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1. INTRODUCTION 

Let V be an m-dimensional vector space over the complex numbers C. Fix 
a basis X, ,..., x, for V, and identify the polynomial ring R = C[x, ,..., x,] 
with the symmetric algebra of V in the obvious way. If A E GL( V) (the group of 
invertible linear transformations V + V), then A extends to a @-automorphism 
of R by (Aj)(x, ,..., xnz) =f(Ax, ,..., Ax,), where f E R. Suppose G is any 
subgroup of GL(V). D enote by RG the ring of invariants of G acting on R, i.e., 

RG=(f~R/Af=fforallA~G). 

More generally, if x is any linear character of G, then let RxG denote the set of 
invariants relative to x, i.e., 

RxG = {f~ R 1 Af = x(A)f for all A E G}. 

Elements of RxG are sometimes known as relative invariants, semiinvariants, or 
x-invariants. Clearly RxG is a module over the ring RG. 

If G is finite, then it is easily seen [2, Sect. 2623 that RG contains m, but not 
m + I, elements which are algebraically independent over C. Equivalently, 
RG has Krull dimension m. It is natural to ask when in fact we can find m such 
invariants which generate all of RG as a @-algebra, i.e., when RG = Q-0, ,..., S,] 
for some 8, ,..., Q, E R. The answer to this question is associated with the names 
of Coxeter, Shephard and Todd, Chevalley, and Serre. For an exposition, see 
[I, Chap. 5, Sect. 5.21 or [4]. To state the result, recall that an element A of 
GL( V) is a pseudoreflection if 1 - A has rank one. Thus if A E GL( V) has finite 
multiplicative order, then A is a pseudoreflection if and only if it has exactly one 
eigenvalue p not equal to one. In this case p = det A. 
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1.1. THEOREM. Let G be a$nite subgroup of GL(V). Therz R” = @[$, ,...i Oq,] 
for some 0, >. . . , B,, E R if and only if G isgenerated by pseudo-~e~ec~~o~s. (A classifica- 
tion of all such groups appears in [7].) 

Henceforth we shall call a finite subgroup of GLjV) generated by pseudo- 
reflections an f.g.g.r. Our object will be to descrije the modules RxG of relative 
invariants of an f.g.g.r. G. As a consequence, we will obtain a f&!y explicit 
description of the rings RH, where H is a normal subgroup of an f.g.g.r. G such 
that G/H is Abehan. In particular, when H = G n X,(V), we obtain a necessary 
and sufficient condition for RX to be a complete intersection. 

A fundamental tool in our work will be a result of Molien. If G is any subgroup 
then RG has the structure of a graded ring, viz., IF = 

s the space of all homogeneous polynomials in R” 
each RxG has in the same way the structure of a g 

= (R,G)o + (RxG), + .*. . Define the M&en se?& FJG, A) to be 
the form3.l power series 

F,(G, A) = f (dimc(RxG),) A”, 
T&=0 

where h is an indeterminate. If x is the trivial character, so that 
we write F(G, A) for F,(G, A). 

1.2. THEOREM ([6]; see also [2, Sect. 2271 and [I, Chap. V, Sect. 5.3, Lemme 3 
If G is a ,jnite subgroup of GL( V) and x is a linear character of G, then 

is an f.g.g.r., then by Theorem 1.1 we have G = qa, )...) BJ, for some 
a, ,..., 9, E R, which can be chosen to be homogeneous, say with deg Bi = d( I 
It is clear from the definition ofF(G, A) that then 

F(G, A) = l/(1 - )idl)(l - hd2j ... (1 - x”%). (1) 

It is well known and easy to deduce from Theorem 1.2 and (I) that 

(d, - 1) T (d2 - 1) + ... -c (dm - I) = I*> (3) 

where T denotes the number of pseudoreflections in G. 
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2. FREE Mooums OF RELATIVE INVARXANTS 

For the remainder of this paper we adopt the following terminoiogy. G 
denotes a finite subgroup of GL( I’) ( w h ere V is as in the previous section), and x 
denotes a linear character of G. A hyperpfane H C Y is called a ~e~ec~~~~ &VP&- 
pkne if some nonidentity element A of G fixes H pointwise. It follows that A 
is a pseudoreflection, and conversely any pseudoreflection A fixes a unique 
reflecting hyperplane. Let Eil , Hz ,..., H, denote the (distinct) reflecting hyper- 
planes associated with G. The set of all elements of G fixing Hi pointwise forms 
a cyclic subgroup Ci generated by a pseudoreflection. Let ci denote the order of 
C, , and let Pi be some fixed generator of Ci . Let L, = L,(x, ,..., x,) be the 
linear form defining H$, i.e., Hi = {a E Y j.&(a) = 01. Thus Li E .R1, the first 
homogeneous part of R. For 1 < i < Y, define integers sa = S&J by the 
condition that si is the least nonnegative integer satisfying x(P,) = (det P,)$s. 
(Cl ear ly.dp d s, e en s only on C, , not on Pi .) Finally definef, E: R byf, = rJI=,Lp. 
ThusfX is homogeneous of degree s1 + s2 + ... + s, . 

2.1. LEMMA. Let G be a$nite subgroup of GL( V) and x a linear character of G. 
Suppose RxG is a free RG-module of Tank one, so that RxG = g, . RG for some 

homogeneous g, E R (uniquely dhtwmined up to multiplication by a nonxero scalar). 

fien deg g, = G(X) + 4x) + .*a + a(x). 

Proo$ Let d = deg gX . It follows from Theorem 1.2 that 

c xm* 1 
AeC det(l - AA) = Ad A;G de@ - XA) ’ (4) 

Multiply by (1 - h)” and expand both sides in a Taylor series about X = 1. The 
left-hand side of (4) is given by 

1 + (1 - h)? $$ + G((1 - 92), 

where P ranges over all pseudoreflections in G and where p = det P. The 
right-hand side of (4) becomes 

I + (1 - A) (4 + T &-) + O@ - A>‘). 

It folollows that 

(5) 



If we remove the identity element from each of the cyclic groups C, defined 
above, we obtain a partition of the pseudoreflections of G. Hence we may 
rewrite (5) as 

where ior fixed i, P ranges over all ~seudoreflecti~~s in Cz {i.e., over all elements 
of Ci - {I)). Hf we let P; be the subgroup of GL(I, C) generated by the ~~i~~t~e 
c&h root of unity 5 c= det Pi , and if we let $ be the character of H defmed by 
#(<) = x(PJ, then the sum over P in (6) has exactly the same form as the 
right-hand side of (S), with G replaced by N and with x replaced by $. Thus by 
what we have just proved, the sum on P in (6) is equal to the least degree of a 
$-invariant of M. But the #-invariants of H can be obtained by inspection; if we 
regard H as acting on T = C[x], then T iif = &c[$i], where t/j(<) =;: 5’1. 

0 < ti < ci . Thus the 3t.m on P in (6) is equal ta ti ~ ut since $(lJ = x(&j 
det Pi , we see that t, = si ) as defined above. The proof follows from 

IYe remark that the above proof is reminiscent of an argument of Solomon 
[IO, p. 2793. Other applications of Molien’s theorem to invariant theory appear 
for instance in [I, 7, gj. 

~~~~~. Given i satisfying 1 < a’ < V, choose a new basis yr ,..., ym for V so 
thaty, ==Li andy, ,.e., ym spans I& . akin respect to this basis the matrix of -Et 
has the form 

P, = 1 

Thus if f(yl ,..., ym) E RxG, then f(pyl 7 y2 >..., y,) = PP(Y~ , YS ,..., Y,). It 
follows that f must be divisible by yp. Hence in terms of the xi)s, S(xr ,..,, x,,J 
is divisible by Lzi. fl 

The above proof is analogous to an argument of Steinberg [I?$ 
Combining Lemmas 2.1 and 2.2, we obtain the following result. 



138 RICHARD P. STANLEY 

2.3. THEOREM. Let G be a jinite subgroup of GL( V) and let x be a Linear 
character of G. The following two conditions aye equivalent. 

(9 R.YG is a free RG-module ?f rank one. 

(ii) f, = nlzI L,S*(x) is a x-invariant. 

If(i) and (ii) hold then in fact RxG = fx . RG. 

Proof. Assume (i). By Lemma 2.2, any x-invariant f is divisible by f, . By 
Lemma 2.1, there exists a x-invariant of degree C s,(x). It follows that f, is a 
x-invariant. 

Assume (ii). By Lemma 2.2, any x-invariant f is divisible by f, . Then fif, E RG. 
It follows that RxG = f, . RG, so (i) holds. 

Note that in the course of the proof we have established the assertion RxG = 

fx . RG. I 

Problem. Classify all pairs (G, x) satisfying the conditions of Theorem 2.3. 
In the next section we will apply Theorem 2.3 to groups generated by pseudo- 

reflections. First we give an application of a different nature. 

2.4. COROLLARY. Preserve the notation of this section. The following two 
conditions are equivalent. 

(i) RG is a Gorenstein ring. 

(ii) Let x be th e c h aracter x(A) = det(A)-r. Then LpWILp-’ .‘.LFv-l is a 
x-invariant. 

Remark. Some conditions for Rc to be Gorenstein appear in [14, 151. These 
were extended to a necessary and sufficient condition (different from (ii) above) 
in [12], namely, RG is Gorenstein if and only if the following identity holds in 
the field C(h), h an indeterminate: 

A’ 1 -L-- = c det A 
AEG det(1 - hA) . ..det(l--hA) ’ 

where Y is the number of pseudoreflections in G. 

Proof of Corollary 2.4. Hochster and Eagon [5, Prop. 131 (and others) have 
shown that RG is a Cohen-Macaulay ring. It follows from work of Watanabe [15] 
(a direct proof was shown to me by Eisenbud) that if G is any finite subgroup of 
GL(Y), then Rx” is the canonical module of RG (where x = det-l). Recall that 
a Cohen-Macaulay graded algebra S is Gorenstein if and only if the canonical 
module KS is a free S-module of rank one. For the character x = det-l, it 
is clear that s,(x) = ci - 1. The proof now follows from Theorem 2.3. 



3. RELATIVE IN~ARIANT~ 0~ f.g.g.r.‘s 

Unless otherwise stated, for the remainder of this paper G denctes an f.g.g.r. 
and x a linear character of 6. Moreover, we assume that RG = C[8, )..., O,], 
where 8, is homogeneous of degree &. We now show that Theorem 2.3 is 
apphcable to this situation. 

Pmof. Ghevalley [3, Thm. (B)] h as shown that if G is finite and generated 
by reflections (i.e~, pseudoreflections of determinant -I), and ifF is the idea! 
of R generated by the homogeneous elements in RG of positive degree, then 
the natural representation of G in R/F is equivalent to the reguier representation. 
Iklere is no difficulty in extending this result to f.g.g.r.‘s. Since a linear repre- 
sentation of a finite group has multiplicity one in the regzllar representation, 2~ 
follows immediately that I?, G is a cyclic F-module. Since RxG is clearly torsion.-~ 
free, it foHows that xG is free of rank one, as was to be proved. 

An alternative proof of Tneorem 3.1 can be given using the easily established 

result that if G is any finite subgroup of G%(V) and if x is any linear character 
of G, then WxG is a Cohen-Macaulay WG-module of Kruil dimension m. The 
details are omitted. A result closely related to Theorem 3.1 appears in [I 1, 
car. 2-q. 

emarks. (I) Suppose we take x to be the character defined by x(A) -= 
A)-‘. Then si = ci - 1, so deg f, = c (ci - 1) = Y, the number of 

pseudorefiections in 6. The formula f, = Lii-l is a known result (see 
[9, pp YMO]). We remark that an aiternativ xpression for f, is known (e.g., 
[13, pi 151q1 viz., 

where I-F = C:[8, ,..., S,] and J(e, ,..., e,) = (aoijaXl), the Jacobian matrix of 

8, )...? e,, . 

(2) Sow take x to be defined by x(A) = det A. Then si = I, so degf, = Y, 
the number 3f reflecting hyperpIanes, and f, = Li . From (5) we get 

Note also the formula 
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This is most easily seen from the fact that [l/(1 - p)] + El/( I - p-l)] = 1 
since lp / = 1. 

4. INVARIANT-S OF CERTAIN SUBGROUPS OF f.g.g.r.‘s 

The results of the preceding section make it possible to give a fairly explicit 
description of the rings RX, where H is a normal subgroup of an f.g.g.r. G such 
that G/H is Abelian. We require the following lemma. 

4.1. LEMMA. Let G be any jkite subgvogp of GL( V) and let F be the group of 
all linear characters of G. (Thus r s G/G’, where G’ is the commutator subgroup 
of G.) Let A be a subgroup of P, and let H be the normal stibgroup of G defined by 

(Thzxs by the character t~e~yfo~ Abel~a~ groups, G/H g A.) TheB 

(vector space direct sum). 

Proof. First note that the sum CXEll RXG is indeed a direct sum, since linear 
representations are irreducible. Now let R’ = xxan Rx”. If A E H, x EL’& and 
f E RxG, then Af = x(A)f = f, so f E RH. Thus R’ C RH. We prove the reverse 
inclusion by showing that R’ and RH have the same Hilbert function, i.e., the 
space R,’ of forms in R’ of a given degree ‘PE has the same dimension as the space 
RmH of forms in RH of degree n. If b, = dim R*‘, then by Theorem 1.2 we have 

Now for fixed A f G we have 

Hence 

by Theorem 1.2, since G/H s A so 1 A l/j G 1 = l/l HI. This completes the 
proof. 
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4.2. f.%WLLhRY. InLemma 4.1, let G be anf.g.g.r. Then. 

where f, is givez by Theorem 2.3. 

We have mentioned previously that RG is a Cohen-Macaulay ring when 
is a finite subgroup of GL(V). This is equivale to the assertion that there 
exist m homogeneous elements 19~ , 0, ,.. ., 8, E G which are algebraically 
independent over C, such that RG is a finitely generated free modu!e over the 
polynomial ring C[B, ,..., O,,]. I n other words, there exist qn, ~a ,l.., 7i E R” 
(which may be chosen to be homogeneous) such that every f E WG has a uniqzre 
representation in the form f = Ci Q ’ p,(t$ ,..., 8,>, where pi i 
8, ).~., 8, with complex coefficients. When G is an f.g.g.r. and 
of G containing 6’ (the commutator subgroup of G), then Gor 
explicit description of 8, ,..., 8, and y1 ,..., qt for the ring 
are the polynomials guaranteed by Theorem 1.1 for whit 
and the 7%‘~ are thef,‘s, x E A. Moreover, implicit in Corollary 4.2 is t-be following 
simple desc+tion of the quotient ring Q = P/(0, ,..., 0,). 

4.3. COROLLARY. Let G C GL( V) be anf.g.g.r., and let Ed be a normal subg~o 
G for which G/H is Abelian. Let A be related to H as irt Lemma 4.1, mknd 
= G[6, )..., O,], where the 0,‘s are homogeneous and ~lg~b~~~~a~~y i~depe~~e~t 

over C. Then O1 )..., 0, is a system of parameters (and a regular sequence) for 
RH. Let Q = RH/(O, ,..., e,,J. T%en as a vector space over oZ=, Q has as a basis the 
(images cf the) elements f, , x E A (given explicitly by Theorem 2.3). After multi- 
plyiazg theJ:‘s by suitable nonxero complex numbers, ~~~~~p~ica~~~~ z;12 

fxf* = i;ti’ 
if deg fx* = ckgf, + degf* 

I 
-Ia 

otherwise. j i 

Proof. Only (7) needs to be proved. Now fxfG is a &-invariant of ) so 
fxfb = gfxti for some g E RG. If deg f, + deg fd = deg&*, then g is a nonzero 
scalar. Otherwise g belongs to the ideal (0, ,..., 0,) of RG, so it is zero in 
Finally, it is easy to arrange that each scalar g is 0 or I, e.g., by letting t 
coefficient of the lexicographically greatest nonzero term of j, be I. 

EXAMPLE. An explicit example will be given for the sake of clarity. Suppose 
has five reflecting hyperplanes HI , If,, II3 ) H4, H5 . Let Cj be the cyclic 

group fixing Hj , and let cj = 1 Cj j. Suppose (ci , c2 , c3 , cq ) c5) = (2, 3, 3,4, 6). 
Eet 1 = ezTi/r2, and suppose we have chosen generators Pj of Cj so that det Pr = 
5” = -1, det Pz = 14, det P3 = <4, det P4 = c3, det P5 = t2. Suppose 
finally that # is a character of G satisfying #I2 = 4, #(PI) = l6 = -1, #(PJ = 
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<4, #(Ps) = 18, $(.PJ = 43, $(PJ = 5”. Let /I = (1, $, #” ,..., #ri>- The following 
table of the numbers si = si(x) (as defined at the beginning of Section 2), and 
from this the numbers deg f, = C s&), is easily constructed for x E /I. 

0 
1 
2 
0 
1 
2 
0 
1 
2 
0 
1 
2 

0 
2 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 

0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 

0 0 
1 6 
2 7 
3 7 
4 7 
5 10 
0 2 
1 8 
2 5 
3 5 
4 9 
5 12 

Hence Q as a vector space has a basis 1 = f. , f1 ,..., fir with fifj = 0 except 
for the following relations (and the commutative law): fOfi = fi for all i, f1f6 = 

f7 P fif9 =.A1 Y f3f8 = fil 7 f4f6 = fi0 9 fsfs =fr1 3 fsfs =f2 F fGf9 =f3 ? 

f8f9 =fs. HenceQz c[fl, f4 F f6, f8, f&f~2, fb2, fozj f 3 f ’ f f 8s 9, 14, 1.8, 3.99 f f f f 

f4fs > f4f9). 

5. A CLASS OF COMIQTR INTER~ECT~~~S 

Let k. be a field. Recall that a graded R-algebra S is a complete ~~t~sec~~~~ if it 
is isomorphic to a quotient Rjf#, ,..., &), where R = k[x, ,..., xJ and +i ,..., 4, 
is a (homogeneous) R-sequence. If one can take t = 1, then S is called a hypes- 
surface. It is an open problem to determine all finite G C GL( V) such that RG 
is a complete intersection or a hypersurface. Using Corollary 4.3 we can give 
same cases where No is a complete intersection. 

Let G C GL(V) be an f.g.g.r., and let fl be the cyclic group generated by the 
character Ifi given by $(A) = det A. In this case the subgroup H of Lemma 4.1 
is given by H = G n S&(Y). W e will determine an explicit condition for Rx 
to be a complete intersection. Our method can be extended to subgroups N of G 
containing G’ other than H = G n SL(V), but we will content ourselves here 
with the case H = G A SL(V). 

Let H = Gn SL(V’) as above; and let cr , c2 ,..., c, have the same meaning 
as in Section 2. Let A = (aI , a2 ,..., at} be the set of distinct ci’s. Applying 
Corollary 4.3 to the case at hand (so that /I is a cyclic group of order a = 1.c.m. 

(e , a2 ,..., ut) generated by the character $I = det), we see that the ring Q = 
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Q(A) of Corollary 4.3 has the following structure. A. C-basis for Q(A) can be 
taken to be all sequences 

<El ,.‘a) &> - <is, >-*.t Be> = (% -!- Br 9**-, ~ti-Pb),ifO~:~-LBj<aiforallj 

= Q, otherwise. (9) 

Now if S is a (graded) Noetherian K-algebra and #i ,. ., $m is a regular sequence, 
then X is a complete intersection if and only if S/(+i ,..“, I&) is a complete 
intersection. Hence RH is a complete intersection if and only if Q(A) is, so the 
question of whgthgr or not Rx is a complete intersection is completely deter- 
mined by the set A. We say that A is a Cf-set if RH (or Q(A)) is a complete 
intersection. Our problem is to characterize CI-sets. 

In order to state our characterization, we require some additional terminology. 
Let rr be a partition of some finite set A of positive integers. (A ~~~~~~~0~ of a 
set A is a collection of nonvoid pairwise-disjoint subsets of A, called blocks, 
whose union is A.) We say that a partition u of a set A’ is an @~~~@~t~~y reduction 
of r, written 7r ---f G, if g can be obtained from z by one of the following two rules: 

(4 G can be any refinement of 7~ such that any two elements of 4 which 
are not r&tidy prime are in the same block of G; 

(+) if some integer 6 > 1 divides every element of some block B of ci) 
then we may divide every element of B by 6 and discard the integer I if it now 
appears. 

If 7~ has no elementary reductions, then it is called irrertuc&le. If by a series of 
elementary reductions v can be transformed into a partition w such that the 
elements of each block of w are linearly ordered by divisibility, then we say 
that c is completely ~e~~c~b~~” (it is evident that w may now be further reduced 
to the null partition.) We identify a set A with the partition of A into one block> 
and therefore speak of A as bei.ng irreducible, corn~l~~e~~i reducible, etc. 

For instance, suppose a, b, 6,& e are pairwise prime integers greater than one; 
and let A = (Q., a2, a3, a%, ac, ac3, d, de]. Then the following sequence of 
elementary reductions shows that A is complete!y reducible: 

A -+ {n, u2, a3, u3b, ac, a8}, (d, de) 

----t (a, a2, a2b, c, c3), (d, de) 

-+ (a, u2, u2b), (c, cy, (d> de>. 

%Ve Can now state the main result of this section. 
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5.1. THEOREM. 22~ A be a$& set of &&g&s greater than 086. The~o~~o~~n~ 
two condition are equivalent : 

(i) A is completely reducible, 

(ii) A is a CI-set. 

Proof. (i) 3 (ii) We have noted that a completely reducible partition v can 
actually be transformed into the null partition by a sequence of elementary 
reductions. Hence it suffices to prove that if v + V, then every block of rr is a 
CI-set if and only if every block of (T is a CI-set. (We in fact only need the “if” 
part for (i) + (ii).) Since we need consider only one block of q at a time, we may 
assume rr = A (the partition of A into one block). 

Let A = (a, ,..., a,> be the set of distinct C~‘S which correspond to some f.g.g.r. 
G C GL(V) and let H = G n 2%(V). Suppose that A + (A, ,..., A,) is an 
elementary reduction of type cl . Using the description (8) and (9) of Q(A), a 
simple application of the Chinese Remainder Theorem shows that 

Now Q(A) is a complete intersection if and only if each factor Q(&) is a complete 
intersection, so A is a CI-set if and only if each Ai is a CI-set. 

Now assume that A -+ B is an elementary reduction of type f2. Hence 
A = {al ,..., at} and B = {b, ,..., b,), where ai = 66, for some 6 > 0 and all z’, 
except that if some aj = S then we discard bj , This last step of discarding 
6$ = 1 is by (9) irrelevant in what follows, so let us ignore it. Let X0 ,..., X,-r 
be the C-basis for Q(A) defined in (8); and let Y, ,..., Yb-r be the analogous 
basis for Q(B), so b = a/8 = 1.c.m. (4 ,..., b,). Every Xi can be written uniquely 
in the form Xi = Yi” + (A, h,..., la) for some j and iz satisfying 0 <j < b, 
0 < h < 6. (~~UItiplication is taking place in Q(A).) The subalgebra of Q(A) 
generated by the Yf6’s is isomorphic to Q(B). The additional generator Z = 
(1, f,..., I} satisfies 2” == E;” for some I, while every other relation involving 
2 is a consequence of this one. Hence Q(A) z Q(~)[Z]~{Z~ - Yi), Yt EQ(B). 
It follows that Q(A) is a complete intersection if and only if Q(B) is, so A is a 
CI-set if and only if B is a CI-set. This completes the proof that (i) =+ (ii). 

To prove that (ii) + (i), we first require some lemmas. 

5.2. LEMMA. Suppose that the jinitely generated graded k-algebra S is a 
complete intersection and tkat S = X @ I (vector space direct sum), where X is a 
graded subalgebra and I is a homogeneous ideal of S. Then T is a complete inter- 
section. 

ProoJ Let the homogeneous elements Y, ,..., Y, generate T as a k-algebra, 
and choose homogeneous 52i ,..., &2, EJ so that the Y’s and Qs together generate 
S as a k-algebra. Thus S = A[$, ,..., x, ,yl ,..., y#J, where %* = Yi and 
35 = Z2, (an overhead bar denotes the image in 5’). Since S is a complete inter- 
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section, J is generated by a homogeneous regular sequence. We claim that we 
can choose this regular sequence to be of the form O1 ,..., 0, , Q ,. .r ?iic , where 
Oi E k[x, )‘.., xr] and 7)< E (yr ,..., yJ. For given any regular sequence w1 , wg )...? 
w, , write tili = ui’ + W; where ui’ G klx, ,..., 3c,] and wit E (yl ,... , ySj. Then 

z E T ami2 E I, so wi’ E J and W; E J. Choose a basis for the k-vector space W 
generated by w1 ,..*, w, consisting of various wii and W; . As is well known, any 
homogeneous basis for W is a homogeneous regular sequence, so we have found 
a regular sequence of the desired type. Since any nonzero polynomial in the Q’S 
involve yI’s, it is dear that T = k[x, ,..., q.]/(O, ,..., 6,). Hence 7’ is a complete 
intersection. 

5.3. COROLLARY. If A is a U-set and B C A, then B is a tZ’I-set. 

Proof. Consider Q(A) as defined by (8) and (9). The subalgebra T generated 
by all <a, ,..., c+> satisfying cxi = 0 if 01~ $ B is isomorphic to Q(B), and the 
remaining (13~ ,..~, at) form a k-basis of an ideal I. The proof now follows from 
Lemma 5.2. 

5.4. h.blMA. Let A = (a, b, c> be arz imeducible fX-set. T%en A’ = ((a, b)(a, c,)* 
(a, b>(b, c), (a, c)(b, c)> is also an irreducible CI-set. 

ProoJ. It is clear that A’ is irreducible. Let [iii] denote the least common 
multiple of i and j. Choose a set 3 of generators for Q(A) (as a k-algebra), as 
described by (8) and (9), containing Y, = Xlo,b~ , Y, = XI~,~I i and Y, == 
X[b,c~ . Let a’, b’, c’ be the least positive integers for which Y;’ = Yi’ = 1’:’ = 0 
in Q(A). (Specifically, c’ = c/([a, 61, c), etc., but this is irrelevant.) Since ITI ) 
I’, , Y3 have only one nonzero component (when written in the form (g)), and 
since no Yti is a nontrivial power of any Xj , it follows that the relations Yi’ = 
Yi’ = Yi’ = 0 occur in some set 9 of minimal re!ations among the elements 
of 9. Since Q(A) is an Artinian complete intersection, 3 i = R ‘, ?to\v 

(A’) = Q(A)l(Yr , Yz , YJ. It follows that @A’> is generated by 3 (or more 
precisely, the image of 9 in &(A’)), subject to the same relations .% except that 
Y:’ = Yg’ = YFJ’ = 0 are replaced with Yr = Yz = Y3 = 0. If 3’ is th’ 
new set of relations, then / 5? j = j 9’ j, so $?(A’) is also a complete intersection. 

We now proceed to the proof that (ii) * (i) in Theorem 5.1. In view of OUT 
proof that every block of a partition T is a U-set if and only if the same is true 
of an elementary reduction of z, it suffices to show that the only ~~~e~~~~~~~ 
U-set is the null set 0. Suppose that A = (aI , a2 , . , ., at) is a nonvoid irreducibie 
CI-set with r minimal. Irreducibility implies t > 3. Corollary 4.3 and the 
minimality of t imply that every proper subset of A is completely reducible. 

ar, any proper subset B of A can be partition 
where 6 is a positive integer depending on 

element of B, is relatively prime to every element of B, (denoted (B, B Bj) = I> 
for z’ 1 j. (Here 6C = (6~: c E C}.) We now will show that t = 3. 
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cast? 1. For every maximal proper subset B of A, the elements of B have 
no common factor greater than one. In particular, this condition holds for B I= 
A - (at}, so this B can be partitioned into blocks -13, , B, ,..., B, , s 3 2, such 
that (B, , Bj) = 1 f or i + j, and such that s is maximal with respect to this 
property. Since B is completely reducible, each B, is of the form GiBi’, 6< > 1. 
Now for any i = 1,2,.. ., s we cannot have (at , BJ = 1 since this would mean 
that (B6 , A - &) is an elementary reduction of A. It follows that for a E B, , 

PI - @I, & ” *-I u B, u (at]) is an elementary reduction of a - (a). Mence 
if 1 B1 j > 1 then we would have (a, , BJ = 1, which cannot occur. Thus 
/ Bl j = 1, and similarly / Bi ] = 1. Since (al; , BJ f 1 for all i and since the 
elements of B - (a} have no common factor greater than one, it follows that 
A - (a> is irreducible, a contradiction. Hence Case 1 cannot occur. 

Case 2. For some a,, say a,, the elements a, , a, ,..., at-r of A - (a,} can 
be written in the form Sb, ,..., 6b,, 6cr ,..., SC, (Y + s = t - 1, Y 3 1, s 3 1, 
6 > I), such that (b, , cj) = 1 for all i and j, Assume Y > 1. The set B = 
(SlJ, ,“.f S6,-, , SC, ,..-, SC,, at) is completely reducible. Since A is irreduci$Ie, 
(at , 8) = 1. Then since (6, , cj) = 1 and 8 > 1, in order for B to be reducible 
we must have (a, , B -- (at>) = 1. Similarly if B’ = (B - (Sb,)) U (Sb,$, then 
(at f B’ - (at)) = 1. E-fence (a, , A - (ut>) = 1, contradicting the irreducibility 
of A. Thus r = 1 and similarly s = 1, so t = 3 as was to be proved. 

Therefore assume that A = {a, 6, c> is an irreducible CI-set. By Lemma 5.4, 

A’ = {(a, b)(a, 4, (a, W, 4 (a, c)(h 41 is also an irreducible CI-set. Since 
(a, b, c) = 1 because XI is irreducible, A’ can be written as A’ = (a/?, q, fly], 
where (a, P) = (01, y) = (P, Y! = 1, and where at most one of E, ,@, y is equal 
to one. We will now reach a contradiction by showing that A’ is not a CI-set. 
A (minimal) set of generators for Q(N) can be taken to be 

Yl = c-4 PlY> Yl.@Y.> y, = a P#l r,B>, 

2, = (%‘P, PI’% O),..., 2, = (%‘P, Pa’% Oh 

w, = (a;y, 0, y;a) ,...) w, = (sly, 0, y;a>, 

where I, s, t > 1 and where /3r < ... < &, yr > .A. > yr; LYE’ < se* < as’, 
13,’ > --‘ > /Is’; a; > .I* > 4, r; < ..’ < yi. We have relations among these 
generators of the form: 

YiZj = x,cDp,j ) (4 

YiW, = x,$&j ) (b) 

z<w, = x$&j; (4 

ys? zz z: = wp =T: 0. (4 
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hese relations are easily seen to be independent. Types (a)-(c) have qudratic 
terms and are therefore minimal. The three relations of type (d) are minimal. 
when we choose ai ,bi , ci to be minimal. Hence we have I + r + s -+ t gener- 
ators with at least YS + it + sl + y + 5 + t minimal relations. In order that 
TS + rt + st + Y + s + t < 1 + Y + s + t we must have rst = 8, a coatra- 
diction. Hence &(A) has more relations than generators, so it 
complete intersection. This completes the proof of Theorem 5. I. 

5.5. COROLLARY. Let GC GL( V)b e an f.g.g.r., and let H = @ n $X(V). .Tf 
[G : HI] is a power of a prime p, then Rw is a complete ilztersection. 

PYOO$ The set A contains only powers of p, and is therefore completely 
reducible. 

5.6. COROLLARY. If in Corollary 5.5 [G : izIj is a phme p, then 
surfue (i.e., there is only one relation among a rn~nirn~~ set ofgenerators 

Proofs We have A = (p>, and it is then obvious from (8) and 
has a sicgle generator and is therefore a hypersurface. It is wei 
easily seen that then RH is also a hypersurface. 
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