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BRANCHINGS AND PARTITIONS

L. CARLITZ! AND RICHARD P. STANLEY?

ABSTRACT. . A generating function is obtained for the number of parti-
tions corresponding to a complete branching on a nonincreasing sequence of
n integers. Complete branchings are shown to be related to certain types of

plane partitions.

Given a sequence &k, > k,> /e.3 >+ 2k, of integers, a branching is a
sequence of integers k7, k5, ..., k, | such that k; > ki>k;,, (i=1,2,
«v., 7 —1). Successively branching » — 1 times, one obtains a single integer.
Such a sequence of n — 1 successive branchings is called a complete branch-
ing. S. Gelbart [3] proposed as a Monthly problem that the number of distinct
complete branchings of the sequence k;, £ ,..., k  is equal to
1) H [(ki - k]. +7-/G -]

l<i<j<n

A complete branching may be indicated by the triangular array

ki k, k3 kn
1 1 !
ky ky eer R

(n-1)
kY
where k(o) k and
(2) kgf)zkgjﬂ)zkgi)l (21,2, ..., n—j—1)

For a given integer m and fixed sequence k; > k, > -+ >k , let Pn(m)
= P(m; kiveses kn) denote the number of arrays T satisfying (2) and whose
entries sum to m, i.e.,

n_.

Z (])

||[V]|
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We shall be interested in evaluating the generating function

o0
3) N(kl, cens kn; x) = N(x) = Z Pn(m)x”’.
m=—0o0
Note that the sum (3) is actually finite.
There is no loss of generality in supposing that the ks are all positive,

for this amounts to adding some constant ¢ to each entry of T and there-
ntl

fore multiplying (3) by xc 27, Assuming therefore that each kz. > 0, rewrite
T as

n

Y (n=1)

ky kl k1 kln
! (n-2)

k, kz kzn

k

n
The ith row satisfies k> k:. S0 > kg""i) > 0 and therefore may be regarded

as a partition of k&, + k:. +oeee 4 kg"" i), Take the conjugate partition [4, p.

274] of each row and left justify, giving a new array

7 i
W
) I
N
Ty Tn

where (]'z.. ]';, ...) is the conjugate partition to (kz., k;. cee )

The resulting array of j's is always a column-strict plane partition of
shape (kl, kypvuns kn) and largest part 7, as defined in [7, $1]. The sum of
the j’s is equal to the sum of the k’s. This correspondence between the array
of k’s (complete branchings with first tow &, k,,..., &, and sum m) and j’s
(column-strict plane partitions of shape A = (kl' kosooes kn) with largest part
n and sum m) is easily seen to be a bijection. Hence P_(m) is equal to the
number of column-strict plane partitions of shape A with largest part n and
sum m. In this context, the generating function (3) has been determined (im-
plicitly) by D. E. Littlewood [5, p. 124, Theorem I} and more explicitly in [7,
Theorem 15.3]. The result may be stated as follows.

Theorem 1. We have

a (n + j- i)
Nix) = x —————
(4) (x) = x* [] )

where (d) =1 —-xd,a=2ikz., and hl.j=kl.+/?].-z‘—j+1. Here(?l,zz,...)
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is the conjugate partition to (kl’ kyyeos ), and the product is over all k +
ky++o+k pairs (i, ) such that k,;> 0 and /;]. > 0.

Some elementary manipulation shows that the right-hand side of (4) can

be written in the form

(5) N = [T G- xki*""'/(l)l @'+ (a=1)!
l<i<jsn

where (i)! = (1)(2) «+. (i). If we put x =1 in (5) we obtain Gelbart’s result

(1). In the context of plane partitions this result was first given by

MacMahon [6].
We shall give a brief indication of how (5) can be proved directly.

Clearly one has

k1,+.“+k;l . ,
6) Nlkyy oon sk yps %)= 2% NS, oy k),

where the summation is over all k'l, oo k; such that &, > k'l >hky2ee >

k! >k ,.. But the n x n determinant
n="ntl

k-~ 1

@ Dk, ...\ ks ) = (1) Pxn

1> i—1

where (‘3 = (i)!/(j) 1Gi - j)!, also satisfies the recursion (6) and equals
Nk, ...
D(k,..., k ; x). The determinant in (7) may be evaluated by Vandermonde’s

. ko %) in the case n =1, It follows that N(kl, cees ks x) =

theorem or otherwise, yielding (5).

We remark that an evaluation of a determinant equivalent to (7) appears
in [1]. See also [7, $15] for a direct proof that this determinant (actually a
related but equivalent determinant) is given by (4). When x = 1, the determi-
nant (7) was first evaluated by Frobenius [2].

it.‘follows from (5) that N(x) = xAN(l/x), where A =(n + 1)2;;1 k.
From this we obtain the symmetry relation Pn(m) = Pn(A - m). It would be
interesting to know, whether for fixed n, k},..., k_, the sequence {Pn(m)}
is unimodal, that is, whether there exists a C such that P _(m —1) <P _(m)
if m <C and Pn(m)z Pn(m +1) if m>C.
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