Combinatoire et représentation
du groupe symétrique, Strasbourg, 1976

SOME COMBINATORIAL ASPECTS OF THE
SCHUBERT CALCULUS

Richarxd P. Stanleyl

Schubert calculus is 2 brancn of algebraic geometry
essentially founded in 1874 by H. Schubert. Schubert
developed his calculus to answer gquestions in enumerative
geometry, i.e., to find the number of points, lines,
planes, etc., satisfying certain geometyic conditions
In subsequent vears algebraic geometers developed a
rigorous foundation to the Schubert calculus, perhaps
spurred by Hilbert's Fifteenth Problem (see [Kl]). This
foundaticn is intimately connected with the branch of
combinatorics which deals with symmetric functions, Young
tableaux, plane partitions, etc. Our aim in this paper
is to explain this connection as straightforwardly as pos-
sible. We will be addressing ourselves mainly to combi-
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natorialists unfamiliar with the Schubert calculus. It is
hoped, however, that algebraic geometers will also find

something of interest here. Most of the results which we

state are weli-known to researchers in the Schubert calculus
in at least an implicit form, but we can perhaps give some
additional insight by our explicit cormbinatorial approach.
The only result which appears to be really new is the con-
cept of "skew Schubert varieties.” I am grateful to S.
Kleiman, B. Kostant, D. Laksov, and J. Wahl for helpful
discussions.

1. Schubert calculus. An excellent account of this

tonic may be found in the survey article of Xleiman and
Laksov [K-L). A detailed history of Schubert calculus
appears in [K£]. We shall brieflv outline those facts
relevant to us here, referring the reader to [K-L] for
further details.

Let En = gn(g) denote n-dimensional complex pro-
jective space. Thus the points of En are defined by
(n+l) ~tuples (p(0), o(l),...,o{n)) of complex numbers not

all zero. Two (n+l)-tuples define the same point if they

are scalar multiples of each other. Let Gdn be the set

of all d-dimensional subspaces (called d-planes, for short)
n _ ah _ n _ /ntl,

of P. Thus G, =P and G = {P7}. Let N = (441 1.

X : + . . .
Thus points in PN have (g+i) coordinates. We will index

these coordinates by integer sequences (CO’CL""’cd)’

n+l
where 0 S CpeC < teysn. (Clearlv there are (d+1) such
sequences.) There is a natural way of associating with a
d~plane LeGdn a point of E ; With the indexing of coordinates

defined above. The coordinates of L (regarded as an ele-

N As
ment of E ) are called the Plucker coordinates of L

(For the precise definition, see [K-L}.}



219

Distinect d-planes L define distinct elements of

PN, so we have an embedding of G into PN. It turns out

an

that this embedding makes Gdn into a manifold, the Grass~

mann wanifold. One of the basic problems in setting up

the foundations of the Schubert calculus is to describe
the cohomology ring of Gdn {(say with integer coefficients).
To this end, given an integer sequence 0 < ay<ay<. .. <ay<n,

let A, CA. C...CA

0 1 g be a chain (or flag) of subspaces of

P"  satisfying dim A, = a,. Define Q(A,...A,) to be the

1
the foundations of the Schubert calculus is to describe

the cohomology ring of G, (say with integer coefficients).
To this end, given an integer segquence 0 < ag<ay<...<ay<n,
let Aoc:AlCL...C:Ad be & chain (or flag) of subspaces of

Pn

the foundations of the Schubert calculus is to describe

satisfying dim A, = a;. Define Q(A,...A;) to be the

1

the cohomology ring of Gdn (say with integer coefficients).
To this end, given an integer sequence 0 < a0<al<...<ad§n,

let A c:Alc:...C:Ad be & chain (or flag) of subspaces of

0

Pn

satisfying dim A, = a;. Define Q(An...ARJ to be the
the foundations of the Schubert calculus is to describe
the cohomology ring of Gdn (say with integer coefficients).
To this end, given an integer sequence 0 < aj<a;<...<ay<n,

let Ajc A, C...CAy be a chain (or flag) of subspaces of

P satisfying dim A, = a;. Define Q(A,...A;) to be the

1
the foundations of the Schubert calculus is to describe

the cohomology ring of Gdn (say with integer coefficients).
To this end, given an integer sequence 0 < ay<ay<. .. <ay<n,

let 2 c:AlC:...C:Ad be & chain (or flag) of subspaces of

0
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1.} Theorem. (The basis theorem, quoted from [K-L}.)

Each even dimensional integral cohomology group HZP(Gdn;Z)

is a free abelian group and the Schubert cvcles

Q(ao...ad) with [(d+1) (n-d) - (a;-1)] = p form a basis.

0

&1

i
Each odd dimensional group is zero. (Here I denotes the
integers.)

Thus Theorem 1.1 determines the additive structure of
the cohomology ring H*(Gdn;g). To determine the multi-
Qlag-..aq) with [(&+1) (n-d) - iio(ai-i)] = p form a basis,
Each odd dimensional group is zero. (Here I denotes the

integers.)

Thus Theorem 1.1 determines the additive structure of

*
the cohomology ring H (Gdn;z). To determine the multi-
(a,...a;) with [(@+1) (n-d) - £ (a.-1)] = p form a basis.
0 d i=o
Each odd dimensional group is zero. (Here I denotes the

integers.)
Thus Theorem 1.1 determines the additive structure of
*
the cohomology ring H (Gdn;z). To determine the multi-
Qlag...aq) with [(a@+1)(n-d) - £ (a;-1)] = p form a basis.
i=0
Each odd dimensional group is zero. (Here Z denotes the

integers.)

Thus Theorem 1.1 determines the additive structure of

*
the cohomology ring H (Gdn;z). To determine the multi-
Q(ao...ad) with [(@+1) (n-d) - I (a;-1)] = p form a basis.
i=0
Each odd dimensional group is zero. (Here I denotes the

integers.)

Thus Theorem 1.1 determines the additive structure of
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mann varieties were one of the original pieces of evidence
for the Weil conjectures.) We require the fact that Gdn
is actuwally a (projective) variety, i.e., the points of Gdn<:§N are
the set of zeros of a system of homogeneous polynomials

in the variables X(jojl"‘jd> (the coordinates of PN).

‘These equations are given explicitly by

+ . v
i . . _
I X(Ggn-dgoqky) ¥lkge ko kg ) =0,

in the variables X(j,j;...i4) (the coordinates of pYy .

These equations are given explicitly by

d+1
T(-1)

0

: \'4
i . . _
: XGge - dgoqky) ¥lkg ko Xgq ) =0,

in the variables X(jojl"‘jd) (the coordinates of PN).
‘These equations are given explicitly by

d+1

+
I (-0
=0

: \'4

i . . _
. X3 Tgoqky) Xlkge o okyennkg ) =0,
in the variables X(j,J,...j4) (the coordinates of pYy .

These equations are given explicitly by

i

+ v
TG XGgn G k) Xk Ry e kgyy) = 0,

in the variables X(j,3,...j4) (the coordinates of pYy .

These equations are given explicitly by

a+1
v (=1}

|-

v
(3. 3 Y YX(%....X.. . yY=10
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% i/2
?_l(l-dij ), !aij| = Thus 8, = deg P;(x). But
N(k) = [n+l] and [n+l] is a polynomial in A say
arl’y ok d+l '
Iyikl . Therefore
o k e . k
exp I BﬁE%E— = exp £ (ZY;qlk) %—
k=1 ’ k=1 -
. “Y.
= Tl-g*xy *,
whance from (2) we have 62i =Yy, as desired.

The above argument generalizes immediately to finding

the Betti numbers of the so-called partial flag manifolds

Gn(el,ez,...,er), where 05£1<€2<"'<€r<n‘ The elements

. - n
of Gn(El,ez,...,er) consist of all flags L1Q~L2<:...<:LrCIE ’

where dim L, = €;- We can make Gn<€1’£2"“’€r) into a
manifold (and also a variety) in a manner analogous to
Gy, (the special case r=1, el=d). We then obtain as above

that if Bi is the i-th Betti number of Gn(cl,ez,...,er), then

T 82p )Lp - [‘ n+1
D ‘ gl+l, 52-21,53—52,...,n-sr
[ ’ N
where
" = (m] - : (3)
kl'kZ"“’ks ] TkiTl...[kS].
k3¢ = (125 =" .. -

The expression (3) is the g-multinomial coefficient and
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when A=g is equal to the number of flags Ll(:LQC:...CZch:En(q),

W i . = ..
here Gim Ll €5

We have mentioned that Gdn is a variety. As suggested

by the terminologv, the Schubert varieties Q(A) are also varieties

(in general they are singular). If we take A to be a
§E§E§é£§ flag, then the equations for Q(é) are obtained
by adjoining to (1) the linear relations
X(jojl...jd) =0, (4)
by the terminologv, the Schubert varieties Q(A) are also varieties
(in genexal they are singular). If we take A to be a
standard flag, then the equations for Q(3) are obtained
by adjoining to (1) the linear relations
X(jojl...jd) =0, (4)
by the terminologv, the Schubert varieties Q(A) are also varieties
(in general they are singular). If we take A to be a
EEEEQEEQ flag, then the equations for Q(é) are obtained
by adjoining to (1) the linear relations
X(jojl...jd) =0, (4)
by the terminologv, the Schubert varieties Q(A) are also varieties
(in genexal they are singular). If we take A to be a
standard flag, then the equations for Q(3) are obtained
by adjoining to (1) the linear relations
X(jojl...jd) =0, (4)
by the terminologv, the Schubert varieties Q(A) are also varieties
(in general they are singular). If we take A to be a
standard flag, then the equations for Q(A) are obtained
by adjoining to (1) the linear relations

Lt Y SR B PR
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Schubert cvcle. Note that if Q(é,&) and Q(g*,g*) represent

the same skew Schubert cycle Q2(a,p), then there is an in-
N . R
vertible linear transformation of P’ which carries Gdn
into Gdn and Q(A,B) into Q(A*,B*),
1f we pick A to be a standard flaa and B to be the flag
. . . n
BOC BlC;...Cde such that B; consists of all ooints in P
P hen
of the form (G,O,.-.,O,o(od_i), o(bd_i+l),...,p(n)), £
it is easy to see that the egquations definina Q(a,B) are

given by (1), (4), and

X(jojl"'jd) = O ! (5)

over all sequences Oij0<j1<...<jdin for which ji<bi for some

i. We call such a pair (A,B) a standard pair. We also remark

that if (A,3) 1s standard and if aizbi for all i , then Q(A,3)
(which we know consists of a sirale d-vlane) consists of that

d-plane whose Pllucker coordinates are all zero except for X(a).

2. Schur functions. We now review some basic

results about symmetric functions. A more detailed survey
of this subject appears in [Sl]. For convenience we take
our symmetric functions to be in infinitely manv variables
Xy rXg,en- (s0 we are really speaking of symmetric formal
power series, not "functions"”), although it would suffice
to take sufficiently many variables, namelv, (d+l) (n-4)
of them.

Let X be a partition of a non-negative integer
m (written Mm}. By this we mean x:(xl,xz,...), where the

Ay's are integers satisfying X >X,>...>0 and Lhj=m. If

Xr+l=0 we also write x=(xl,x

2,...,Xr).

If A={A;,Ay,..)m, then the diaaram Y(}) of X} is a

left-justified array of sguares with X, squares in the
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i~th row. For instance Y(4,4,2,1,1) is given by

|

[N

Given a partition ), define the monomial symmetric function

kk in the variables Xy rXo,enn to be the sum of all distinct

monomials whose exponents are Al,kz,... in some order. We

also write symbolically k) = Ixy lx2 2 ..« . Thus for
instance le = xl+x2+x3+--- = E Xi’ Exlx2 = xlx2 + xlx3 +
x2x3 + xlx4 4+ e = T x.xj, etc. Let C? denote the ring

i<j
of all symmetric functions (formal power series) in the
variables Ry Xyreen, which as an abelian qroup is free with
basis kA’ where ) ranges over all partitions of all non-

negative inteagers m . (By convention, 0 has the unique

partition ¢ , and k¢ = 1.) We also define the complete

nomogeneous symmetric functions hm and the elementary sym-

metric functions a. by

£

h,= I Ky vag = I xyXseuxy -
A—m

The "fundamental theorem of symmetric functions" states
that the a  are algebraically independent and ({.

= %[al,az,‘..] . It is also easy tc see that the h_
are algebraically independent and = %{hl,hz,.,.]- We
now wish to define a new Z2- basis for (¢. , the Schur

functions e where X‘—m. Define

A ’

e, = £ M(m) ,
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where the sum is over all ways m of filling the squares of
Y(x) with positive integers such that the integers along

any row are non-increasing and along any column are

a a
. . 2
strictly decreasina. Here M(w) = Xy lx2 ..., where
exactly a; entries of 7 one equal to 1 . It follows
that e, is homogeneous of degree m . It is by no means

X

evident from this definition that e, is a symmetric function,
A
out such is indeed the case.

Example. Let A=(3,1). Then the coefficient of Xy KX aX

exactly a; entries of 7 one egqual to i . It follows

that e, 1s homogeneous of degqree m . It is Dy no means
evident from this definition that e, is a symmetric function,
put such is indeed the case.

Example. Let A=(3,1). Then the coefficient of Xy KX aX

exactly a; entries of 7 one equal to 1 . It follows

that ey is homogeneous of deqree m . It is by no means

evident from this definition that e, is a symmetric function,
A

put such is indeed the case,.

Example. Let A=(3,1). Then the coefficient of Xy KX aX

exactly a; entries of 7 one egqual to i . It follows

that e, i1s homogeneous of degqree m . It is Dy no means
evident from this definition that = is a symmetric function,
put such is indeed the case.

Example. Let A=(3,1). Then the coefficient of Xy KX aX

exactly a; entries of 7 one equal to 1 . It follows

that e is homogeneous of degqree m . It is by no means

evident from this definition that e, is a symmetric function,
A

put such is indeed the case,.
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2.2 Theorem (Aitken) Let A=(hyhyreashy) be a
partition, and let X'=KXi,Xé,...,Aé) be the conjugate
partition. (The diagram Y(X') is obtained from Y()) by
a reflection in the main diagonal.) Then

e, = |a (1<i,3<s) .

A xi-i+j‘

The above results on Schur functions can be gene-

ralized to the so-~called skew Schur functions. Suppose

A=(xl,k2,...) and u=(ul,u2,...) are partitions with

uiixi for all i . We then write u<)l. The skew diagram
Y(X/u) is obtained from Y(X) by removing Y(u). TFor ex-
ample, if X=(5,4,4,2,1,1) and u=(4,2,1,1,1), then Y(i/u)

looxs like

i

We now define the skew Schur function e)/u exactly analogously

to our definition of e, . It turns out that ek/u is a

symnetric function, and gereralizing Theorems 2.1 and

2.2 we have

h\

A/U Ai—uj—1+j

10 us-ies| -

Since ek/u is a symmetric function, it can be written
as a Z-linear combination of the ev's- The next result
relates the coefficients in this linear combination to the

multiplication of Schur functions.
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2.3 Theorem {E.D. Roe, D.E. Littlewood) The coefficient of
e, in e)\/}J (wnen written as a linear combination of Schur
functions) is equal to the coefficient of e

in e e .
X Vo

Theorem 2.3 gives a method for computing SCNY hut
in general it is not much better than brute force since
ex/p is not easy to express in terms of the ev's. What

is desired is a direct rule for finding the ccefficient of

ey in eveu. This is the content of the next result. An

eleadant mrAMhina+tAryIal AvAnE ~amn hAa ~drAam vadme a4 A0 Aa
in general it is not much better than brute force since

e)\/u is not easy to express in terms of the ev's. What
is desired is a direct rule for finding the ccefficient of

ey in eveu' This is the content of the next result. An

eleadant rAamhinatAarial nyrAnf ~Aan A ~vtrAam vmdim~e dha SAann A
inp general it is not much better than brute force since

ex/p is not easy to express in terms of the ev's. What
is desired is a direct rule for finding the ccefficient of

ey in eveu. This is the content of the next result. An

eleadant rAMhina+AYIal AvAnE ~amn hAa ~TrrAam vadme dlha 4A0 Aa
in general it is not much better than brute force since

ek/u is not easy to express in terms of thg ev's. What
is desired is a direct rule for finding the cocefficient of
ey in eveu' This is the content of the next result. An
oledant rAmhinatAayial nyAnF ~Asn hA ~itram mdimm dha daie Aa
in general it is not much better than brute force since
ex/p is not easy to express in terms of thg ev's. What
is desired is a direct rule for finding the coefficient of

ey in eveu. This is the content of the next result. An
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Hence the coefficient of ey in e e, is 3. (Another ex-
ample apvears in [Li, pp. 96-98].)

Now given 0<d<n, let X be the partition with 4+l
parts equal to n-d. Hence ¥ ()} is a {(d+1)x(n-d) rectangle.

Let Idn be the Z-submodule of @) generated by all e

i
for which U i AL In other words, either

ul>d+l or u has more than n-4 varts. Egulvalently,
W is not of the form (ad~d, ad_l—d+l,...,a0), where
Oi;0<al<...<adgn‘ It follows frem Theorem 2.4 that if
e € Idn and if ep appears with a positive coefficient

u

in euev, then u<p. Thus ep E Idn’ so Idn

of <. The quotient CZ/Idn is generated as a 2-module

is an ideal

freely by those ep for which p<i. When multiplying Schur
functions modulo Idn’ simply use the Littlewood-Richardson
rule and ignore all e, ¢ Idn'
There is another rule for multiplying Schur functions

in CZ/Idn discovered essentially by Jacobi and rediscovered by I.R.

Porteocus (see [Lal, pp. 174-175] for a sketched proof).

2.5 Theorem. Let eu, e, be Schur functions, so by

Theorem 2.1, eu=[hui-i+j[ and ev=]hvi_i+j[. Then in the
- /(s
ring CL/(%_ 1 /X yor---),
e e =]h _3 -|r
-V ui+vr+l—j i+7

where the determinants are all rxr.
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*
3. The cohomology ring H (Gdn; Z). We are now able

*
to describe the multiplicative structure of H (Gdn; Z).

3.1 Theorem (the multiplication rule). There is an
+*
isomorphism e:C?/Idn——? H (Gg,i 2) given by e(ek)=9(§),

where X=(n—a0—d, n-al—d+l,“.,n—ad).

The connection between multiplication of Schur

functions and the cohomology of G o Was first observed ex-

d

plicitly by Lesieur [Le}, though the result was cavable of
S ©dn Cdnt oo < - « S —

where X=(n—a0—d, n—al—d+l,“.,n—ad).

The connection between multiplication of Schur
functions and the cohomology of Gdn was first observed ex-
plicitly by Lesieur [Le}, though the result was cavable of
A A . dn Tdnc o L ) T N

where X=(n—a0—d, n-al—d+l,“.,n—ad).

The connection between multiplication of Schur

functions and the cohomology of G o Was first observed ex-

d
plicitly by Lesieur [Le}, though the result was cavable of
A ©dn Cdnt oo < - « S —

where X=(n—a0—d, n—al—d+l,“.,n—ad).

The connection between multiplication of Schur
functions and the cohomology of Gdn was first observed ex-
plicitly by Lesieur [Le}, though the result was cavable of
S . dn a4 ) - M

where X=(n—a0—d, n-al—d+l,“.,n—ad).

The connection between multiplication of Schur

functions and the cohomology of G o Was first observed ex-

d
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it is evident that C?/Idn is generated as a ring by e =1,

€yr--r g where e; denotes ey when X  has a single

part i . {(Nocte that ei=hi’ the complete homogeneous sym-
*

metric function.) Hence H (Gdn; Z) is generated as a ring

)=Q(i,n=-d+1,...,n}),

by the special Schubert cycles o(i)=6(e _4 ;

for i=0,1,..., n-d. 2As an immediate consequence of
Theorem 2.1 we obtain:

3.2 Theorem (the determinantal formula). For all
sequences of integers Oiao<al<...<ad§p, the following

*
formula holds in the cohomoloay rinag H (G Z}:

an’

Q(i) = ld(ai_j) lr oil,jid,

where o(i1)=0 if i<0 or i»n-~-4.
Now consider the product Q{a)-o(h). This corresponds

to the multivlication e e hY where u =[n—a0—d, n-al—d+l,...,n-ad)

n-d-

By the Littlewood-Richardson rule, the coefficient of ey in

e & _a-n (rnodulo Idn) is one if u<X, Algp—d, and Y(X/u) has
exactly n-d-h squares and no columns with more than one
square. Otherwise the coefficient is zero. If Y(X/u) has
¢, squares in the i-th row (counting the top row as the 0-th
row), then define bi=ai—ci. It follows that 0§b0530<
blial<...<bdiad and Zbi= Zai—(n-d-h). Conversely such a
sequence of b,'s contributes a term to € 8n~d-n" Thus

we have proved:

3.3 Theorem (Pieri's formula). For all sequences of
integers 0<ao<al<‘..<ad§p and for all h=0,1,...,n-&, the

* -
following formula holds in the cohomology ring H (Gdn,g )z

2(a) - (h)=I2(b)
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where the sum ranges over all seguences of integers

bo,...,bd satisfying Oiboiao<blia1<"‘<bdiad and

Zbi=Zai—(n-d~h).

A further classical result in the Schubert calculus

is the duality theorem. In oxder to state this theorem,

first note that by Theorem 1.1, the highest non-~vanishing
cohomology group of H*(Gdn; g) occurs in dimension 2(d+1l) (n-4)
and is generated by the cycle Q(0,1,...,d). This cycle
corresponds to the Schur function ey where Y()\) is a

(d+1) x(n-4) rectangle. Hence if ur+s and vkt where

s+t=(d+1) (n-d), then in GVIdn we have e & = ¢ e, for some

U BV A
va € % . We can calculate cuv by the Littlewood-
Richardson rule. If v=(vl,v2,...) we wish to insert
vy 1l's, vy 2's,... into the sguares of Y()/u). It is easy

to see that if conditions (i) and (il) of Theorem 2.4 are

to be satisfied, the vi’s must be arranged as follows:

n-qg._
N  Jit.oat
11...122..‘2
a+1 .122,..233...3

1 122 .233...344...4

Hence if u=(ul,...,ud+l), there must be exactly n—d—ud+l l's,

n—d-ud 2's,..., n-d-—ul d+l’'s. Therefore we have:

3.4 Theorem. Let ) be the partition whose diagram
Y()) is a {(d+1)x(n-d) rectangle, and let urs, vi-t, where
s+t=(d+1) (n~d). Then in the ring GVIdn, we have
ey, if “i+vd+2—i = n~-d for
.o = i=1,2,...,d+1

0, otherwise.
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If Theorem 3.4 is translated into a statement about
Schubert cycles, it becomes:
3.4' Theorem (the duality theorem). The basis
2p
{...,Q(ao,al,...,ad),...} of the group H (Gdn’% ) and

the basis {..., Q(n—ad,...,n—al, n—ao),...} of the group

H2[d+l) (n-4) -pl (Gdn; z) are dual under the pairing

v,w —deg(v-w)of Poincaré duality.

— P - - - -~ N - - s .

the basis {..., Q(n—ad,...,n—al, n—ao),...} of the group

H2[d+l)(n'd)‘P](Gdn; z) are dual under the pairing

v,w —deg(v-w)of Poincaré duality.

— P - - - -~ N - - s s

the basis {..., Q(n—ad,...,n—al, n—ao),...} of the group

H2[d+l)(n-d)‘P](Gdn; z) are dual under the pairing

v,w —deg(v-w)of Poincaré duality.

j— P - - -~ N - = s

the basis {..., Q(n—ad,...,n—al, n—ao),...} of the group

H2[d+l)(n'd)‘P](Gdn; z) are dual under the pairing

v,w —deg(v-w)of Poincaré duality.

— P - - - -~ N - - s .

the basis {..., Q(n—ad,...,n—al, n—ao),...} of the group

H2[d+l)(n-d)‘p](cdn; 2) are dual under the pairing

v,w —deg(v-w)of Poincaré duality.
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3.7 Corollary. Let X=(n—a0~d, n—al—d+l,...,n—ad)
and u=(n—b0—d, n-bl—d+1,...,n-bd) be partitions with p<i.
In the isomorphism ©: (¢ /Idn—é H*(Gdn; z), we have
e(ex/u)=ﬂ(5,g).

Proof. This is an immediate consequence of Theorem
2.3, Corollary 3.6, and the fact (Theorem 3.1) that
8(ey)=0(a) and e(eu)=Q(§).

In other words, skew Schubert cycles correspond to

skew Schur functions in the same way that Schubert cycles

correspond to Schur functions. It now follows from the deter-

minantal exoression for e>\/u (preceding Theorem 2.3) that

0(a,b) = |c(ai—bj)|, 0<i,j<d,
thereby generalizing Theorem 3.2.

4. Homogeneous coordinate rings. Recall that if

ByCA;C...CAy is a flag in P" , then we have defined

an explicit embedding Q(&)C.PN, where N = (S:i) - 1. More

generally, if (A,B) is a pair of flags defining a skew

Schubert variety, then Q(é,E)CﬁPN since Q(A,B) T Q(A). Let

n+1l

R = g[..., X(io...id),...], the polynomial ring in the (d+l)

variables X(io...id), Oii0<...<idin, which coordinatize
N . R
PT.  Let J{(A,B) be the ideal of R consisting of all

polyromials which vanish at every point of Q{(a,B).

The quotient ring R/J(A,B) is called the homogeneous co-

ordinate ring of Q(A,B). Let T denote the C~subspace of

R/J(A,B) generated by 2all homogeneous pclynomials of deqgree

m . The function H: N =+ N defined by H{m) = dima T is

the Hilbert Ffunction of R/J(A,B). Since any two skew

Schubert varieties representing Q(a,b) are projectively

equivalent, it follows that H deovends conly on (a,b). If
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the numbers ay and bi are not clear from context, then we
write H(a,b;m). We are interested in computing H(a,b;m).
To do so, we may assume that (é,g) is a standard vair of
flags, so that the equations defining Q(é,g) are given by
(1), (4), and (3). We shall write J(a,b) for J(A,B) when
(3,8) is standard. We alsoc write J(a) for J(a,b) when

= (0,1,...,d) (so that Q(A4,B) = Q(A)).

In [H-P, Ch.XIV,§3] it is shown that when b,=0,...,b =8
{the case of “ordinary" Schubert varieties), a vector space
(1), (4), and (3). We shall write J(a,b) for J(A,B) when
(A,B) is standard. Ve alsoc write J(a) for J(a,b) when

= (0,1,...,d) (so that Q(3,B) = Q(3d)).

In [H-P, Ch.XIV,§9] it is shown that when b,=0,...,by=a
{the case of “ordinary" Schubert varieties), a vector space
(1), (4), and (3). We shall write J{(a,b) for J(A,B) when
(A,B) is standard. We also write J(a) for J(a,b) when

b= (0,1,...,d) (so that Q(A,B) = Q(R)).

In [H-P, Ch.XIV,§3] it is shown that when b,=0,...,by=d
{the case of “ordinary" Schubert varieties), a vector space
(1), (4), and (3). We shall write J{(a,b) for J(A,B) when
(A,B) is standard. We also write J{(a) for J({(a,b) when

b= (0,1,...,d) (so that Q(A,B) = Q(A)).

In [H-P, Ch.XIV,§9] it is shown that when b,=0,...,bs=d
{the case of "ordinary" Schubert varieties), a vector space
(1), (4), and (3). We shall write J{(a,b) for J(A,B) when
(3,B8) is standard. We also write J{a) for J(a,b) when

b= (0,1,...,d) (so that Q(A,B) = Q(A)).

In [H-P, Ch.XIV,$§3] it is shown that when b,=0,...,bs=d

A



236

ay iy By ... i) by
ag-p | g1 tior -e- ta-1 | Pa-a
\v4
. (7)
a, 1o g - i by

Thus H(a,b;m) is egual to the number of arrays (7) with mw
columns (excluding the columns of aj's and bj's at the ends).
We now transform the array (7), with the first and last
column excluded, into a form which has been oreviously con-
sidered by combinatorialists. Number the rows 0,1,...,4 i
from the bottom up. Now do the following steps: (i) sub-
tract 3 from the j-th row, (ii) replace each row by its
conjugate partition (in the sense of Theorem 2.2) (iii)
remove entries (which will always equal zero) from the ends
of each row so that the i-th row has ai—i entries, (iv) re-
move the first bi—i entries from the i-th row. If we let
X=(ad—d,ad_l—d+l,...,a0) and “=(bd'd'bd_d+l""’bo)’ then
we have obtained a set of integers in the squares of

Y{(x/u} which are non-increasing in every row and column,
and the largest integer is at most m (the number of columns
of (7), excluding the first and last). Such an array is

called a plane partition of shape )/u and largest part at

most m . The above process is reversible, i.e., given a
plane partiticn 7 of shape )\/uy and an integer m no smaller
than the largest part of m, we can uniquely recover (7).
Thus we obtain:

4.1 Theorem. H(a,b;m) is egual to the number of
plane’ partitions of shape )3/u and largest part at most m .

As an explicit illustration of steps (i)-(iv) above,

o i e



237

let 2=(1,4,5,7), b=(0,1,3,4). Then a typical array (7)

and its transformation (1)-(iv) 1is given by

7 { 755 4 422 3311

5 1 4433 —> 221 —> 3200

4 | 22111 110 2000

1 | 1100 110 2000
3311 311

—> 320 —> 20

200 200
2 2

We remark that it is easily proved from Theorem 4.1
that H(m) is a polynomial for all m>0. (A priori one only
knows that H(m) is a polynomial for m sufficiently large.)
Plane partitions have been extensively studied since
P.A. MacMahon. MacMahon derived (implicitlv) a determinantal
formula (M,§485) which in the special case x=1 gives the
number of plane partitions of shape X and largest part
at most m . An eguivalent formula was found by Hodge and

Littlewood (see [HP, Ch. XIV,89)) and is called the postnlational

formula. Thus the postulational formula gives an expres-

sion for H(m} when p=¢@g. The proof of the postulational

formula generalizes to any A/u- A result eaquivalent to

this generalization was proved by G. Kreweras {XKr, §2.5.3].
4.2 Theorer {the postulational formula for skew

<n,

Schubert varieties). Let Oiao<...<ad < n and 0<b <...<bd_

0
with biiai for i=0;,...,d. Let H{a,b;m) be the Hilbert
function of the homogeneous coordinate ring R/J(a,b} of
Q(A,B). Then H(a,b;m) is given by the (d+l)x(d+1) determinant

wka g -b. —i+j j

H(a,b;m) «
b a.-b
1

(0<i,3<8), (8)

with the convention (g)=0 if 8<0.
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In certain cases the formula (8) for H(m) can be

greatly simplified, essentially bv evaluating the deter-

minant of (8). 1In the following theorem, part (a) is

equivalent to [Sl,Thm. 18,11, while part (b) seems to be

new.
4.3 Theoremnm. (a)
of R/J(n-d,n-d+1,...,n),

of the CGrassmann variety

new.
4.3 Theorem. (a)
of R/J(n-4,n-d+1,...,n),

of the CGrassmann variety

new.
4.3 Theorem. (a)
of R/J(n-d,n-d+1,...,n),

of the CGrassmann variety

new.
4.3 Theorem. (a)
of R/J(n-4,n-d+1,...,n),

of the CGrassmann variety

new.
4.3 Theorem. (a)
of R/J(n-d,n-d+1,...,n),

of the CGrassmann variety

Let H(m) be the Hilbert function
the homogeneous coordinate ring

G Then

dn”

min(i,n-i+l, 4d+1, n-4)

Let H(m) be the Hilbert function
the homogeneocus coordinate rina

G Then

dn”

min(i,n-i+l, 4d+1, n-4)

Let H(m) be the Hilbert function
the homogeneous coordinate ring

G Then

dn

min(i,n-i+l, 4d+1, n-4)

Let H(m) be the Hilbert function
the homogeneous coordinate ring

G Then

dn”

min(i,n-i+l, 4d+1, n-4a)

Let H(m) be the Hilbert function
the homogeneocus coordinate ring

G Then

dn”
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Theorem 4.3(a). Presumably part (b) of Theorem 4.3 has a
similar explanation, but at present this remains open.

We now wish to point out a remarkable relationship
between the Hilbert functions H(a,b;m) and the inclusion
relationships among Schubert varieties. Define a
partially ordered set Lan {(actually a distributive lattice)

as follows. The elements of qu consist of all integer

sequences Eé(aO'al"“'ad) with Oia0<al<...<adin. Thus

L has (n+l) elements The elements of I are ordered
dn a+1 " ~dn

component-wise, that is, (by,b;,...,bg)<(ag,ay,...,a4) if

biiai for i=0,1,...,d. Thus Ldn is & distributive lattice

under the operations of component-wise max and min, If
we identify the sequence a with the standard Schubert

variety Q(A), then L may be identified with the set of

dn

standard Schubert varieties in Gdn’ ordered by inclusion.
Note that each interval [b,a} = {¢ ¢ Ly |b < ¢ < a} of Lan

corresponds to a unique skew Schubert cycle Qf{a,b). As an

illustration, the Hasse diagram of L14 is shown below.

3y
2%
22 14
13 o
2 (o1
o%
el

Now consider the array (7). Each column represents
an element of Ldn' and the columns occur from left to right
in descending order as elements of Ldn‘ Since H(a,b;m)

1s the number of arrays (7) with m columns (excluding the
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first and last), there follows:

4.4 Theorem. H(a,b;m) is equal to the number of
chains Eéxoixli...ixm+l=3 in Ly, -

In the language of [54,§3], H(a,b;mtl) is the zeta
polynomial of the interval (b,a}. It is easy to see that
the degree £ of H(a,b;m) (i.e., the dimension of
R(A,B)) is equal to the iength of the longest chain
betweenr a and b, viz., Z(ai—bi). Moreover, 4. times the
leading coefficient of H{a,b;m) (called the degree of
polynomial of the interval (b,a}. It is easy to see that
the degree & of H(a,b;m) (i.e., the dimension of
2(a,B)) is equal to the iength of the longest chain
betweenr a and b, viz., Z(ai—bi). Moreover, 4. times the
leading coefficient of H(a,b;m) (called the degree of
polynomial of the interval (b,a}. It is easy to see that
the degree & of H(a,b;m) (i.e., the dimension of
R(A,B)) is equal to the length of the longest chain
between a and b, viz., Z(ai—bi). Moreover, L. times the
leading coefficient of H(a,b:m) (called the degree of
polynomial of the interval {b,a}. It is easy to see that
the degree £ of H(a,b;m) (i.e., the dimension of
2(a,B)) is equal to the length of the longest chain
betweenr a and b, viz., Z(ai—bi). Moreover, 4. times the
leading coefficient of H(a,b:m) (called the degree of
polynomial of the interval (b,a}. It is easy to see that
the degree £ of H(a,b;m) (i.e., the dimension of
R(A,B)) is equal to the length of the longest chain

between a and b, viz., Z(ai—bi). Moreover, 4. times the
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where 6i is the number of elements ¢ in the interval

{b,a] of Ldn such that the maximal chains of [b,cl have

length 1

For instance, if a = (2,3) and b = (0,2), then from the

1+ 2g + q2 + o

above diaaram of L14 we see that B(q)

We now turn to consideration of the generating function

<=3
Fla,b;x) = g H(g,g;m)xm ,
m=0

which is sometimes called the Poincaré series of the co-

ordinate ring R/J(a,b). Since H(m) is a polynomial, say of
degree ¢ = z(ai—bi), it follows that there exist integers

wo,wl,.‘.,wﬁ such that

9
Watw. X+, ., tW,X
Fla,pin = -0t t (%)
(1-x)

Note w, = H(0)=l. Equivalently,

(m+g—i

oo

i=0 %

Now it can be shown that the cocordinate ring R/J(2,b) is
Cohen-Macaulay. This is well-known for b = 0,1,...,d) and
can be proved in general by induction, reveatedly using

[He, p. 329, lines 14-17]. Tt follows

from a theorem of Macaulay (see [S,, Cor.3.2]) that the
wi's have the following algebraic interpretation. Let
be a homogeneous system of parameters for

©1:8ps---8p 4y

R/J(a,b), all of degree one. (Such a seguence of parameters
exists, e.qg., by [A-M, p.69, Ex.16].) Thus the guotient

ring U = R/(J(g,g)+(el,...,ei+l)) is a graded (Artinian)
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C-algebra with the grading induced from R, say U = UO;Ul+...
Then W, is simply the Hilbert function of ¥ , i.e.,
wi‘—'dimc Ui .

We will now give a combinateorial (rather than
algebraic) interpretation of the integers Wy This inter-
pretation is essentially a special case of [52, ®rop.13.3(1)),
once Theorem 4.1 is known.

4.6 Theorem. Let Wy be as in (9), and let

4

e waka Jluw YevYS @ wUDLL@GUL LG4  (LalllEl  Llall
algebraic) interpretation of the integers Wy This inter-
pretation is essentially a special case of [52, ®rop.13.3(i)]),
once Theorem 4.1 is known.

4.6 Theorem. Let w;, be as in (9), and let

i
d

e waka HUR YeYS G CUIMDLLGGULLGd  (LaCISh  Llall
algebraic) interpretation of the integers Wy This inter-
pretation is essentially a special case of [52, ®rop.13.3(1)),
once Theorem 4.1 is known.

4.6 Theorem. Let w; be as in (9), and let

4

e waka Jluw YevYS @ wUDLLIGGUL LG4 (LAUllEL  Llall
algebraic) interpretation of the integers Wy This inter-
pretation is essentially a special case of [52, ®rop.13.3(i)),
once Theorem 4.1 is Xnown.

4.6 Theorem. Let w, be as in (9), and let

4

TIe wLdd LW YA vT A wuioiuaacuvli lad tLaciiessn llatrl
algebraic) interpretation of the integers Wy This inter-
pretation is essentially a special case of [52, ®rop.13.3(1)),
once Theorem 4.1 is known.

4.6 Theorem. Let Wy be as in (92), and let
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more convenient to use is the following. Let X=(ad_dﬂad-1_d+l"“

and u=(bd—d, b —d+l,...,b0)- Then Wi is equal to the number

d-1
of ways of placinag the integers 1,2,...,2 in the squares of

the skew diagram Y (X/u) such that (a) the integers are increasina
in every row and column, and (b) for exactlv 1 intedcers

7 e {1,2,..., £-1} is the row containing j below the row

containing j+1.

S. Affine coordinate rings. Let R=C[..-,X(i0...id),...1

as in the previous section. If AOCZAICL...c:Ad is a standard

flag in En, define the ideal K(a) = K(ao...ad) of R Dby
K{a) = J(a) + (X(01---d)-1}),

where J(a) is the ideal defined in the previous section.

We call R/X(a) the affine coordinate ring of Q(a), since

it is the ideal of polynomials which vanish on those points
of Q(a) which lie in the affine space of all points

X € En satisfying X(0l...4)=). (We could have defined
more generally the affine coerdinate ring R/XK(a,b) of
R(A,B), but cur results below on R/K(a) do not extend to
the more general case.)

The main interest in the rings R/X(a) stems from the
fact that they can be obtained by dividing out by the
determinants of certain minors in the affine space of
{(d+1)x (n-d) matrices. For instance, the following result
is obtained in ([K-L, p.1077]. Suppose that for some s<d we
have a;=d-s+i for i=0,...,s. Let R' = g[Yij10ii§d, 1<j<n-ai.

The indeterminates are regarded as the entries of a

Yij
generic (d+1l)x(n-d) matrix M over C . Let K(a) be the
ideal of R' generated by the determinants of all the

(d-i+1) x (8-1i+1) minors from the last n-a; columns of M ,

for all i>s. Then R/K{a) = R'/K'(2). 1In particular,

,a
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suppose that for certain integers «,8,y with l<y< min (a,8)

and n=a+R-), we have

Then

(1)

of M

Then

(1)

of M

Then

(1)

of M

Then

(1)

of M

Then

(1)

v
1

y=1+i 1if O<i<a-y

a.

i R+ if a-y+l<i<a-1 =4

s=a-y and K'(a) is generated by two types of minors:

(a-i)x{x-1) minors from the last n-a; = o~-i-1 columns
if a-y+l<i<e-1, and (ii) yxy minors from the last

a; = B+1 if a-y+l<ic<a-1 =4

s=a-y and K'(a) is generated by two types of minors:

(a-i)x{a-1) minors from the last n-a; = o~i-1 columns
if e-y+l<i<e-1l, and (ii) yXy minors from the last

a; = B+1 if a-ytl<ic<a-1 =4

s=a-y and K'(a) is generated by two types of minors:

(a-i)x{a-1) minors from the last n-a; = o~-i-1 columns
if a-y+l<i<e-1, and (ii) yxy minors from the last

a; = B+1 if a-y+l<ic<a-1 =4

s=a-y and K'(a) is generated by two types of minors:

(a-i)x{a-1) minors from the last n-a; = o~i-1 columns
if e-y+l<i<e-1l, and (ii) yXy minors from the last

a; = B+1 if a-ytl<ic<a-1 =4

s=a-y and K'(a) is generated by two types of minors:

(a-i)x{a-1) minors from the last n-a; = o~-i-1 columns
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Note in particular that a basis for the first homo-
geneous part (m=1) consists of all variables X(io...id)
for which i, ;<d and i,>d. There are clearlv (d+1) (n-@a)
such variables, corresponding to the (d+1) (n-d) indeterminates
Yij .

We now associate the monomial (10) with the array (6)
as we did for the homogeneous coordinate ring. If we
transform (6) into a plane partition m of shape
A=(a

-4, d+l,.‘.,a0) as in the previous section, then

a~%r g-1"
the number of entries of (6) (excluding the first column

of ai‘s) greater than d Dbecomes the sum of the main
diagonal elements of 7 , which we call the trace of 7

(even though 7 is not a square array). We therefore conclude
from Theorem 5.1 the following result.

5.2 Theorem. Let H'(a,m) denote the Hilbert function
of the affine coordinate ring R'/X’'(a), with the orading
defined by deg Yij=l. Then E'(a,m) is equal to the number
of plane partitions whose shape is A=(ad-d, ad_l—d+l,...,a0)
and whose trace is m.

Note that i1t is by no means apparent from the
description of H'(a,m} in Theorem 5.2 that H'(a,m) is a
polynomial in m for m sufficiently large, though in
fact H'(a,m) is a polynomial for all m>0. Although we do
not know a formula for H'(g,m) as explicit as Theorem 4.2,
the following result can be proved. For simplicity, we
treat only the special case X'({(a,B,Yv).

5.3 Theorem. Let H(m) be the Hilbert function of
R'/K'{(a,8,Y), the polynomial ring over - in the entries

of a generic axf matrix, modulo all yxy minors. Then
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where fi is the number of sets of i entries of an axB
natrix which do not contain the main diagonal of any yxy
minor.

In the special case R'/K'(e¢,8,v), the partition X of
Theorem 5.2 is a "hook"” of horizontal length 8, vertical

length o, and width y-1:

y-1 8-y+1

—

A

y-1

{
]
\

Note that when a=y-1l or g=y-1 , we ocbtain an axB rectangle.

2
———

Now in this case there are no yxy minors of an gxf matrix.

Hence K'{(a,8,y)=(0), and the Hilbert function H(m) of

al¥+m-1

RI/KI (U.'B’Y) is leSt ( U.S-l

). We therefore obtain from

Theorem 5.2 the following interesting nurely combinatorial

result.
5.4 Theorem. Let H(m) be the number of axf matrices

of non-negative inteoers whose entries are non-increasing in

every row and column, and whose trace (= sum of entries on
. . . . +rn—
main diagonal, even if ¢#B) is m . Then H(m) = (aeag_i).

It is possible to give a purelv combinatorial proof of

af+m-1

Tneorem 5.4. We have that (
aB-1

} 1s equal to the number

of ox8 matrices M of non-necative inteagers whose entries

T —
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sum to m . Knuth {Kn] (see also [Sl,§6]) shows how M can
be aSsociated with what may be called a pair of "column-
strict plane partitions of the same shape." Bender and Knuth
[B-K] (see also ISl,§19]) show how such a pailr can be
"merged" into a single plane partition m . One sees that

7  fits into an axf matrix and has trace m . This

establishes a one-to-one correspondence which proves Theorem 5.4.

The correspordence mentioned above between pairs of
column-strict plane partitions and ordinarv plane partitions
shows that one could index the g—basis elements of R'/K'{(a)
(for any a) by pairs of column-strict plane partitions,
rather than by ordinary plane partitions as we have done.

If one examines in this context how elements of R'/K'(a)
multioly, one obtains the “straightening formula" of [D-R-S].

6. The bracket ring. There is a generalization of

the homogeneous coordinate ring R/J(a,b} due te G.-C. Rota
(R] and studied by N. White [Wl][w2]' This oceneralization
is known as the bracket ring of a preqeometry (or "matroid").

A fipite pregeometry & is a finite set S and

a collection of subsets of § known as independent sets.

The independent sets satisfv the two axioms: (i) if T is
any subset of S , then the maximal indevendent sets in T all
have the same cardinality, and (ii) a subset of an independent
set 1s independent. The archetypal examvle is to

take S to be any finite set of points in affine space,

and to let "independent” mean "linearly independent." The
bracket ring B(G) of G (over C) may be defined as follows.
Let the elements of S be the integers 0,1,...,n. Suppose

the largest independent set of S has d+l elements. Let
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R/J be the homogeneous coordinate ring of the Crassmann

dn

variety G Then B(G) = R/(Jdn+Q)’ where Q 1s the

an”
ideal generated by all variables X(jojl...jd) for which
{34s3ys+--+34} is not an independent set.

It is easy to see that the homogeneous coordinate
rings R/J(a,p) are bracket rings. In other words, the
sets {jo,jl,...,jd} for which X(jojl"'jd)=0 in
R/J(a,b) have the property that they are the dependent
(=not independent) sets of some nregeometry. Thus it is of
interest to ask which of the known results about R/J(a,b)
can be generalized to bracket rings. For instance, what
bracket rings are dormains (as are R/J(a) and nresumably
R/J(a,b))? White nas given many examples of bracket
rings which are not domains, and he conjectures that a
certain class of pregeometries, known as "unimodular", yield
domains. What bracket rings are Cohen-Macaulay
(as are R/J(a,b))? No examples of bracket
rings are known which are not Cohen-Macaulav. What is the
Xrull dimension of B(G)}? Can it be expressed in a simple
way in terms of the structure of G? Finally, are there
analogues of Theorems 4.1 and/or Theorem 4.2 for computing

the Hilbert function of B(G)?
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