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1. INTRODUCTION

Let V be an m-dimensional vector space over the complex numbers C. Fix
a basis x,..., x,, for V, and identify the polynomial ring R = Clx, ,..., %]
with the symmetric algebra of 7 in the obvious way. If 4 € GL(V) (the group of
invertible linear transformations V' — V), then 4 extends to a C-automorphism
of R by (Af)(xy 5oy %) = f(A%y ..., Ax,), where fe R. Suppose G is any
subgroup of GL(V'). Denote by R€ the ring of invariants of G acting on R, i.e.,

RS = {feR| Af = ffor all Ae G}.

More generally, if x is any linear character of G, then let R, ¢ denote the set of
invariants relative to y, i.c.,

RS ={feR|Af = y(A)f for all A€ G}.

Elements of R,© are sometimes known as relative invariants, semitnvariants, or
y-tnvariants. Clearly R © is a module over the ring RC.

If G is finite, then it is easily seen [2, Sect. 262] that R contains m, but not
m -+ 1, elements which are algebraically independent over C. Equivalently,
RC has Krull dimension m. It is natural to ask when in fact we can find m such
invariants which generate all of R as a C-algebra, i.e., when R® = C[f, ,..., §,,]
for some 6, ,..., 8,, € R. The answer to this question is associated with the names
of Coxeter, Shephard and Todd, Chevalley, and Serre. For an exposition, see
[1, Chap. 5, Sect. 5.2] or [4]. To state the result, recall that an element A of
GL(V) is a pseudoreflection if 1 — A has rank one. Thus if 4 € GL(V') has finite
multiplicative order, then 4 is a pseudoreflection if and only if it has exactly one
eigenvalue p not equal to one. In this case p = det 4.
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1.1. Tueorem. Let G be a finite subgroup of GL{V). Then R¢ = Cl0, ,..., §,.]
Jorsome @, ..., 8,, € Rif and only if G is generated by pseudo-reflections. (4 classifica-
tion of all such groups appears in [7].)

Henceforth we shall call a finite subgroup of GL{V') generated by pseudo-
reflections an f.g.g.r. Our object will be to describe the modules R,C of relative
invariants of an f.g.g.r. G. As a consequence, we will obtain a fairly explicit
description of the rings R¥, where A is a normal subgroup of an f.g.g.r. G such
that G/H is Abelian. In particular, when H = G 0\ SL{V), we obtain a necessary
and sufficient condition for R¥ to be a complete intersection.

A fundamental tool in our work will be a result of Molien. If G is any subgroup
of GL{V), then R® has the structure of a graded ring, viz., R® = R,% + R,® + -,
where R,© is the space of all homogeneous polynomials in R¢ of degree n. More
generally, each R,° has in the same way the structure of a graded RC-module,
written R,® = (R.%), + (R,°), + -~ . Define the Molien series F.(G, X) to be

the formal power series
F (G, = Z (dimg(R, %), X7,
n=0

where A is an indeterminate. If y is the trivial character, so that R,¢ = R, then
we write F(G, X) for F (G, }).

1.2. TaroreM ([6]; see also [2, Sect. 227} and [1, Chap. V, Sect. 5.3, Lemime 31).
If G is a finite subgroup of GL(V') and x is a linear character of G, then

1 XA
FAG, A) = |G| EG det(1 — A4) -

If Gis an f.g.g.r., then by Theorem 1.1 we have R = C[f, ,..., 6,,], for some
8 ,..., 8 € R, which can be chosen to be homogeneous, say with deg 0, = ;.
it is clear from the definition of F(G, A) that then

F(G, X)) = 1j(1 — X3)(1 — A% - (1 — %), )

It is well known and easy to deduce from Theorem 1.2 and (1) that
dydy  dy = | G, 2
(d—D+(d—D++d,— 1) =r (3

where » denotes the number of pseudoreflections in G.
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2. Free MopuLes oF RELATIVE INVARIANTS

For the remainder of this paper we adopt the following terminology. G
denotes a finite subgroup of GL{¥') (where V is as in the previous section), and y
denotes a linear character of G. A hyperplane H C V is called a reflecting hyper-
plane if some nonidentity element 4 of G fixes H pointwise. It follows that 4
is a pseudoreflection, and conversely any pseudoreflection 4 fixes a unique
reflecting hyperplane. Let 1, H, ..., H, denote the (distinct) reflecting hyper-
planes associated with G. The set of all elements of G fixing H, pointwise forms
a cyclic subgroup C; generated by a pseudoreflection. Let ¢; denote the order of
C;, and let P; be some fixed generator of C;. Let L; == L{x, ,..., x,,) be the
linear form defining H, , i.e., H; = {a € V | Lj(e} = 0}. Thus L, € R, , the first
homogenecous part of R. For 1 < ¢ <, define integers s; = s,(x) by the
condition that s; is the least nonnegative integer satisfying y(P,) == (det P;)%.
(Clearly s, depends only on C; , not on P; .) Finally define £, € Rby f, = [T,_ L5
Thus f, is homogeneous of degree s; + s, + == +5,. »

2.1. Lemma. Let G be a finite subgroup of GL(V') and x a linear character of G.
Suppose R,C is a free RO-module of rank one, so that RS = g, - RS for some
homogeneous g, € R (uniquely determined up to multiplication by a nonszero scalar).

Then deg g, = s1(x) + s20) + -+ + s(x0)-
Proof. Letd = deg g, . It follows from Theorem 1.2 that

(4) |
P (R v ) m @

AeG

Multiply by (1 — A)™ and expand both sides in a Taylor series about A = 1. The
left-hand side of (4) is given by

(e

14— A)ZX o+ 0 — A,

where P ranges over all pseudoreflections in & and where p = det P. The
right-hand side of (4) becomes

L+ =N (- d+z1 5) o —».
It follows that

a—y L )
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If we remove the identity element from each of the cyclic groups C; defined
above, we obtain a partition of the pseudoreflections of G. Hence we mayv
rewrite (5} as

1 — X&)
1, {6)
where for fixed 7, P ranges over all pseudoreflections in C, (i.e., over al] elements
of C, — {1}). If we let H be the subgroup of GL(1, C) generated by the primitive
¢;th root of unity { == det P, , and if we let ¢ be the character of H defined by
(L) = x(P;), then the sum over P in (6) has exactly the same form as the
right-hand side of (5), with G replaced by H and with x replaced by ¢. Thus by
what we have just proved, the sum on P in (6) is equal to the least degree of a
-invariant of H. But the {-invariants of H can be obtained by inspection; if we
regard H as acting on T = Clx], then T,7 = x%C[x%], where $({) == (¥,
0 < t; < ¢;. Thus the sum on P in (6) is equal to #; . But since ${} = x(P)
and { = det P;, we see that {; = s, , as defined above. The proof follows from

©- &

‘We remark that the above proof is reminiscent of an argument of Solomon
{10, p. 279]. Other applications of Molien’s theorem to invariant theory appear
for instance in [1, 7, 8].

2.2. Lemma. Let G be any finite subgroup of GL(V"), and let y be @ Linear
character of G. If f € R, then f is divisible by T1,_, L3

Proof. Given ¢ satisfying 1 < <{ v, choose a new basis ¥ ,..., ¥, for ¥ so
that y;, = L; and ¥, ..., ¥, spans H, . With respect to this basis the matrix of P;
has the form

p O

e 1

Thus i f{yy . vy e RE, then floyy, ¥, Vo) = P (Je ) Vo yoory V) 1t
follows that f must be divisible by yj+. Hence in terms of the %/s, f{5y ..., #)
is divisible by L} §

The above proof is analogous to an argument of Steinberg {13].
Combining Lemmas 2.1 and 2.2, we obtain the following result.
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2.3. TueoreM. Let G be a finite subgroup of GL(V) and let x be a linear
character of G. The following two conditions are equivalent.

(1) R, is afree R°-module of rank one.
(i) f, = Ty LX) is a y~invariant.

If (i) and (ii) hold then in fact R,° = f, - RC.

Proof. Assume (i). By Lemma 2.2, any y-invariant f is divisible by f, . By
Lemma 2.1, there exists a y-invariant of degree > s{x). It follows that f, is a
y-invariant.

Assume (ii). By Lemma 2.2, any y-invariant f is divisible by f, . Then f/f, € RC.
It follows that R,¢ = f, - R¢, so (i) holds.

Note that in the course of the proof we have established the assertion R.¢ =

SRR

Problem. Classify all pairs (G, x) satisfying the conditions of Theorem 2.3.
In the next section we will apply Theorem 2.3 to groups generated by pseudo-
reflections. First we give an application of a different nature.

2.4. COROLLARY. Preserve the notation of this section. The following two
conditions are equivalent.

(i) RC s a Gorenstein ring.

(i) Let y be the character y(A) = det(A)L. Then Lr7 "L -+ L% is q
x-tnvariant.

Remark. Some conditions for R® to be Gorenstein appear in [14, 15]. These
were extended to a necessary and sufficient condition (different from (ii) above)
in [12], namely, R¢ is Gorenstein if and only if the following identity holds in
the field C(A), A an indeterminate:

1 det 4
)\I" ——— e T
AEE:G det(1 — A4) AEE:G det(1 — A4)
where 7 is the number of pseudoreflections in G.

Proof of Corollary 2.4. Hochster and Eagon [5, Prop. 13] (and others) have
shown that RS is a Cohen—Macaulay ring. It follows from work of Watanabe [15]
(a direct proof was shown to me by Eisenbud) that if G is any finite subgroup of
GL(V), then R © is the canonical module of R® (where y = det™). Recall that
a Cohen—-Macaulay graded algebra .S is Gorenstein if and only if the canonical
module K is a free S-module of rank one. For the character y = det™, it
is clear that s,(y) = ¢; — 1. The proof now follows from Theorem 2.3.  §
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3. RELATIVE INvARIANTS OF f.g.9.1.78

Unless otherwise stated, for the remainder of this paper G denoctes an f.g.g.x.
and y a linear character of G. Moreover, we assume that R = C[8,,..., 8,],
where §; 1s homogeneous of degree d;. We now show that Theorem 2.3 is
applicable to this situation.

3.5, Turorem. Let. G C GILV) be an f.g.g.r., and let x be a linear chavacter
of G. Then the module R.© is a free RC-module of rank one. Thus R.% = f, - RY,
where f, is given explicitly by Theorem 2.3.

Proof. Chevalley [3, Thm. (B)] has shown that if & is finite and generated
by reflections (i.e., pseudoreflections of determinant —1), and if F is the ideal
of R generated by the homogeneous elements in R® of positive degree, then
the natural representation of G in R/F is equivalent to the reguler representation.
There is no difficulty in extending this result to f.g.g.r.’s. Since a linear repre-
sentation of a finite group has multiplicity one in the regular representation, it
follows immediately that R, is a cyclic R%-module. Since R,% is clearly torsion-
free, it follows that R © is free of rank one, as was to be proved. §

An alternative proof of Theorem 3.1 can be given using the easily established
result that if G is any finite subgroup of GL(V') and if y is any linear character
of &, then R % is a Cohen-Macaulay R°-module of Krull dimension m. The
details are omitted. A result closely related to Theorem 3.1 appears in [11,
Cor. 2.81.

Remarks. (1) Suppose we take y to be the character defined by y{A4) =
(det AY?. Then s, =¢; — 1, so degf, =% {¢; — 1) =, the number of
pseudoreflections in G. The formula f, = [[L% ! is 2 known result {see

[5, pp. 59-60]). We remark that an aiternative expression for f, is known (e.g,,
[13, p. 616]), viz.,

= det J(6, ..., 0,),

where R¢ = C[f,,..., 8,] and J{6,,..., 8,,) = (08,/0x,), the Jacobian matrix of
0y s 6,y

(2) Now take y to be defined by y(A) = det 4. Thens, = 1,s0deg f, =,
the number of reflecting hyperplanes, and f, = [1L;. From (§) we get

i—p?t -
y = —m:—ﬂpi
; L—p Z

Note also the formula
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This is most easily seen from the fact that [1/(1 —p)] + 11 —p )] =1
since | p| = 1.

4. InvariaNTts oF CERTAIN SUBGROUPS OF f.g.g.r.’s

The results of the preceding section make it possible to give a fairly explicit
description of the rings R¥, where H is a normal subgroup of an f.g.g.r. G such
that G/H is Abelian. We require the following lemma.

4.1. Levma. Let G be any finite subgroup of GL(V) and let I be the group of
all linear characters of G. (Thus I o~ G|G', where G is the commutator subgroup
of G.) Let A be a subgroup of T', and let H be the normal subgroup of G defined by

H = {AecG|x(4) ==1forall ye}.
(Thus by the character theory for Abelian groups, G/H ~ A.} Then

R¥ =% RSG  (vector space direct sum).
xeA
Proof. First note that the sum Y., R.© is indeed a direct sum, since linear
representations are irreducible. Now let R’ =Y. RC If AcH, yed, and
fe RS, then Af == y(A)f = f, so fe RE. Thus R' C R¥. We prove the reverse
inclusion by showing that R and R¥ have the same Hilbert function, i.e., the
space R, of forms in R’ of a given degree  has the same dimension as the space
R, H of forms in R¥ of degree n. If b, = dim R, then by Theorem 1.2 we have

S 5 x4t
Y bkt = z Z det(l — M)

fem==l} xeG AEG
-1,
=167 %, e —ay 2,4
Now for fixed 4 € G we have
ZX(A)" =4 if AdeH
xed =0 if A¢H.
Hence
(4]
b AP =
ngo 1 G AZE:H det(l ~ AA)
= F(H, }),

by Theorem 1.2, since G/H ~ A so | A |/| G | = 1/| H |. This completes the
proof. §
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4.2. CoroLLARY. In Lemma 4.1, let G be an f.g.g.r. Then

RH:fo'RG’

xeA

where f, is given by Theorem 2.3. §

We have mentioned previously that R is a Cohen—Macaulay ring when G
is a finite subgroup of GL({V). This is equivalent to the assertion that there
exist m homogeneous elements 6, 0,,...,0,, € R® which are algebraically
independent over C, such that RC is a finitely generated free module over the
polynomial ring C[4, ,..., 0,]. In other words, there exist »y, 7y ,..., ;€ R®
(which may be chosen to be homogeneous) such that every f e RS has a wnigue
representation in the form f = Zi n: POy ..., 0,,), where p; is a polynomial in
6 ,..., 0, with complex coeflicients. When G is an f.g.g.x. and H is a subgroup
of G containing G’ (the commutater subgroup of &), then Corollary 4.2 gives an
explicit description of 8, ,..., 8, and % ,..., n; for the ring R¥. Namely, the 8s
are the polynomials guaranteed by Theorem 1.1 for which R® = C[f, ..., 4,],
and the n,’s are the £, s, v € 4. Moreover, implicit in Corollary 4.2 is the following
simple description of the quotient ring Q = R¥/(0, ,..., 6,,).

4.3. CoroLrarY. Let G CGL(VYbeanf.g.g.7., and let H be a normal subgroup
of G for which G/H is Abelian. Let A be related to H as in Lemma 4.1, and let
R6 = C[b,,..., 8,,], where the 6;'s are homogeneous and algebraically independent
over C. Then 0, ..., 0, ©s a sysiem of parameters (and a regular sequence) for
RH Let Q = RH|(0, ..., 0,). Then as a vector space over C, Q has as a basis the
(fmages of the) elements f, , y € A (given explicitly by Theorem 2.3). After multi-
plying the f,’s by suitable nonzero complex numbers, multiplication in Q s given by

Lfy — (e defy = degf, +degy .

0, otherwise.

Proof. Only (7) needs to be proved. Now f,f, is a yi-invariant of G, so
fofs = gl for some g e RC. If deg f, + deg f,, = degf,,, then g is a nonzero
scalar. Otherwise g belongs to the ideal (4, ,...,.6,,} of RS, so it is zero in Q.
Finally, it is easy to arrange that each scalar g is O or 1, e.g., by letting the
coeflicient of the lexicographically greatest nonzero term of f, be 1. §

ExampLE. An explicit example will be given for the sake of clarity. Suppose
G has five reflecting hyperplanes H; , H,, H; , H, , H;. Let C; be the cyclic
group fixing H; , and let ¢; = | C; |. Suppose {¢;, €5, €5, ¢4, ¢5) = (2, 3,3, 4, 6).
Let { = ¢2/'2 and suppose we have chosen generators P; of C; so that det P, =
(8 = —1, detP, =104 detP; =10 detP, =0, detP; =% Suppose
finally that  is a character of G satisfying ' == 1, (P} = (¢ = —1, H(P,) =
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T B(Py) = B (P, = 03 (P;) = [ Let A = {1, 4, ..., $11}. The following
table of the numbers s; = s/(x) (as defined at the beginning of Section 2), and
from this the numbers deg f, = 3" s{y), is easily constructed for y € 4.

X 5 Sy 53 ! S5 deg f,
1 0 0 0 0 0 0
& 1 1 2 1 1 6
& 0 2 1 2 2 7
43 1 0 0 3 3 7
P 0 i 2 0 4 7
PP I 2 1 1 5 10
b 0 0 0 2 0 2
47 1 1 2 3 i 8
I/ 0 2 1 6 2 5
A 1 0 0 1 3 5
$10 0 1 2 2 4 9
P 1 2 1 3 5 12

Hence O as a vector space has a basis 1 = f;, f; ,..., fi; with f;f; = 0 except
for the following relations (and the commutative law): fo f; == f; for all 4, fi f, =

Jas f2f9 = fu> fsfs ==f11, Jufs = f10> f5f6 = fu, fefs =Je> f6f9 = fa
is]]% :ff;.)Hencng CLfLs fas Jos fos SU(E f8 T3 TR 15 fudas sy it
afs> JaJ9)

5. A Crass oF CoMPLETE INTERSECTIONS

Let % be a field. Recall that a graded k-algebra S is a complete intersection if it
is isomorphic to a quotient R/{(¢y ,..., ¢;), where R = kx, ,..., x,,] and ¢ ,..., &,
is a (homogeneous) R-sequence. If one can take # = 1, then S is called a hyper-
surface. It is an open problem to determine all finite G C GL(V) such that R®
is a complete intersection or a hypersurface. Using Corollary 4.3 we can give
some cases where R is a complete intersection.

Let G C GL(V) be an f.g.g.r., and let 4 be the cyclic group generated by the
character ¢ given by ¥{(4) = det 4. In this case the subgroup H of Lemma 4.1
is given by H = G ' SL(V). We will determine an explicit condition for R¥
to be a complete intersection. Our method can be extended to subgroups H of G
containing G” other than H = G N SL{¥V), but we will content ourselves here
with the case H = G N SL(V).

Let H = G N SL(V) as above; and let ¢, , ¢ ,..., ¢, have the same meaning
as in Section 2. Let 4 = {4, g, ,..., a;} be the set of distinct ¢;’s. Applying
Corollary 4.3 to the case at hand (so that 4 is a cyclic group of order a = l.c.m.
{a,, a, ,..., a;) generated by the character ¢ = det), we see that the ring O ==
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(A4 of Corollary 4.3 has the following structure. A C-basis for Q{A4) can be
taken to be all sequences

Xi = <O‘1 s By yeney C¢£>1 O g i < 4, ‘(8)

such that o; = 7 (mod ¢;) and 0 < o; < ¢; for all j. Multiplication in Q(4) is
defined by

{0 yeeny @) LBy ey B = oy By ey g + By 10 L oy - B; < @ forally
=0, otherwise. )

Now if S is 2 (graded) Noetherian k-algebra and ¢, ..., ¢, is a regular sequence,
then S is a complete intersection if and only if S/(¢y ..., ,,) is & complete
intersection. Hence R¥ is a complete intersection if and only if O(4) is, so the
question of whether or not R¥ is a complete intersection is completely deter-
mined by the set 4. We say that 4 is a Cl-set if R¥ {or O(4)) is 2 complete
intersection. Gur problem is to characterize Cl-sets.

In order to state our characterization, we require some additional terminoclogy.
Let 7 be a partition of some finite set 4 of positive integers. (A partition of a
set A is a collection of nonveid pairwise-disjoint subsets of A, called blocks,
whose union is 4.} We say that a partition ¢ of 2 set A’ is an elementary reduction
of m, written w — o, if o can be obtained from = by one of the following two rules:

{e;) o can be any refinement of 7 such that any two elements of 4 which
are not relatively prime are in the same block of o

{e;) if some integer 8 > 1 divides every element of some block B of o,
then we may divide every element of B by & and discard the integer 1 if it now
appears.

If 7 has no elementary reductions, then it is called frreducible. If by a series of
elementary reductions = can be transformed into a partition » such that the
elements of each block of w are linearly ordered by divisibility, then we say
that = is completely reducible. (1t is evident that « may now be further reduced
to the null partition.} We identify a set 4 with the partition of 4 into one block,
and therefore speak of 4 as being irreducible, completely reducible, ete.

For instance, suppose &, b, ¢, d, e are pairwise prime integers greater than one,
and let A = {a, &% &, &%, ac, ac®, d, de}. Then the following sequence of
elementary reductions shows that 4 is completely reducible:

A —{a, d, &°, %, ac, ac®}, {d, de}
-~ {a, &%, a%b, ¢, 3}, {d, de}
— {a, a%, a?b}, {c, €%}, {d, de}.

‘We can now state the main result of this section.

48z/49/1-10
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5.1. Tusorem. Let A be a finite set of integers greater than one. The following
two conditions are equivalent:

(1) A is completely reducible,
(i) A4 is a Cl-set.

Proof. (i) = (ii) We have noted that a completely reducible partition = can
actually be transformed into the null partition by a sequence of elementary
reductions. Hence it suffices to prove that if # — o, then every block of « is a
Cl-set if and only if every block of o is a CI-set. (We in fact only need the “‘if”
part for (i) = (ii).) Since we need consider only one block of 7 at a time, we may
assume 7 = A4 (the partition of 4 into one block).

Let A = {a, ,..., a,} be the set of distinct ¢;’s which correspond to some f.g.g.r.
G C GL(V) and let H =G SL(V). Buppose that 4 — {4, ,..., 4,} is an
elementary reduction of type ¢, . Using the description (8) and (9) of O(4), a
simple application of the Chinese Remainder Theorem shows that

O(4) = O(4,) @r HAz) @s -~ & Q(Ay)-

Now Q(4) is a complete intersection if and only if each factor Q(4;) is a complete
intersection, so A is a Cl-set if and only if each 4, is a CI-set.

Now assume that 4 — B is an elementary reduction of type e,. Hence
A ={ay,...,a and B = {b, ..., b}, where a; = 8b, for some 8 > 0 and all 7,
except that if some a; = § then we discard ;. This last step of discarding
b; = 1 is by (9) irrelevant in what follows, so let us ignore it. Let X ,..., X, 4
be the C-basis for Q(A4) defined in (8); and let Y¥y,..., ¥;,_; be the analogous
basis for Q(B), so b = a/8 ==Lem. (b, ,..., b;). Every X, can be written uniquely
in the form X, = Y2 - <k, h,..., k> for some j and £ satisfying 0 <{j < 4,
0 << 2 <C 8. (Multiplication is taking place in Q(4).) The subalgebra of Q(A4)
generated by the ¥,”s is isomorphic to O(B). The additional generator Z =
{1, 1,..., 1> satisfies Z° == Y;° for some ], while every other relation involving
Z is a consequence of this one. Hence Q{A) ~ O(B)[Z]/(Z° — Y}, Y, € O(B).
It follows that Q(A4) is a complete intersection if and only if Q(B) is, s0o 4 is a
Cl-set if and only if B is a Cl-set. This completes the proof that (i) = (ii).

To prove that (ii) = (i), we first require some lemmas.

5.2. LemMa. Suppose that the finitely generated graded k-algebra S is a
complete intersection and that 8 = T @ I (vector space direct sum), where T is a
graded subalgebra and I is a howmogeneous ideal of S. Then T is a complete inter-
section.

Proof. Let the homogeneous elements ¥ ..., ¥, generate T as a k-algebra,
and choose homogeneous £2; ..., £, €1 so that the ¥’s and s together generate
S as a k-algebra. Thus S = E[x ,..., %, ¥1,..., ¥s]/J, where & =¥, and
$; = £2; {an overhead bar denotes the image in .S). Since S is a complete inter-
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section, [ is generated by a homogeneous regular sequence. We claim that we
can choose this regular sequence to be of the form 6, ,...,6,, 7, ,..., n, , where
8; € k[x%; ..., %,] and 7; € (9 ,..., ¥,). For given any regular sequence wy , wy ,...,
Wy, , Wriite w; = w; 4+ w] where w; € klx, ..., x,] and o] €, ..., ¥5). Then
w; € Tand o] €], 50 w; € Jand w] € J. Choose a basis for the k-vector space W
generated by ¢y ,..., w,, consisting of various w;” and w] . As is well known, any
homogeneous basis for W is a homogeneous regular sequence, so we have found
a regular sequence of the desired type. Since any nonzero polynomial in the »,'s
involve y,’s, it is clear that T = Elx, ..., %,]/(6; ,..., 8,). Hence T is a complete
intersection. §

5.3. CoroLrARrY. If A is a Cl-sei and B C A, then B is a Cl-set.

Proof. Consider O(4) as defined by (8) and (9). The subalgebra T generated
by all {ay,..., o) satisfying o, = 0 if «, ¢ B is isomorphic to Q(B), and the
remaining <oy ,..., o,y form a k-basis of an ideal 7. The proof now follows from
Lemma 5.2. §

5.4. Levivma. Let A = {a, b, c} be anirreducible Cl-set. Then A" = {{a, b)(a, ¢},
{a, b)(b, ¢}, (a, c)(b, ¢)} is also an irreducible CI-set.

Proof. 1t is clear that A4’ is irreducible. Let [4, §] denote the least common
multiple of 7 and j. Choose a set & of generators for O(4) (as a &-algebra), a8
described by (8) and (9), containing YV, = X 1, Vo = X, g, and ¥, =
Xpy.q - Leta', ¥, ¢ be the least positive integers for which Y{ = ¥} = V7 =0
in Q(A4). {Specifically, ¢’ = ¢/([a, b], ¢), etc., but this is irrelevant.} Since YV, ,
Y, , Y, have only one nonzero component (when written in the form (8)}, and
since no Y, is a nontrivial power of any X, it follows that the relations ¥ =
VY = Y§ = 0 occur in some set # of minimal relations among the elements
of 4. Since ((A4) is an Artinian complete intersection, | % | = | # !, Now
04N = 0A(Yy, Yy, Yy). It follows that Q(A4") is generated by 4 (or more
precisely, the image of % in Q(A4")), subject to the same relations 7 except that
VY = VY = V& =0 are replaced with V; =V, = ¥, = 0. If # is this

new set of relations, then | 9 | = | %' |, so O(A4") is also a complete intersection.  §

We now proceed to the proof that (i) = (i) in Theorem 5.1. In view of our
proof that every block of a partition 7 is a Cl-set if and only if the same is true
of an elementary reduction of =, it suffices to show that the only zrreducibie
CI-setisthe null set &. Supposethat A4 = {a;, a5 ,..., ;} is a nonvoid irreducible
Cl-set with 7 minimal. Irreducibility implies # = 3. Corollary 4.3 and the
minimality of # imply that every proper subset of 4 is completely reducible.
In particular, any proper subset B of 4 can be partitioned into blocks 85, ,
8B, ,..., 8B, , where § is a positive integer depending on B, and where every
element of B, is relatively prime to every element of B; (denoted (B,, B)) = 1}
for i = j. (Here 8C = {8¢c: ¢ € C}.) We now will show that ¢ = 3.
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Case 1. For every maximal proper subset B of A4, the elements of B have
no common factor greater than one. In particular, this condition holds for B ==
A —{a;}, so this B can be partitioned into blocks By , B, ,..., B;, s >> 2, such
that (B;, B;) = 1 for 7 % j, and such that s is maximal with respect to this
property. Since B is completely reducible, each B, is of the form 8,8/, 8; > 1.
Now for any ¢ == 1, 2,..., s we cannot have {a;, B;) = | since this would mean
that {B;, 4 — B,} is an elementary reduction of 4. It follows that for ac B, ,
{B, —{a}, B, U -+ U B, U {a;}} is an elementary reduction of 4 — {«}. Hence
if | B, > 1 then we would have (a,, B;) = 1, which cannot occur. Thus
I By | =1, and similarly | B; | = 1. Since (a;, B,) 5 1 for all { and since the
elements of B — {4} have no common factor greater than one, it follows that
A — {a} is irreducible, a contradiction. Hence Case 1 cannot occur.

Case 2. For some a;, say a,, the elements a, , ay,..., @;_4y of 4 — {a;} can
be written in the form 85, ,...,88,, 3¢;,...,0¢, r +s =t — 1, r=1,5s = 1,
8> 1), such that {(b;, ¢;) =1 for all 7 and j. Assume 7 > 1. The set B =
{80y ..., 88,1, 8¢y ..., 8¢y, a4} is completely reducible. Since 4 is irreducible,
(a;,8) = 1 Then since (b;, ¢;) = 1 and 8 > 1, in order for B to be reducible
we must have (a;, B — {a;}) = 1. Similarly if B" = (B — {3b,}) U {8b,}, then
{a,, B’ —{a,;}) = 1. Hence {a; , 4 — {a;}) = 1, contradicting the irreducibility
of A. Thus r = 1 and similarly s = 1, so # = 3 as was to be proved.

Therefore assume that 4 = {a, b, ¢} is an irreducible CI-set. By Lemma 5.4,
A" = {(a, b)(a, c), (& )b, ), (a, c)(b, c)} is also an irreducible Cl-set. Since
(&, b, ¢} = 1 because A4 is irreducible, 4’ can be written as 4" = {of, ay, fv};
where (&, ) = (&, ) = (B, ¥) == 1, and where at most one of «, 3, y is equal
to one. We will now reach a contradiction by showing that 4’ is not a Cl-set.
A (minimal) set of generators for Q(A4") can be taken to be

X, =, 1, D,

¥y =<0, Buys 18w Yo = <0, Brys v4)s
Zy = Loy'B, By, 03,y Zg = {atsB, By, 0,
Wy = {aly, 0, yyod,..., Wy = Loy, 0, piad,

where 7,5, f > 1 and where §; < <,8r, Yy o > ey << <D,
By > > ;83 ;g >t Do, vy <<t << ;. We have relations among these
generators of the form:
YiZ; = Xy, (2)
YiW; = Xy, (b)
Z Wi = X825 (c)

Y — Z% — Wi = 0, (d)
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These relations are easily seen to be independent. Types (a)~{c) have quadratic
terms and are therefore minimal. The three relations of type (d) are minimal
when we choose 4, , b, , ¢, to be minimal. Hence we have 1 47 4+ 5 -|- £ gener-
ators with at least rs -7t -+ s +7 -+ s 4 ¢ minimal relations. In order that
rs+rt+sttrbs-Ht<<1l+r-+s--t we must have rst = (, a2 contra-
diction. Hence Q(4) has more relations than generators, so it cannot be 2
complete intersection. This completes the proof of Theorem 5.1. §

5.5. CoroLLARY. Let G C GL(V) be an f.g.gr., and let H = G N SL{V). If
G : H] s a power of a prime p, then R¥ is a complete intersection.

Proof.  The set A contains only powers of p, and is therefore completely
reducible. §

5.6. CoroLLary. Ifin Corollary 5.5 [G : H] is @ prime p, then R¥ is a hyper-
surface (i.e., there is only one velation among a minimal set of generators for RY).

Proof. We have 4 = { ¢}, and it is then obvious from {8) and (9) that O(4)
has a single generator and is therefore a hypersurface. It is well known and
casily seen that then R¥ is also a hypersurface. §
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