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An investigation is made of the polynomials fk(n) = ,S(n + I?, n) and g&z) == 
(- l)k s(n, n - k), where s and s denote the Stirling numbers of the second and 
first kind, respectively. The main result gives a combinatorial interpretation 
of the coefficients of the polynomial (1 - x)~~+* .Z"t&(n)xn analogous to the 
well-known combinatorial interpretation of the Eulerian numbers in terms of 
descents of permutations. 

1. ELEMENTARY PROPERTIES 

If k and n are positive integers, let ,S(Q, k) denote the number of partitions 
of an n-element set into k blocks. Also let c(q k) denote the number of 
permutations of an n-element set with k cycles. Thus s(n, k) = c(n, k) = 0 
if k B n. ,S(q k) is a Stirling number of the second kind, and C(IZ, k) is related 
to the Stirling numbers ~(a, k) of the first kind by c(n, k) = (-l)n-k s(n, k). 
The C(IZ, k)'s are sometimes called the “signless Stirling numbers of the first 
kind.” For further information, see [9, pp. 32-34, 7G72; 3, Chap. V], 
or [6, Chap. IV]. Throughout this paper we will use the following notation: 

N set of nonnegative integers, 
p set of positive integers, 
Z set of all integers, 
C set of complex numbers, 

[PI] the set { 1, 2 ,..., n}, where n E P’. 

We are interested in studying 5’(n, k) and c(n, k) as functions of the differ- 
ence n - k. Hence if k E N and IZ E p, we define j&) = L?(n + k, n) and 
g&z) = C(KZ, n - k). For instance, &(n) = g,,(n) = I and h(n) = (ni1), 
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g&z) = (i). The next two propositions are not new, but for the sake of 
completeness we have included proofs. 

PROPOSITION 1.1 (see, e.g., [6, Sect. 521). Fix u nonnegative integer k. 
Then fk(n) andgk(n) arepolynomialfunctions of thepositive integer n. Both these 
polynomials have degree 2k and leading coeficient (1 ’ 3 . 5 ... (2k - 1))/(2k)!. 

ProoJ It is well known that L?(u, k) satisfies the recursion S(n + 1, 
k+ l)==S(n,k)+(k+ 1) S(n, k + 1) for n, k E IF’. This is equivalent to 

LljXn) = Ctz + 1 Jfk-h + 11, for all n, k E 5’, (11 

where d is the usual difference operator (defined by Ah(u) = h(n + 1) - h(n)). 
We now prove by induction on k that ,&(u) is a polynomial of degree 

dk = 2k and leading coefficient Us -= (1 3 . 5 ... (2k - 1))/(2k) ! This 
statement is clearly true for k = 0, since f”(n) = 1. Now assume it for k. 
Recall that a function h: La’ + C is a polynomial of degree d and leading 
coefficient a if and only if Ah(n) is a polynomial of degree d - 1 and leading 
coefficient ad. Hence by (1) and the induction hypothesis, fk+I(n) is a poly- 
nomial of degree dh + 2 = 2(k + I) and leading coefficient qJ(2k + 2) = 
(1 a 3 5 ... (2k + 1))/(2k + 2)!. 

The proof for gk(n) is analogous, using the recursion c(n + 1, k + 1) = 
c(n, k) L n c(~, k + 1) in the form Agk(n) = n * gkdI(n). This completes 
the proof. 

We call the polynimials fk(n) and gti(n) Stirling poZynomials. (These are 
not to be confused with the related but not identical “Stirling polynomials” 
of [6, Sect. 771.) Although fk(n) and gk(n) were originally defined only for 
n E Le’, as polynomials they can now be evaluated at any complex number. 
In particular, in the spirit of [ 111 we can ask for a combinatorial interpretation 
offk(n) and gk(n) at negative integers n. A brief history of this problem appears 
in [5]. It may be regarded as a reformulation of the well-known orthogonality 
between ~(Fz, k) and s(n, k), although we will give a direct proof. 

PROPOSITION 1.2. We have 

fk(0) =&(-1) = *.. =fk[-k) = 0, for all k G IF’, (3 

and 
f&n) = h(n), forallnEZ,kEp. (3) 

Proox There are several ways to prove this result, of which the following 
is perhaps the most straightforward. The polynomials fk(n) are uniquely 
determined by the conditions h(n) = I, fk(i) = I if k E lp, and dfk(n) = 
(n + I) fkwl(n + I) if k E p. This latter identity we originally observed for 
n E p, but by Proposition 1.1 must be a polynomial identity and therefore 
valid for all n E Z (or even n E C). 



26 GESSEL AND STANLEY 

We prove (2) by induction on k. It is true for k = 1 since h(n) = (ni1). 
Assuming its validity for k - I we have d&(O) = fkel(l) = 1 and dfk(--i) = 
(-i + l)fJbl(-f -k 1) = 0 if i E [/?I. These k -L 1 equations, together with 
-Ml) = 1, imply PI. 

Define /zk(n) = &&n). Then /r&r) = 1. Moreover, since -fk(-k - 1) 1 
A&(-k - I) = -h- *fk-l(-k) for k > 1 and since &-1) = 1, we get 
&(k + 1) = k!. Finally, putting -U - 1 for ti in (l), we get d/rk(n) = 
fi . /~~-~(n). But these conditions on &(n) are precisely the conditions which 
uniquely determine g&z). Hence h*(n) = gk(n), and the proof is complete. 

2. STIRLING PERMUTATIONS 

Our main result on Stirling polynomials can best be motivated by recalling 
some properties of the Eulerian numbers Ak,;. They are defined by the 
equation 

The Eulerian number & has the following combinatorial interpretation: 
&i is the number of permutations u++ *a* Us of the set [k] having exactly i 
descents (or fi/L); i.e., for exactly i values of j E [k] do we have uj > Q+~ 
orj = k. See, e.g., [8; 3, pp. 24&246; 12, Example 4.10; 7, Vol. 3, 51.3; 41. 

Now Propositions 1.1 and 1.2 imply that for each k G Lp, there are integers 
Bk,;, i e [k], such that 

and 

(4) 

where zf=r Bksi = 1 * 3 . 5 +.. (2k - 1). The deduction of (4) and (5) from 
Propositions 1.1 and 1.2 follows from basic results in the theory of generating 
functions, see e.g., [12, Corollaries 4.5 and 4.61. Thus we can ask, in analogy 
to the Eulerian numbers, whether there is a combinatorial interpretation of 
the numbers Bk,i . (It is not even evident a priori that they are nonnegative.) 
Ideally B%,i will count the number of permutations, from some class of 
1 * 3 . 5 *me (2k - I) permutations, with exactly i descents. This is precisely 
the content of the next theorem. We shall give three diRerent proofs of this 
theorem, reflecting three different combinatorial features of Stirling poly- 
nomials. 
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First let us remark that the numbers & have been previously investigated 
by Carlitz [l, 21 and Riordan [IO, Sect. 41 using a different notation. Carlitz 
derives their formal properties and asks for a combinatorial interpretation. 
Riordan states such an interpretation, but not in terms of descents of permu- 
tations. 

THEOREM 2.1. Let Qk be fhe set of all permutations ala2 ... azh of the 
multisef Mk = {I, 1, 2, 2 ,..., k, k} such that of u < v < w and aU = alL,, 
then at3 > aU . (We call the elemenfs of Qk Stirling permutations.) Then Bk,i 
is equal to the number of permutations ala2 .*’ azk E Qk wifh exactly i descents, 
i,e., such that aj > aj+I or j = 2k for exactly i values of j E [2k]. 

First proof Let Ck,i be the number of permutations in Qk with exactly i 
descents. Thus CI = 1, Cl,< = 0 if i # 1, C*,* = 0. We claim that 

Ck,j = i . Ck-I,i + (2k - i) Ck-I,iPI, for all k, i > 2. (61 

Every permutation r in Qk can be obtained uniquely by choosing a permu- 
tation u in QkPI and inserting two consecutive k’s somewhere in 0 (there are 
2k - I ways to insert the two k’s). In order that r have i descents, there are 
two possibilities: (a) u has i descents and the two k’s are inserted between a 
descent or at the end, (b) u has i - 1 descents and the two k’s are not inserted 
between a descent or at the end. In (a), there are Ck-I,i choices for u and i 
ways to insert the k’s. In (b), there are CkMI,i-I choices for G and 2k - i 
ways to insert the k’s. This proves (6). 

It is clear that Bh,i satisfies the initial conditions ISI,1 = 1, I&i = 0 if 
i # 1, Bk,o= 0. Hence the proof will be complete if we can show Bk,i 
satisfies the same recursion (6) which holds for Ck,j . Let 

Then (1 - X) &(X) = X:=0 [dfk(n - I)] XT’ = x:-O n ’ fkPI(n) x7’ = 
x d/dx F&~). Thus 

Multiplying (7) by (I - x)27t and equating coefficients of 9 gives Bk,i = 
i . Bk+ - (i - 1) BkPI,+I + (2k - 1) Bk-I,f-I = i . BJc+I,i + (2k - i) x 
Brc-1,i-l . This completes the proof. 

Note that Theorem 2.1 implies that 1 Qk 1 = I . 3 . 5 ... (2k - l), since 
we already observed that & Bk,j = 1 . 3 . 5 *.. (2k -- 1). A direct com- 
binatorial proof of this is implicit in the above proof, since we noted that 
there are 2k - I ways of choosing n G Qk from ff G QkPI by inserting two 
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consecutive k’s, and each ZT is obtained exactly once in this way. We leave to 
the reader the easy problem of giving a direct combinatorial proof that 
B k,k = k!. Table I gives the values of Bk,j for I < k <g 8. 

TABLE I 

The Numbers &,a 

i 

k 

1 2 3 4 5 6 
-~- 

1 1 I 1 I I 
2 8 22 52 114 

6 58 328 1452 
24 444 4400 

120 3708 
720 

7 8 

1 
240 

5610 
32120 
58140 
33984 

5040 

1 
494 

19950 
195800 

644020 
785304 
341136 

40320 

Second proof of Theorem 2.1. We now give a direct combinatorial proof 
that Ck,i = BL,t, where C’k,i is the number of permutations in Qk with exactly 
i descents and Bk,i is defined by (4). We show that 

by constructing objects whose generating function is the right side of (8) 
and exhibiting a bijection between these objects and partitions of sets. 

Let rr = uruz ... a*k be a permutation in Qk for k > 0. We define the 
“spaces” of r to be the integers 0, I ,..., 2k, and we think of space i as lying 
between uj and u[+r for 1 < i .< k, with space 0 before u1 and space 2k 
after azk . We say that a space i is a descent of 7r if aL > ai+l or if i = 2k. 

Now for any permutation 7~~ we define a barred permutation on n to be a 
sequence of integers and bars (/) formed from r by inserting bars in some of 
the spaces of 7~. For example, /l/2//21 is a barred permutation on 1221. 
We now define Pk to be the set of barred permutations on elements of Qk 
with at least one bar in each descent. For example, //123//3/2/144/ is an 
element of P4 . Let Pk,m be the set of elements of Pk with n bars. 

LEMMA 2.2. Waco ~ Pk,n i xpz = (-& Ck j L)/( 1 - x)21d+r .X , where C,c,i is the 
number of permutations in Qk MVth i descents. 

ProojI For n E Qk , let d(p) be the number of descents of r. Observe 
that every element of Pk,n can be obtained uniquely from some permutation 
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r in Qk by first putting a bar in each of the d(r) descents of v and then putting 
any number of bars in each of the 2k + 1 spaces of n. Thus 

THEOREM 2.3. 1 Pk,n 1 = S(n + k, n) = f&z). 

ProojI We exhibit a bijection between Pk,n and the set of partitions of 
[IZ + k] into IZ blocks. First note that if r is an element of Pk for k > 0 
then ir can be obtained uniquely from some & G Pkwl by inserting to the left 
of some bar in& a pair of k’s separated by some number of bars. For example, 
112/3//3/2/ is obtained from 112112 by inserting 3113 to the left of the second 
bar. Let us call a pair of integers separated by some number of bars an 
adjunct. Then by iteration of the above procedure, any element of Pk can be 
built up in one way from an element of P0 (which is a sequence of bars) 
by successively inserting adjuncts. 

As we construct a barred permutation r in Pk,n , we simultaneously label 
its bars and the left occurrence of each of its numbers with the lable set 
us L-9 n + k} and construct a partition of this label set into n blocks, 
according to the following procedure: 

The labels are assigned in the natural order: 1,2,..., PI + k. We start with 
a sequence of barswhich we label from left to right. We then insert the adjunct 
111 ... 1 and label the left 1, then the bars from left to right. We then insert 
vi -** 2 and label the left 2, then the bars from left to right, and so on. 

As we label, we construct a partition of the set of labels. When we label 
a bar we put the label in a new block, and when we label a number we put 
the label in the same block as the label of the bar to the left of which it is 
inserted. 

For example, let rr = 1 l/2/344/3/2//. Then the above construction yields 
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Now suppose we are given a partition of [H + k] into n blocks for which 
we wish to find the corresponding element of Pk,% . Let us associate to each 
block {aI ,..., QJ of the partition, where aI < a2 < ... < aj , the permutation 
ww3a3 ... ajajaI , where we underline aI . Let the permutations obtained 
in this manner-be 7~~ , rrz ,..., nn , in increasing order of underlined number, 
and let c< be the underlined number ofTi . Now let ur = nI , and for I .SS j < tz 
construct u~+~ by inserting ~~+r into u< immediately to the right of the leftmost 
occurrence of C~ - 1 in Us. Then to obtain the desired element of Pk,n, in Go 
change all underlined numbers to bars, and renumber the remaining numbers 
1, I, 2, 2,. .., k, k, keeping the same order. 

For example, if our partition is {I, 4]{2, 5]{3}{6]{7, 8]{9, 10: then the above 
procedure yields 

rr4: 6 CT,: 44156523 

us: 44l-56887523 -A 

7T6: IO 10 2 u6: 441568, 10, IO. 987523 -- 

Changing underlined numbers to bars gives 441518 10 10/8/5/j and 
renumbering gives 11/2/344/3/2//. We leave it to the reader to show that 
these correspondences are in fact inverse to each other. This completes the 
second proof of Theorem 2.1. 

If n is a permutation in Qti then we may define the “nondescents” of n 
to be those spaces of r which are not descents. If T has i descents, then rr 
has 2k + 1 - i nondescents. If we now define Pk to be the set of barred 
permutations on elements of Qk with at least one bar in each nondescent, 
and P,c,n to the set of elements of P,c,n with n bars, then by the same reasoning 
as in Lemma 2.2, we see that 

Then one can show that 1 Pk,n 1 == c(~, n - k) = gk(n) by a correspondence 
between the elements of Ph,n and the set of permutations of [n] with n - k 
cycles, in analogy to Theorem 2.3. 

Third proof of Theorem 2.1. We give an alternate proof that ~ Pk,n ~ -= 
S(n + k, IZ) by showing that the generating functions for 1 PL.,L \ and 
S(n + ,V, n) satisfy the same differential equation. 
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We must first clarify our definition of Pk.,, for k = 0: By definition Q0 
has one element (the “empty permutation”), which has one space and no 
descents. Thus 1 P,,n 1 = 1 for all n G N. 

Now let G(f) = xF’n=O 1 Pk,n 1 xn(tk/k!). 

THEOREM 2.4. G(t) satisjies the di&ential equation 

G’ = G2(G - l), (91 

where G‘ = dG/dt, together with the initial condition G(0) = l/(1 - x). 

ProojI Equation (9) is equivalent to the recursion 

where the sum is over all 6-tuples (kl, k2, kz, nl, nz, nJ E N6 satisfying 
kl + kz + k3 = k, nl + n2 + n3 = n, and n3 # 0. (We have used the fact 
that Pk3,, = 0 for k3 > 0.) The combinatorial interpretation of (IO) is best 
illustrated by an example. Consider the barred permutation 244/2/13355/l/66/ 
in P6,5 . If we “remove” the l’s, the barred permutation splits into three 
parts, 244121, 33551, and 1661. If we now “reduce” these barred permutations, 
i.e., renumber each with 1, 1, 2, 2, etc., keeping the same original order, then 
we get 122/l/, 1122/, and /ll/, elements of Pz,2, P2,1, and Plsz. In general, 
from any 77 6 Pk+l,n (with k > 0) we get by this procedure three barred 
permutations 7ri e P,,.l,~l, 7r2 e P,+n8 , and ra e P+ with kl’ + k2 + k3 = k 
and nl + nz + n3 = n. Moreover, n3 # 0 since n must end with a bar. 

Moreover given three barred permutations 7r1 E Pklpnl , r2 E P+z , and 
n2 fz cyL3 7 with n3 # 0, we can construct elements of PL+lsn, where 
k = kl + k2 + k3 and n = nl + n2 + n3 , as follows: Pick pairwise disjoint 
sets S1 , S2, and Ss such that S1 u S2 v & = {2, 3,4 ,..., kl + k2 + k3 i- 11, 
1 S1 1 = kl, 1 S2 1 = k2, and 1 Ss 1 = k3. This can be done in (‘$T$?) 
ways. Then for i = I, 2, 3, renumber 7ri with the elements of Si , keeping the 
same order. Call the barred permutations so obtained ni’, rrz’, and TV’. 
Then the barred permutation 7r1’ln2’lns’ is an element of Pk+l,n , and every 
element of Pk+l,n is obtained uniquely in this manner. This proves (lo), 
and hence (9); moreover, the initial condition G(0) = I/( 1 - x) is equivalent 
to the statement that 1 PO,n 1 = 1 for all n G N. 

To solve Eq. (9) we make the substitution G = (I - xeH)-l, which yields 

ff’ = (1 - &f)-l = G 

and the initial condition H(0) = 0. Thus, integrating (11) we get 

H - x(eH - 1) = f. 
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Equation (12) can be solved by Lagrange’s inversion formula [3, p. 148; 
12, Theorem 5.61, which gives 

Alternatively, we can show that if H = xzn=o Tk,nxvL(tk/k!), then Eq. (12) 
implies that Tk,% is the number of rooted trees with k labeled nodes and 
n unlabeled nodes such that the labeled nodes are the terminal nodes (or 
leaves). This number is known to be ,S(n + k - I, n) [7, Vol. I, p. 397, 
Exercise 19, Solution p. 5851. 

From (13) and (11) we get G = H’ = zr,nZO s(n -F k, n) xn(tk/k!), thus 
1 Pk,n 1 = ,S(n + k, n). This completes the third proof of Theorem 2.1. 

Similarly if we set G(l) = x&Zo 1 jskan 1 xn(tJ2/k!), then one can show that 
G’ = (G + I) GZ, with the initial condition G(0) = x/( 1 - x). This equation 
has the solution G = x:-1 xTZo g&) x%(F/k!). 

3. AN OPEN PROBLEM 

Can Theorem 2.1 be extended in some way to more general multisets 
than Mh ? Suppose, for instance, we let r, k g P and let M be the multiset 
consisting of r copies of each integer i E [k]. Define QF) to be the set of all 
permutations uiaZ ... urk of M such that if u < v < w and au = au , then 
aU > uU . Define &yi to be the number of permutations in Qg) with exactly i 
descents. Thus Biti = ,4k,i and B$ = Bk,< . Define 

Can any combinatorial significance be attached to AL)? For instance, 
fp)(n) = nk, the number of functions [k] + [n]; while ji2)(n) = fk(n) = 
,S(n + k, PZ), the number of partitions of an (n + k)-element set into n 
blocks. It can be shown, by generalizing the first proof of Theorem 2.1, 
that jjJ$z) satisfies the recursion 

Llr-lf~pp(n) = (n + r - l)fizl(n + r - l), 

for all rr e N, k > 2. However, a “nice” combinatorial interpretation of 
jr)(n) is desired. 

It is also easy to see, generalizing Theorem 2.4, that if we define 

GT = G,.(t) = f J’;)(x) tk/k! 
k=O 
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(so that G&r) = G(t)), then Gr(f) satisfies the differential equation 

Gr’ = GrT(Gr - l), Gr(0) = l/(1 - x). 

From this it is easy to deduce the following functional equation which 
generalizes (I 2): 

Similarly the equation for G(r) can be generalized to 

Gr’ = tTryG7 + l), QO) = l/(1 - x). 

These considerations do not seem to shed much light on the problem of 
interpreting jr)(n). 
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