. In particular, R is
graded as R = R +R,+++-, where Rj is the k-vector space of homo-
geneous polymomials of degree i conmtained in R. Thus R, = k, R,
generates R as a k—algebra, RiRy C:Ri+j, and dimy Ri < «. The
Hilbert function H(R,m) of R is defined by H(R,m) = dimy Ryp. It
was first shown by Hilbert that H(R,m) is a polynomial for m
sufficiently large, the Hilbert polynomial of R. The Krull dimen-
sion of R, denoted dim R, can be defined to be one more than the
degree of the Hilbert polynomial of R.

If R = A/I is a standard k-algebra, then a finite free resolu-
tion of R (as an A~module) is an exact sequence
0 —> Mj —> Mj-p —> *+* —> Mg —> R —> 0 of A-modules, where each Mj
ig a free A-wmodule of finite rank. A theorem of Hilbert implies
that a finite free resolution of R always exists. There is a unigue
such resclution which minimizes the rank of each Mj; this resoiu—
tion is called minimal. Define the i-th Betti number B{=Bi(R) of
R to be the rank of the A-module Mj appearing in the minimal free
resolution of R. In particular, By=1 and B, is the minimal number
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of generators of I. In the language of homological algebra,
A . .
= 1 21.
By dimk Tori(R,k). For further 1nf0rmat10n, see [12}

Example. Let A = <ab,bc,ac,ecd>, so Ip = (ad,bd,abc). Then
the minimal free resolution of AA has the form O —> M, —> M; —
Mg —> Ap —> 0, where rank M, = 1, rank M; = 3, rank M, = 2. With
an appropriate cheice of bases {X} for M, {Y13Y2-Y3} for M;, and
{z,,2,} for M,, the maps are given by X+> 1, ¥, +> adX, Y, > bdX,
Y, > abeX, Z, V> bY; - a¥,, Z; F> beY¥; - dYa. We have
Bo = 1, By = 3 B, =2, and B4 = 0 if 1 > 3.

If R is a standard k-algebra, let h be the largest 1nteger i
for which B{(R) # 0. It is known that n - d < h £ n, where

= dim R and n is the number of variables in A. The integer h

is the homological dimension of R (as an A-module), denoted hd, R
or just hd R. If hd R = n - d then R is said to be a Cohen-
Macaulay ring. The integer Bp-q is then called the type of R, de-
noted type R. If R is a Cohen-Macaulay ring of type one, then R
is said to be Gorenstein. In this case, one can show By = By_i-
where h = hd R. If R is Cohen-Macaulay, it is known that

ExtK(R,A) = (0 unless i = hd R. Letting Q(R) = ExtR(R,A), where

= hd R, this means that if we "dualize" the minimal free resolu-
tion of R by applying the functor Homa(*, A), then we obtain a
minimal free resolution for §I(R), regarded as an A-module. £(R)
is called the canonical module of R. Given that R is Cohen-
Macaulay, one has that R is Gorenstein if and only if Q(R) = R
Thus the minimal free resolution of a Gorenstein standard
k-algebra is "self-dual”, a much stronger result than Bj = By_;-

3. CHARACTERIZING hILBERT FUNCTIONS

We now consider the relationship between the structure of R and
its Hilbert function H(R,m). A non-void set M of monomials
xOyBees is called an order ideal of monomials if whenever u £ M
and v divides u, then v € M. A finite or infinite sequence

h = (hy,h;,+..) of integers is called an O-sequence if there exists
an order ideal M of monomials containing exactly hj monomials of
degree i. For instance, (1,3,2,2) is an O-sequence, since we can
take M = {1, %, v, z, x?, xy, x*, x2y}. A finite order ideal M
of monomials is said to be pure if the maximal elements of M
(ordered-by divisibility) all have the same degree. We define a
pure O-sequence in the obvious way. For instance, (1,3,1) is an
O-sequence but not a pure O-sequence. Clearly, i1f (hg,h;,...) is
an O-sequence, then hy = 1 and

hy +1-1
0<h, < , (3)
i
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since the corresponding order ideal M has h, variables actually

. hy+i
appearing, and there are [ i
variables. An explicit numerical condition for a sequence
(hy,hy,...} to be an (—sequence appears in [15}, though the crux
of this result was first proved by Macaulay. No similar charac-
terization of pure O-sequences is known.

The next result characterizes the Hilbert function of a
Cohen-Macaulay standard k-algebra. This result 15 due to
Macaulay, but is first stated in "medern” terminology in [14].

See [16, Cor. 3.10] for a proof.

Theorem 1. Let H be a Function on the non-negative integers,
and let k be any field. Then H is the Hilbert functiom of a
Cohen-Macaulay standard k-aigebra of Xruyll dimension d if and
only if the sequence (h,,h;,...} defined by

_1) monomials of degree i in h,

a-0% 7 BH@®= § wat (4)
© m=0 i=0 *

is an O-sequence with finitely many nmon-zero terms.
If R is a Cohen-Macaulay standard k-algebra of Krull dimeno-
sion d and Hilbert funetion H, then we call the sequence
h = (hy,hy,...) defined by (4) the h-vector of R. If hy = 0 for
i >-g, we also write h = (hy,h;,...,hg) for this h-vector. )
We are now in a position to define a concept intermediate
between Cohen-Macaulay and Gorenstein which will be of interest
to us. Suppose that R is a Cohen—Macaulay standard k-algebra

with h-vector (hy,h;,..-,hg), hg # 0. It is easy to see that
hg ¢ type R. If by = type R, then we say that R is a level ring,
and we call (hﬂ,hl,...,hs) a level sequence. A level ring with

hg = 1 is just a Gorenstein ring, and in this case we call
(hy,h;,...,hs) a Gorenstein sequeace. Clearly, every level
sequence is an O—-sequence. Unlike the Cohen-Macaulay case, no
characterization of level sequences, or even of Gorenstein se-
quences, Is konown. The next result gives some information about
level sequences, though undoubtedly stronger restrictions can be
obtained.

Theorem 2. Let h = (h,,h;,...,hg) be a2 level sequence
with hg # 0 .

(i} 1If i and j are non-negative integers with i + j £ s, then
hi < hjhi+j. In partieular, if h is a Gorenstein sequence
then hj = hg.i- )

(1i) The vector (hg,hg-1,...,hy) is a sum of hg O-sequences.
(iii) If D < t £ s, then (hy,h;..--,he) is a level sequence.

For instance, {(1,4,10,2) is an O~sequence but by Theorem 2(i)
is not a level sequence. Similarly, (1,4,2,2) is an O-sequence
but by Theorem 2(ii) is not a level sequence. On the other hand, :
{1,3,5,4,5,3,1) is an O-seguence but not a Gorenstein sequence,
although this example is not covered by Theorem 2, A character-
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ization of Gorenstein sequences with h, « 3 appears in [16, Thm.
4.2]. Finally, we remark that it is easily seen that every pure
(O-sequence is a level sequence but not conversely, e.g., (1,3,1).

4. APPLICATIONS TQO SIMPLICIAL COMPLEXES

We are now in a position to apply the above results on standard
k-algebras to those of the form Ap. We begin with s simple re-
sult whose proof appears in {15].

Theorem 3. Let A be a compiex with d = 1 + dim A. Then
d = dim Ap, =nd the Hilbert function H(Ap, m) is the function
H(A, m) of (1).

Corellary. Suppose Ap is Cohen-Macaulay. Then the h-vector
of & is equal to the h-vector of Aj. Consequently, the h-vector
of A is an O-sequence.

The above corcllary raises the question of determining for
which A& is Ap Cohen-Marsulay, or more generally of computing
hd Ap. The answer to this question follows from the following
unpublished result of M. Hochster. First we require some nota-
tion. Let V be the set of vertices of A, and let W V. Let Ay
denote the restriction of A to W, i.e., Ay = {F g A|F Cw}.
Throughout this paper, the notation H (respectively, H) denotes
homology (respectively, reduced homelegy), either simplicial er
singular (whichever is appropriate), over the coefficient field k,
with the conventicns ﬁ_l(F) = 0 unless I = ¢, ﬁi(¢) =0 if i > 0,
H ,(¢) = k, Hi(T) = 0 if i < -1.

Theorem 4. The Betti numbers of Aﬂ are given by

B, (A = ) dim ﬁj_i-l(ﬂw’ ,

where the sum is over all subsets W of the set V of vertices of
A, and where card W = j.

Theorem 4 yields a topological criterion for computing hd Ap
and therefore determining whether or not Ap 1is Cohen-Macaulay,
but this criterion is quite cumbersome to use. A simpler condi-
tion for Ap to be Cohen-Macaulay was given by G. Reisner [10}
prior to the discovery of Theorem 4. The equivalence of (i) and
(ii) below is Reisner's result, while the equivalence of (ii) and
(iii) is a simple exercise in topology. First recall that if
F £ A, then the link of F is defined by ’

Lk F={c e alPf{}e=¢ and FIJG e A}.

‘In particular, £& ¢ = A.
Theorem 5. The following three conditions are equivalent.
(i) Ap is Cohen-Macaulay. -
(1i) For all F ¢ A (imcluding F = ¢), H;(Lk F) = 0 if
i # dim £k F.
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(iii) If X = |A|, then Hi(X) = Hj(X,%X-p) = 0 for all p € X and
i # dim X.

When Ap is Cohen—Macaulay, we call A a Cohen-Macaulay comp-
lex. The property of being a Cohen-Macaulay complex depends on k.
It follows, however, from the Universal Coefficient Theorem that
A is Cohen—Macaulay over some k- if and only if it is Cohen-
Macaulay over the rationmal numbers.

Note that Theorem 5 implies that the guestion of whether or
not A is Cohen-Macaulay depends only on [A| (and the coefficient
field k). Recently J. Munkres has shown, using Theorem 4, that
for any 4 the integer n-hd A, depends only on |&| (and k).

If b = (h,,h;,-..,hd) is the h-vector of a Cohen—Macaulay
complex A, then by the corollary to Theorem 3 and (3),

hy < (n—d:i—l)

»  When ial is a sphere, this condition is

equivalent to a condition on the f-vector of A of the form

£; £ ¢;(n,d), where ¢;{n,d) is a certain explicit number
1 1

depending on H on i,n, and d. A complex satisfying the

above condition on h; is sald to satisfy the Upper Bound Conjec-

ture (UBC). If X = [A]| is a topological manifold with or without

boundary, then Hy{X, X-p) = 0 for all p £ X and i < dim X. Hence

by Theorem 5, A is Cohen-Macaulay if and only if H;(X) = 0 for

i < dim X. In particular, A is Cohen-Macaulay if A is a sphere

or cell. Thus the UBC helds for spheres and cells. For further

details, see [15]. An example of a complex which fails to satis-—

fy the UBC is <abed,ae,be,ce>, whose h-vector is (1,1,0,-3,2).

No example is known of a complex A which fails to satisfy the UBC

for which |A| is a manifold with or without boundary.

5. CONSTRUCTIBILITY AND SHELLABILLTY

We now give a result which shows that the corcllary to Theorem 3
completely characterizes the h-vector of a Cohen-Macaulay complex.
We say that a complex A is constructible (a concept due to M.
Hochster) if it can be obtained by the following recursive pro-
cedure: (i) any simplex is comnstructible, and (ii) if A' and A"
are counstructible of the same dimension &, and if a'fﬁ A" i3 con-
structible of dimension 8-1, then A'{J A" is constructible. A
straightforward Mayer-Vietoris argument, combined with Theorem 5,
shows that A is Cohen-Macaulay if it is comstructible. (A simple
direct algebraic proof can also be given; see [14}.)

Suppose that in building up a constructible polytope, one
can always take A" to be a simplex. Equivalently, A is pure and
its maximal faces can be ordered F;,Fs,...,F;, so that for
i=2,3,...,u, we have that (Fi{J F2(J *** U Fi—1) () F{ is a non-.
void union of faces F of Fy satisfying dim Fj - dim F = 1. Thea -
B is said to be shellable. This differs somewhat from other de-
finitions of “shellable" in the literature, in that we place no
restrictions on when (F({J +++\JFj_1)fV Fi can consist of all
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faces F of F; of codimension one. See 5] for an interesting ac-
ecount of shellable complexes.

Thecrem 6. Let h = (hg,h;,...,hd) be 2 sequence of integers,
The following four conditions are equivalent.

(i} h is an O-sequence,

(ii) h is the h~vector of a CUohen~Macaulay complex A,
(iii} h is the h~vector of a constructible complex A,
{(iv) h is the h~vector of a shellable complex A.

The most important examples of shellable complexes are the
boundary complexes of simplicial convex pelytopes. We do not know
an example of a constructible complex which is not shellable.
However, in Section 7 are examples of constructible complexes for
which 1t is uneclear whether they are shellable; and it seems.quite
likely that a constructible complex need not be shellable.

6. GORENSTEIN COMPLEXES

If Ap is Goreustein them A is called a Gorenstein complex. (As
usual, this depends on k). We now give a characterization of
Gorenstein complexes which can be deduced from Theorem 4 by using
either topeological or cowbinatorial arguments. Recall that if T
and A are complexes on disjoint vertex sets V and W, then their
join TxA is a complex on V{J W defined by I'sa = {F{JG|F e T
and G g A}.

Theorem 7. A is a Gorenstein complex if and only if it is a
join oxI', where ¢ is a simplex and where

Hi(X) = 0 for i < §; dim, Ho(X) =1
Hj (X,X-p)=0 for i < §; dimy HG(X,X-p)=1 for all p ¢ X, (5)

where X = |I'| and § = dim X.

Since (5) automatically holds when X is a manifold, we see
in particular that A is Gorenstein if X is a sphere, a result
first proved by M. Hochster (unpublished). We also remark that
it is possible for A to be Gorenstein (over any field k) without
¥ being a topological manifold, e.g., when X is the suspension of
Kneser's "dodecahedral space.”

Suppose (hg,h;,...,h3) is the h-vector of a Gorenstein com-
plex A. We may assume that hq % 0, since if hg ¥ O and hgyy = O,
then (kp,...,hg) is the h-vector of the complex I' of Theorem 7.
By Theorem 2(ii}, we then have hjy = hy_j. This relation is
equivalent to a condition on the f-vector of A known as the Dehn-
Sommerville equations.

An outstanding open problem in the theory of convex poly-
topes 1s to characterize the h-vector (hg,...,h3) of the boundary
complex cf a simplicial convex d-polytope. MeMullen's still open
"g-conjecture" [9] states that the desired.characterization is
given by the following two conditions:
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hi = hd—i for all i,

. (hu’hl—ha’hz-h1""’he_h

(6)
1) is an O-seguence,
€l where e = [d/2].
We ask whether (6) also holds when |A| is a sphere or evenm
more generally when A is Gorenstein. There are special cases for
which it is possible to verify {(6). ¥For instance, in [9] {t is
shown by geometric means (Gale diagrams) that if |A| is a sphere
satisfying n £ 4 + dim A, then (6) holds. This is alsec an im-
mediate consequence of Theorem 7 and [16, Thm. 4.2], and im fact
one needs only to assume that A is a Gorenstein. complex satisfy-
ing '€ 4 + dim A. The next thegrem gives another such result.
It is an easy consequence of Theorem 4 and the corollary to
Theorem 3. First we require a definitiou. If |A| is a 8-dimen-
sional manifold with boundary, then the boundary complex dA of A
is the complex whose maximal faces are the (8-1)-dimensional
faces of A which lie on only one S8-dimensional face. Thus
|aa]l = 3]A], so if |A| is a S-dimensional cell, then [3Alis a
(6-1)-dimensional sphere.

Theorem 8. Suppose that [A} is a d- dimensional manifold with boum-
dary such that A is _Cohen-Macaulay and 3A is Gorenstein {e.g., |&| is
a cell), and such that any face F € A-3A satisfies dim F > (d-1).
Then the h-vector (h shyseea,hg) of 94 satisfies 6).

A result of Klee [8] implies that if A is Goremsteiln with
h-vector (hg,...,hq), hg # 0, then h; + h, + *** + hg.1 > (d-1)h;.
In [16] it is shown that (1,13,12,13,1) is a Gorenstein sequence.
It follows that a Gorenstein sequence nead not be the h-vector of
a4 Gorenstein complex, in contrast to the Cohen-Macaulay case.

As a generalization of Theorem 7, we can ask for a descrip-
tion of the canonical module Q(A ) when Ap is Cohen-Macaulay. If
|A| 1s a manifold with boundary, Y there 1s overwhelming evidence
(but not yet a preoof) that Q(Ap) is isomorphic to the ideal of
Ap generated by the squarefree monomials xj X, so«x{ - for which

X reeookig} € B - A 3

7. INDEPENDENT SETS AND BROKEN CIRCUITS

We now discuss some applications of Cohen-Macaulay complexes to
the theory of pregeometries (or "matroids") in the sense of
Crapo-Rota [4]. A finite pregeometry T consists of a finite set
V of vertices {or "points"), and a collection A of subsets of V,
called independent sets, such that (i) A is a complex, and (ii)
for every subset W of V, the induced complex Ay is pure. To
avoid trivialities, we will also assume {v} € A for all v ¢ V, so
we may identify T with A. We call A a G-complex. For example,
if V is a finite set of points in a vector space and A is the
collection of linearly independent subsets of ¥, then A is a
G-complex. If V is the set of edges of a finite graph G and A is
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the collection of subsets of V containing no cycle, then A is a
G-complex. For further examples, see [4]. We also refer the
reader to [4] for any unexplained terminology in this section.

It is easy to see, using the so-called "Tutte-Grothendieck
decomposition™ [2], that a G-complex A is constructible and is
therefore Cohen-Macaulay. Using Thecrem 4, one can obtain a
simple expression for the Betti numbers Bi(Aﬁ). We need to com—
pute N = dimg Hs .y 9 (Ay) where WV and card W = j. Let

§ = dim Ay. Now Ay 1s a Cohen-Macaulay complex, so N = { unless

j=i-1 = 6. If j-i-1 =4, then N = (-1)5(X(Aw)—l), where y is the
Euler characteristic. It is known that x(4y) ~_1 = O unless V-W
is a flat {closed set) of the dual pregeometry A. When V-W is a
flat, then N = |{(V-W,V)|, where | is the Mobiug function (im the
sense of {11]) of the lattice L(A) of flats of A. Moreover,
(card W)-8-1 is just the corank of V-W in A, i.e., the length of
the longest chain between V-W and V in L(A). - Hence we obtain:

Theorem 9. Let A be a G-complex on a vertex set V. Then
B; (Ap) = E|u(X,V)l, where X ranges over all flats of & of corank 1i.

Compare this with the so-called "Whitney number of the first
kind" L{li(¢,X)|, where X ranges over all flats of A of rank {i.
Theorem 9 implies that when A is a G-complex, the type of Ap is
[{i($,¥)}. On the other hand, if {hy,h;,...,hq) is the h-vector
of any complex A satisfying dim A = d-1, then an easy computation
reveals hy = (~1)d-1({x(A)-1). Hence if A is a G-complex then
hg = |fi($,V)| = type &y . There follows:

Coroliaty. If A is a G-complex, then Ap 1s a level ring of
type |ﬁ(¢,v)|. Hence the h-vector of A is a level seguence.

Not every level sequence is the h-vector of some G-complex,
e.g., (1,3,1), and it would be of considerable interest to
characterize such h~vectors. In this direction, we have:

Conjecture. If A is a G-complex, then the h-vector of A is
a pure O-sequence (as defined in Section 5).

Closely related to G-complexes are the "brokenm circuit com-
plexes." Let X3,Xz,-».,%, be an ordering of the vertices of a
pregeometry A. A broken circuit is obtained by deleting the
highest labeled elemwent from any circuit {= minimal dependent set)
of A. The broken circuit complex (or BC—complex) of A with res-
pect to the ordering x,,...,X; is the complex whose faces are the
subsets of V which do not contain a broken circuit., Let A .denote
the broken circuit complex of A (with respect to the cordering
X1see9XKp)s Lf (fn'f1""’f6) is the f-vector of A, where

§ = dim A, then py(3) =A% - g8 4 el - (-1)5f5 is the

characteristic polynomial of A and is thus independent of the
ordering chosen for the vertices (see [11, §7]). If A counsists
of the acyclic sets of edges of a graph G, then lc-pa(l) is the
chrematic -polynomial of G, where ¢ is the number of components of
G. Hence the theory of Cohen-Macaulay complexes is applicable to
chromatic polynomials,
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It is easy to see that a BC-complex A is constructible and
therefore Cohen-Macaulay. Hence the h-vector of A is an O~
sequence. This improves an observation of Wilf [17, Thm. 2], who
was the first person to study broken circuit complexes qua comp-
lexes. For additional information om BC-complexes, see [3].

The fact that the h~vector of a BC-complex A is an
O-sequence by no means characterizes such h-vectors, and it would
be extremely interesting to obtain additional restrictions by a
more detailed analysis of Ap. It has been conjectured that the

f-vector (fu""’fﬁ) of a BC-complex is unimodal, i.e., for some

iwe have f) < £, < «»« < £y, £ 2 £, 2 **- 2 fﬁ' Unfortunate-

ly, this fact does not follow simply from the h-vector being an
O-sequence. For instance, the vector h = (1, 500, 55, 220, 713,
2002) is an O-sequence, and the corresponding f-vector (with
d=5) is £ = (1, 505, 2065, 3395, 3325, 3493). Hence, by
Thecrem 6, f is the f-vector of some Cochen-Macaulay (or even
shellable} complex A. We remark that without Theorem & it is
difficult to find an example even of a pure complex whose f-
vector is not unimodal.

8. COHEN-MACAULAY POSETS

Let P be a finite poset (= partially ordered set). Let A(P)
denote the complex whose vertices are the elements of P and whose
faces are the chains (totally ordered subsets) of P. If A(P) is
a Cohen-Macaulay complex, then we call P a Cohen—-Macaulay poset.
(As usual, this depends on k.)} There are two main classes of
such posets known. (i) A finite semimodular lattice is a
Cahen-Macaulay poset. This follows from Theorem 5 and work of
Folkman [7] and Farmer [6]. More generally, we conjecture that
a finite admissible lattice in the sense of [13] is
Cohen-Macaulay. (1i)} Let I be a finite regular cell complex,
e.g., a finite simplicial complex. (Certain wore general
structures can be allowed.) Suppose that the underlying topolo-
gical space of I satisfles condirion (iii) of Theorem 5. If P
is the set of faces of L, ordered by inclusion, then P is
Cohen—Macaulay. Indeed, A(P} is just the first barycentric sub-
divison of E.

Cohen-Macaulay posets were first considered explicitly by
‘Baclawski [1]. His Theorems 6.1 and 6.2 are special cases of
the pext result, which was conjectured by this writer and proved
(unpublished) by J. Munkres. First, let us define the rank p(x)
of an element x of a finite poset P to be the length of the
longest chain of P whose top element ig x. Thus p(x) = 0 if
and only if x is a minimal element of P. If x < ¥ in P, set
p(x,¥) = o(y) - p(x). 1If A(P) is pure, then p(x,y) is the length
of any unrefinable chain between x and y, and p(x,y) = dim A{(P)
if and only if x is a minimal element and y 13 a maximal element of
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Theorem 1. Let P be a Cohen-Macaulay poset with ranmk
function p, and let i be a mon-negative integer. Let P; be the
set of all x € P satisfying p(x) # i. Give P; the ordering in-
duced from P. Then P; is a Cohen-Macaulay poset.

If P 1s a Cohen-Macaulay poset with M&bius function u, and if
x <y in P, then the open interval (x,y) is a Cohen-Macaulay poset

and ( l)£u(x,y) dimy H (ﬂ((x,y})), where £ = p(x,y). Hence,

(-1) u(x,y} >0, i.e., the Mdbius function of P alternates in
sign. Theorem 10 implies that if we remove any set of Tlevels"
from P, the Mobius function of the resulting poset continues to
alternate in sign.

1f P is a finite poset for which A(P) is pure, and if

plx.y) = (_1)p(x,y) for every x < y in P, then P is called an
Eulerian poset. It is not hard to see that a Cohen—Macaulay

poset P is Gorenstein if and only if when we remove from P all
elements x whiech are related to every element of P, and then ad-
join a unique maximal and unigue minimal element, the resulting
poset is Eulerian.

The above con51derat10ns suggest that the Cohen-Macaulay
posets are a natural class of posets whose Mobius functions merit
further study.
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Late note. The work of M. Hochster to which we have referred
{especially our Thecrem 4) appears in Hochster's paper
"Cohen-Macaulay rings, combinatorics, and simplicial complexes”,
based on a talk presented at the Oklahoma Ring Theory Conference,
March 11-13, 1976. This paper contains many cther interesting re-
sults on the structure of the ring Ay.

Later note. Regarding the conjecture in ‘Section 6 concerning
Q(a,) when % is a manifold with boundary, Hochster has proved
the fellowing result. Suppose A is Cohen-Macaulay and |ﬁ[ is a
manifold with boundary. Let I be the ideal of A, generated by all
square free monomials Kj3Xign-aXiy for which {xil,...,xi.} €A ~D34A,
Then I is isomorphic to Q(A,)} if and only if 94 is Gorentein
(e.g., if |ﬂ: is orientable) .
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