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We wish to point out how certain concepts in commutative algebra are 
of value in studying combinatorial properties of simplicial complexes. In par
ticular, we obtain new restrictions on the /-vectors of simplicial convex poly-
topes. 

Let A be a finite simplicial complex with vertex set V = {vl,v2, 
• ' # > vn}. We call the elements of A the faces of A. If the largest face 
of A has d elements, then we say dim A = d - 1. The f-vector of A 
is (fo> f\> # * * »/<*-i)> where dim A = d - 1 and exactly ft faces of A 
have i + 1 elements. Define for positive integers m9 

d-1 
H(A,m)=j: fifr-A 

Also define H(A, 0) = 1. We say that A is constructible [2] if it can 
be obtained by the following recursive procedure: (a) Every simplex is con
structible, and (b) if A and A' are constructible of the same dimension d, 
and if A n A' is constructible of dimension d - 1, then A U A' is con
structible. 

We know of two main classes of constructible A's: (A) The boundary 
complex of a simplicial convex polytope is constructible. This follows from 
[1]. (B) Let D be a finite distributive lattice, and let D' be D with the 
top element and bottom element removed. Let A be the simplicial complex 
whose faces are the chains of D'. Then A is constructible. 

If h and i are positive integers, then h can be written uniquely in 
the form 
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where ni > ni_1 > • • • > rij > j > 1. Following McMullen [5], define 

Also define 0(l> = 0. 

THEOREM 1. A vector (f0, ft, • • • ,fd-i) of positive integers is 
the f vector of some constructible A of dimension d-\ if and only if 
0 < hi+i < hf\ 1 < i < d - 1, w/^re Ax, /*2, • • • , /zd we defined by 

oo 

2 ] #(A, m)xm = (1 + hxx + /i2x2 + • • • + AdJCd)/(l -x)<*. 
m = 0 

In the case where A is the boundary complex of a simplicial convex 
polytope, the numbers ht are equal to the numbers g\^\ of McMullen [4]. 
Theorem 1 implies 

and is therefore a strengthening of the upper bound conjecture for convex poly-
topes (proved in [4]), and also a generalization to constructible polytopes. 

We shall indicate the main idea used to prove the "only if" part of 
Theorem 1. Given A of dimension d - 1, let k be any field and let 
R = k[vl9v2,

 m * * ,vn] be the polynomial ring over k whose variables are 
the vertices of A. Define a homogeneous ideal I of R by taking for gen
erators of / all squarefree monomials vt vt • • • vt with {vt ,vi9*** , 
Uf } ^ A. Let AA = R/L It is easily seen that (Krull) dim AA = d and 
that //(A, m) is the Hubert function of AA. By [2, Theorem 2°], AA is 
Cohen-Macaulay (i.e., hdRAA = n - J ) if A is constructible. The "only 
if' part of Theorem 1 now follows from the following elaboration and gener
alization of a result of Macaulay [3]. 

THEOREM 2. Let H(m) be a function from the nonnegative integers 
to the nonnegative integers. Let 0 < r < c? < « be integers, and let k be 
any field. The following two conditions are equivalent. 
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(i) There is a homogeneous ideal I of R = k[xv x2> • • • , xn] such 

that if A— R/I, then dim A = d, hdRA <n - r, and H(m) is the Hilbert 

function of A. 

(ii) H(0) = 1 ; H(\) < n\ H(m) is a polynomial of degree d - \ for m 

large; and 0 < hi+ x < h\l^r, i > 1, where 

(l-x)r £ H(m)xm = f: \ r x l . 
m = 0 i = 0 

CONJECTURE 1. If A is as in (A) above, then AA is Gorenstein. 

CONJECTURE 2. Let H(m)9 r = d, n, and k be as in Theorem 2. Let 

ht = ht d and lt = ht - A,-_!, / > 1. The following conditions are equivalent. 

(i) There is a homogeneous ideal / of R = k[xl9 • • • , xn] such 
that if A = /?/ƒ, then dim A - d, A is Gorenstein, and #(m) is the Hilbert 
function of A. 

(ü) # ( 0 ) = 1 ;#(1)< «; for some f > 0 , / 2 , =£0 and ^ = 0 if s > t; 

hj^h^ for 0 < f < ? ; a n d 0 < / / + 1 < / J ° for K i < [ ^ / 2 ] . 

Conjectures 1 and 2 are closely related to the main conjecture of [5]. 
ADDED IN PROOF. Recent work of G. Reisner implies that AA is 

Gorenstein when |A| is a sphere. This establishes Conjecture 1 and also im
plies the previously open 'tipper bound conjecture for spheres." 
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