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1. Introduction 

In this paper we extend some aspects of the theory of 'supersolvable lattices' [3] 
to a more general class of finite lattices which includes the upper-semimodular lattices. 
In particular, all conjectures made in [33 concerning upper-semimodular lattices will 
be proved. For  instance, we will prove that if L is finite upper-semimodular and if L' 
denotes L with any set of 'levels' removed, then the M6bius function of  L' alternates 
in sign. Familiarity with [3] will be helpful but not essential for the understanding 
of the results of this paper. However, many of the proofs are identical to the proofs 
in [3-I (once the machinery has been suitably generalized) and will be omitted. 

2. Admissible labelings 

Let L be a finite lattice with bottom 6 and top 1, such that every maximal chain 
of L has the same length n. Hence L has a rank function p satisfying Q (0) = 0, ~ (T) = n, 
and ~ ( y ) =  1 +~(x)  whenever y covers x in L. We call L a graded lattice. 

Let I denote the set of join-irreducible elements of L. A labeling co of L is any map 
co:I--*P, where P denotes the positive integers. A labeling co is said to be natural if 
z, z ' e l  and z<_z' implies co(z)<__co(z'). If x < y  in L and 09 is a fixed labeling of L, 

define 
7(x, y ) =  min {co(z) I ze I ,  x < x v  z<_y}. 

Thus, y(x, y) is the least label of a join-irreducible which is less than or equal to y 
but not less than or equal to x. Note that ~ (x, y) is always defined since y is a join of 
join-irreducibles. We are now able to make the key definition of this paper. A labeling 
09 is said to be admissible if whenever x < y  in L, there is a unique unrefinable chain 
X=Xo<X , <. . .  <Xm=y between x and y (so m = ~ ( y ) - Q ( x ) )  such that 

r(Xo, x,)<_~(x,, x2)<_... <_r(x,._ ,, ~ ) .  (1) 

We then call the pair (L, co) an admissible lattice. Our motivation for this definition 
is that admissibility seems to be the weakest condition for which Theorem 3.1 holds. 
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The idea for this definition came f rom [3, Cor. 1.3] and its relation to [3, Thm.  2.1]. 

Our  present Theorem 3.1 is a generalization o f  [3, Thm.  2.1]. 
We first note a simple property of  admissible labelings. 

2.1. P R O P O S I T I O N .  Let o~ be an admissible labeling o f  a finite graded lattice L. 

Then o9 is natural. 
Proof. Suppose z, z'  e I  with z<z '  and og(z)> co (z'). Since z is join-irreducible, it 

covers a unique element x. Similarly z '  covers a unique element y. Hence any unre- 

finable chain between x and z '  has the fo rm x < z =Yo <Y~ < " "  <Ym--Y < z'  (possibly 
m = 0  so z=y) .  Since z is join-irreducible, it follows f rom the definition o f  ~ that  

7(x ,z )=og(z) .  Similarly ~(y,  z ' )=og(z ' ) .  Since og(z)>og(z ' ) ,  o9 cannot  be admis- 

sible. [ ]  
We know of  two main classes of  admissible lattices. The first class is given by the 

next proposit ion.  
First recall that  a lattice L of  finite length is said to upper-semimodular if it is a 

graded lattice whose rank function ~ satisfies 0 (x) + Q (y)  >_ 0 (x v y)  + Q (x ^ y)  for  all 
x , y ~ L .  Equivalently, L is upper-semimodular  if whenever x covers y, then x v z  
covers or  equals y v z, for all x, y, z~L.  

2.2. P R O P O S I T I O N .  Let L be a finite upper-semimodular lattice and o9 a natural 
labeling of  L such that whenever z and z' are incomparable join-irreducibles then 
og(z)v~og(z'). (Such a labeling of  L is clearly possible; in fact,  an injective natural 
labeling can always be found.) Then to is admissible. 

To prove this result, we first need a lemma. 

2.3. L E M M A .  Let (L, co) satisfy the hypotheses of  Proposition 2.2, and let x < y  
in L. Let z be a minimal element of the set J of  all join-irreducibles z' o f  L satisfying 
og(z ' )=y(x ,y )  and x < x v z ' < y .  (J is not empty by definition of  T(x ,y ) . )  Then x v z  

co vers x. 
Proof. Let I denote as before the set of  join-irreducibles o f  L. Let 1 '_~I  be the set 

o f  all z '~ I  satisfying z '<z .  Let z '~I ' .  Since z '<z ,  x < x v z ' < y .  Since o9 is natural,  
co (z') < o9 (z). I f  co (z')  < o9 (z), then by definition ofv  (x, y)  we cannot  have x < x v z '  < y, 

so x = x  v z'. On the other hand, if o9 (z ' )=o9 (z), then by hypothesis  we cannot  have 

x < x v z ' < y ,  so once again x = x v z ' .  Thus x = x v z '  for all z '~I ' .  Let w =  Vz ,~r  z'. 
Since z is join-irreducible, w<z.  Since x = x v z '  for  all z '~I ' ,  we have x v w = x .  

N o w  i f z  doesn ' t  cover w, then w < w ' < z  for some w'eL.  But then there is a new 

join-irreducible v < z such that w < w v v < w', contradict ing the definition o f  w. Hence 
z covers w. But by upper-semimodulari ty,  if z covers w, then x v z covers o r  equals 

x v w = x. By assumption,  x < x v z, so x v z covers x. [ ]  

Proof o f  Proposition 2.2. Let x < y  in L, and let m = Q ( y ) - Q ( x ) .  We first show 
the existence o f  an unrefinable chain x--Xo <x l  < ... < x , , = y  between x and y satis- 
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fying (1). Let z 1 be a minimal element of the set J1 of join-irreducibles z satisfying 
co(z)=?(xo, y ) and x < x v z < y .  Let x l=xovz~ .  By Lemma 2.3, x I covers Xo, while 
by definition xl  <y .  

If rn= 1, we are done, so assume m>2 .  Let z 2 be a minimal element of the set Jz 
of join-irreducibles z satisfying co(z)=~,(xl, y) and .'q <x~ v z<y.  Let x2 = x l  v z z. 
Once again by Lemma 2.3 Xa covers xl,  while again by definition x2<y. Now by 
definition of ?(Xo, y) we have co(zl)=y(Xo, y)<cO(Zz)=7(x~, y). Continuing in this 
way, after m steps we get an unrefinable chain X=Xo<X ~<. . .<x , .=y  satisfying 
;~(xo, y)<_7(xt, y )<. . .<?(x , ,_ l ,y ) .  But clearly by definition of ~ and the xi's, 
'l (xi, y) = 7 (x~, x i + ~). Hence we have constructed a chain C satisfying (1). 

It remains to show the uniqueness of C. We shall prove the following two results: 
(i) If x ' eL  is such that x' covers x, x '<y, and 7(x, x ' )=y(x ,y) ,  then x'=xa; 

(ii) If x=x'o<X'l<.. .<x, ' ,=y is any unrefinable chain satisfying (1), then 
? (x'l, x) = ? (x, y). 

Thus (i) and (ii) imply that x'~ is uniquely determined, viz., x'~=x~ (where x 1 
=Xo v z~ as defined above). Hence the proof of the proposition follows by induction 

on  m. 

Proof of(i). Suppose x"#x '  also is such that x" covers x, x"<y, and 7(x, x") 
= 7 ( x , y ) .  Thus there exist z ' ,z"~I  such that e)(z')=co(z")=y(x,y), x v z ' = x ' ,  
x v z"=x". Since x'  and x" both cover x, they are incomparable. Hence z' and z" are 
incomparable. Thus by hypothesis w ( z ' ) # m  (z"), a contradiction. Hence x" cannot 
exist. 

Proof of (ii). Let x=x'o<x'l < . - . < x ' - y  be an unrefinable chain satisfying (1). 
Hence 7(x, x'~)>7(x, y). Suppose y(x, x'~)>7(x, y). Let z~I  satisfy e)(z)=y(x, y) 
and x<xvz<_y.  Let i be the least positive integer for which xvz<x'~. (Clearly i 
exists since x v z < x~,.) Then x~_~ v z = x~, so 7 (x'~ _~, x'~) = ~ (x, y) < 7 (x, xl). Thus (1) 
cannot hold. [] 

The second main class of admissible lattices are the supersoh,able lattices [3-1. 
I l L  is a finite lattice and A a maximal chain of L, we call the pair (L, A) a supersolvable 
lattice (or SS-lattice) if the sublattice of L generated by A and any chain in L is 
distributive. It is easily seen that if (L, A) is an SS-lattice, then L is graded (cf. [3, w 1]). 

2.4. PROPOSITION. Let (L, A) be an SS-lattice with A given by 0 = X o < X l <  
< ... < x , = L  Define a labeling o):I--+P by letting o)(z) be the least positive integer t 

for which z <xt. Then co is admissible 
Proof Recall that an interval [u, v] of a lattice is prime if it contains exactly two 

elements, i.e., if v covers u. In a distributive lattice D, two prime intervals [x, y] and 
[u, v] are said to be projective if there is a unique join-irreducible z such that y = x  v z 
and v = u v z. This is easily seen to be equivalent to the usual definition of projectivity 
(e.g., [1, p. 143) if one thinks of D as being coordinatized by a ring of sets. 
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I f y  covers x in L, then it is easily seen [3, p. 1981 that there is a unique positive 
integer t, which we denote by 7' (x, y), for which the prime intervals [x, y] and 
[xt-1, x,] are projective in the distributive lattice Dxy generated by A and {x,y}. 
In [3, Cor. 1.3], it was shown that for any x' <y' in L, there is a unique unrefinable 
chain x'=x'o<X'~ < ... <x',,=y between x' and y'  such that 

r (x;, ,4)<... (x;,-1, 
Hence it suffices to prove that y(x, y)='~'(x, y) whenever y covers x. 

We shall need the following elementary facts concerning projectivity in a finite 
distributive lattice D. The proofs are immediate from the above definition of pro- 
jectivity. 

(a) The prime intervals Ix, Yl and [u, v I are projective in D if and only if 
x = ( x v u )  Ay and y=(xvv )  Ay. 

(b) If  [x, y] and [u, v] are projective prime intervals in D, then y:~u. 
(c) Suppose [w, z] is a prime interval in D and z is join-irreducible. If  y covers x 

in D and z<y, z~x ,  then [w, z] and [x,y] are projective. 
We proceed to prove that if y covers x in L, then 7 (x, y)--- 7' (x, y). By definition 

of ~ (x, y), there is a join-irreducible z satisfying x v z=y and co(z)=7 (x, y). Let w 
be the unique element of L covered by z, and set s = co (z). By (c), [w, z I and [x~_ 1, x~] 
are projective in the distributive lattice Dwz generated by A and {w, z}, so ~' (w, z )=s .  
If  z' is a join-irreducible of L such that z '<  z, then it follows from (b) (taking D to be 
generated by A and {z, z'}) that ~o(z')#a)(z). Since (o(z')<o~(z), thus aJ(z')<a)(z). 

We claim that w__< x. It suffices to prove z' < x  for all join-irreducibles z ' <  w. If  z' 
is such a join-irreducible, then by the above w(z')<oJ(z). Hence by the definition of 
z, x v z '=y .  But x v z ' < y  since z<y. Since y covers x, we must have z'<_x. Hence 
W<__X. 

We need to show 09 (z) = t, i.e., s = t. By (a) and (c) this is equivalent to w = (w v x,_ 1) 
^ z and z = (w v x,) ^ z. Since 7' (x, y) = t, we know by (a) that 

x = ( x v x , _ x ) ^ y  (2) 

y = ( x v x , ) A y .  (3) 

Since w<x, z ~ x , z < y ,  and z covers w, from (2) we get w = x ^ z =  (xvxt_l )AZ.  
Thus since w < x  and w<z, w< ( w v x , _ l ) ^ z <  (xv x ,_ l ) ^ z=wso  w= (wv x,_l)AZ 
as desired. To prove the other equality z = (w v x , )^  z, we need to show w v xt >z. 
Since w is the only element which z covers, this is equivalent to x t z~ w. But if x, < w, 
then xt<x since w<x. From (3) this would imply y = x ^ y = x ,  a contradiction. [] 

It follows from Proposition 2.4 that the theory of SS-lattices, as developed in [31, 
is a special case of the theory of admissible lattices. A large class of examples of SS- 
lattices, some of  which are not semimodular, is given in [3, w 2]. 
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3. Jordan-H61der sequences 

Let (L, co) be an admissible finite graded lattice. Let x < y  in L, and suppose K 
is an unrefinable chain in L between x and y given by x = x  o <x~ < ... <Xm=y .  Define 
the Jordan-H6lder sequence (or J -H  sequence) associated with K to be the sequence 
a~, a2, ..., a,~ of positive integers given by a i = 7 (x i -  1, x,). We shall denote this sequence 
by nr  and shall write 

rc K = (at, a2 . . . . .  am). 

In [3] nK was called a ' J -H permutation' but here repetitions among the a~ are possible. 
Now define the Jordan-H6lder set (or J-H set) J x y  (L, co) of (L, e); x, y) (denoted 

ae',y for short) to be the set of all J -H  sequences rt K, including repetitions, as K ranges 
over all unrefinable chains between x and y. It follows from the definition of an admis- 
sible labeling that there is a unique element nK= (a t .... , am) of f ~ y  satisfying 
a l < a 2 <  . . .<a, , .  If  x = 0  and y = ~ ,  we denote j x y ( L ,  a)) simply,by i f ( L ,  co) or just 
J ,  and call it the J - H  set o f  (L, co). 

If k~P,  let k denote the set {1, 2 ..... k}. We also write S =  {rnt, m2, ..., ms}< to 
signify that S =  {ml, rn2 ..... ms} and rn I < m 2 < - "  <ms. Suppose L is a finite graded 
lattice and Ix, y] is an interval of L of length (rank) m, i.e., Q ( y ) - 0 ( x ) = m .  If 
{ml .... , ms}< = S _ m - 1 ,  define a~y(S) to be the number of chains 

x < y 1 < . . . <  ys< y 

in L satisfying Q ( y i ) - O ( x ) = m l ,  i=1,  2,..., s. Thus if S={k},  then c~y(S) is  the 
number of elements z of Ix, y] of rank k in Ix, y] ( i . e . , o ( z ) - o ( x ) = k ) .  Moreover, 
c~y(qS)= 1 and ~xy(m-1)  is the total number of unrefinable chains in L between x 
and y. Now define for S _ m - 1 ,  

flxy(S)= E (--1) Is-Ttct~y(T), 
T=_S 

so by the Principle of Inclusion-Exclusion [2], 

(s)= E #.. (7-). 
T ~ S  

As mentioned in [3, p. 198], if Lxy (S) denotes the partially ordered set of all z ~ L  
satisfying either (a) z = x ;  (b) z = y ;  or (c) x < z < y  and Q ( z ) - o ( x ) ~ S ,  then 

r,as(X, y ) =  (-- 1) s+~ fl..r (S), (4) 

where Ps is the Mtibius function of Lxy(S ) and ISl =s. For this reason we call the 
function flxr (") the rank-selected M6bius invariant of the interval [x, y]. 
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If  re= (al, a 2 . . . . .  am) is a finite sequence of integers, then a pair aj>a:+ 1 is called 
a descent of n, and the set 

D ( n ) =  { j :a j>aj+l}  

is called the descent set of  ~z. We can now state the fundamental combinatorial property 
of J-H sets. This result is a direct generalization of [3, Thin. 1.2]. The proof  is identical 
to the proof  of [3, Thm. 1.2], except that here the definition of an admissible lattice 
plays the role of  Lemma 3.1 of [3]. Thus no condition is needed about distributive 

sublattices of L. 

3.1. THEOREM.  Let (L, co) be w7 admissible lattice, and let [x, y] be an interval 
of  L of length m. I f  S~_m-1 ,  then the number of sequences ~ in the J-H set Jxy (L ,  o9) 
with descent set D ( n ) = S  is equal to flxy(S). (The reader is reminded that Jxy (L ,  o9) 
contains one sequence re for each maximal chain of [x, y], so that repeated sequences are 
taken into account.) 

3.2. COROLLARY.  Let (L, o9) be an admissible lattice. I f  [x, y] is an interval of  
L of length m a n d / f S ~ m - 1 ,  then fl~y(S)>O. [] 

In view of (4), Corollary 3.2 may be restated as follows: 

3.2'. COROLLARY.  Let (L, 09) be an admissible lattice of length n, and let 
S ~_n-1. Then the M6biusfimction Ps of the rank-selectedpartially ordered set L (S) 
alternates in sign; i.e., i f  Ix, y] is an interval in L ( S )  of  length k, then 

(-1)km(x,y)>_o. [] 

Since by Proposition 2.2 every finite upper-semimodular lattice has an admissible 
labeling, Corollary 3.2' applies to all such lattices, and in particular, to finite geometric 

lattices. 

3.3. COROLLARY.  Let (L, o9) be an admissible lattice and [x, y] an interval of 
L of length m. Let ~ denote the M6biusfunction of L. Then ( -  1) m I~(x, y) is equal to 
the number of unrefinable chains x = x  o <xl  < "'" <x , ,=y  between x and y satisfying 

(Xo, xi)>~(x,, X2)>'" > ~(Xm-,, Xm). 

Proof. Let S =  m - 1  in Theorem 3.1, and use (4). [] 

4. Applications 

We shall state those results in [3] proved for SS-lattices which remain true for 
admissible lattices. The proofs are exactly the same as in the SS-case once suitable 
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analogues are given for two concepts in [3]. First, the role of the ' induced M-chain 
A,y between x and y '  is replaced by the unique unrefinable chain x = Xo < x 1 < " "  < x,, = y 
between x and y satisfying ~ (x 0, xl ) < y (x l, Xz) -<.-" < y (x~ _ 1, x,,). Secondly, we need 
a replacement for statement (A) in the proof of Theorem 5.2 of [3]. Although a direct 
analogue of (A) can be given, it is simpler to use the following fact: 

4.1. LEMMA. I f  [x, y] is an interval of an upper-semimodular admissible lattice 
(L, 09) such that y is the join of atoms of [x, y], then there is an unrefinable chain 
X=Xo<Xl<. . .<xm=y between x and y such that y(xo, x~)>~(xl,  x2)>.. .> 
~(Xm-~, X~). 

Proof. Recall that a geometric lattice is an upper-semimodular lattice whose join- 
irreducibles are its atoms. If L' denotes the partially ordered set of all elements of 
Ix, y] which are a join of atoms of Ix, y] (including x as the void join),  then L' has 
the structure of a geometric lattice (though L' is not necessarily a sublattice of L). 
If  ~ denotes the M6bius function of L and/~' that of L',  then from [2, Cor.  on p. 349] 
we conclude #(x, y )= f f  (x,y). Hence by [2, w Thin. 4], p(x ,y)~O.  The desired 
result now follows from Corollary 3.3. []  

The reader can now verify that the proofs of the following results are the same as 
the analogous results for SS-lattices given in [3]. 

4.2. PROPOSITION. (Generalizes [3, Prop. 3.3]). Let (L, co) be an admissible 
lattice, and let Ix, y] be an interval of L length m. Let S ~ m - 1 .  I f  f lxy(S)>0  and 
T~_S, then f lxr(T)>0.  [] 

Suppose L is a finite geometric lattice. Then L is upper-semimodular, so by Propo- 
sition 2.2 L possesses an admissible labeling. Moreover, every interval of L is a geo- 
metric lattice, and the M6bius function of L is never 0. It follows from (4) and Propo- 
sition 4.2 that Corollary 3.2' can be strengthened in the case of geometric lattices as 
follows: 

4.3. COROLLARY. Let L be a finite geometric lattice of rank n, and let S~_ n -  1. 
Then the M6bius function #s of the rank-selected partially ordered set L(S)  strictly 
alternates in sign; i.e., i f  [x, y] is an interval in L(S)  of length k, then 

( - 1 )  k I~s(X,y)>O. [] 

For  some related properties of geometric lattices, see the next section. 
Recall [3, w 5] that a Loewy chain between x and y in a lattice L of  finite length is 

a chain x = x  o < x t  < . ' - < x , = y  such that each xl, i~r, is the join of the atoms of the 

interval [ x i - l ,  x J .  

4.4. PROPOSITION. (Generalizes [3, Lemma 5.1]). Let (L, co) be an admissible 
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lattice with Ix, y] an interval of  length m. Let K be an unrefinable chain in L between x 

and y: 
K: x = y o < y ~  < . . . < y m = y .  

Let 0 < m  1 < m  z < ... < m , = m .  Then the subehain 

x=Yo <Ym, <Y~2 <"" <Ym. =y  

of  K is a Loewy chain between x and y i f  

m--l--O(ZCK)c--{ml, m2 .... .  m , -1} .  [] 

4.5. THEOREM.  (Generalizes ['3, Thin. 5.2]). Let L be afinite upper-semimodu- 

lar lattice with Ix, y] an interval o f  L o f  length m. Let S =  {m I, m 2 . . . . .  ms}< _~m-1.  
There exists a chain C, 

C: X=yo <Yl < "'" <Ys<Ys+ 1 =Y 

satisfying the two conditions 
(i) O ( y i ) - O ( x ) = m , ,  1 <_i<_s (where Q as usual is the rank function o f  L ) ;  

(ii) C is a Loewy chain between x and y,  

i f  and on l y / f  flxy((m- 1 ) -  S ) > 0 .  
Now recall I'3, w that ifq is a fixed positive integer, then a q-lattice is a lattice L 

of finite length with the property that every interval Ix, y] of L for which y is the join 
of atoms of I-x, y] is isomorphic to the lattice of subspaces of a projective geometry of 
degree q (or to a Boolean algebra if q =  1). Such a lattice is necessarily upper-semi- 
modular [3, pp. 213-214] and hence possesses an admissible labeling. A q-lattice, 
however, need not be supersolvable, so the next proposition is strictly stronger than 
the corresponding Lemma 6.4 of 13]. For instance, let L' be the lattice of subgroups of  
a finite abelian p-group of type (3,3). Let L be L' truncated above rank 3, i.e., identify 
all elements of  L' of rank at least 4. Then L is a p-lattice but is not supersolvable. 

4.6. PROPOSITION. (Replaces I-3, Lemma 6.4]). Let (L, o9) be an admissible 

q-lattice o f  rank n. Let S ~  n -  1, with ( n -  1 ) -  S = { Jl, J2 . . . . .  j r -  1} <. Also let Jo =0,  
Jt = n. Define N ( S )  to be the number o f  maximal chains K o f  L satisfying D (Trr) ~_ S, 
where D(rcK) is the descent set o f  the J -H  sequence rc r. Then N ( S ) = q k M ,  where 

and where M is the number of  Loewy chains 

0=Yo <YI < "'" <Yt ='~ 
such that ~ (y i )= j i ,  O<i<t .  

(6) 
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Since Proposition 4.6 is not a strict analogue of [3, Lemma 6.4], we shall give a 
proof. 

Proof. If K is a maximal chain of L such that D (rrK)_ S, then by Proposition 4.4 
the subchain C of K consisting of all x~K such that ~(x)=j , (O<i<t)  is a Loewy 
chain. Hence it suffices to prove that if we have a Loewy chain (6) with ~ (y,) =Ji, then 
the number of refinements of C to a maximal chain K satisfying D (rtK) ~ S is equal to 
qk, where k is given by (5). 

Assume we have such a Loewy chain C. Since L is a q-lattice, each interval 
[Yr-1, Yr] (1 <_r<_t) is a projective geometry of degree q (or a Boolean algebra if 

Hence i . t (yr_l ,y , )=(-1)  b qk,, where b = j r - j ~ - i  and k r = ( J ' - f f ' - l ) .  Now 1). q=  

by Corollary 3.3 the number of maximal chains y~_~ = z  o <z t  < . . - < z b = y  , of the 
interval [Y,-1, Y,] such that 

: ,  

is just ( - 1 )  b I,t(yr_:, y,)=qk,. Hence the total number of refinements of C to a 
maximal chain K satisfying D (rtK)~_ S is equal to qklqk:.., qk,= qk, and the proof fol- 
lows. [] 

4.7. COROLLARY. (Generalizes [3, Corollary 6.5]). Let L be a q-lattice of rank 
n, and let S _ n - 1 ,  with ( n - 1 ) - S = { j a , j 2  ..... J,-1}< andjo=O, jt=n. Then fl(S) 
is divisible by qk, where k is given by (6). 

The derivation of Corollary 4.7 from Proposition 4.6 is not quite as trivial as the 
derivation of [3, Corollary 6.5] from [3, Lemma 6.4], so we shall give a proof. 

Proof. Fix an admissible labeling r of L. By Theorem 3.1, fl(S) is equal to the 
number of maximal chains K of L satisfying D (nn)= S. Hence if N(S)  is defined as in 
Proposition 4.6, we have 

N ( S ) =  E ~ (T) ,  
T~S 

SO 

]?(S)-- Z ( - 1 )  IT-sIN(T)"  (7) 
TnS 

Suppose we have n - I ~ T ~ S  where ( n - 1 ) - T =  {i:, iz ..... is_l}< and ( n - 1 ) - S =  
{ Jl, J2, ..., Jr- 1 } <, and io = Jo = 0, i s = Jt = n. An easy computation shows that 

r = l  r = l  2 

It follows from Proposition 4.6 that each term N(T) appearing in (7) is divisible by 
qk, SO the proof follows. [] 
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4.8. THEOREM.  (Generalizes 1-3, Theorem 6.6]). Let L be a q-lattice o f  rank n, 
and let S _ n - 1  with ISI =s. Then f l (S)  is divisible by qQ ("'~), where 

(brackets denote the integer part). This result is best possible in the sense that given n 
and O < s < n - 1 ,  there exists a q-lattice (which can even be chosen to be modular) of  
rank n and a set S c_ n -  1 of  cardinality s such that fl (S)  = q Q ( "' s) (see 1-3, p. 216]). []  

5. The broken circuit theorem 

In this section we shall point out the connection between our work and the so- 
called 'broken circuit theorem' of G.-C. Rota [2, Prop. 1, p. 358], which generalizes 
to arbitrary finite geometric lattices a result of Whitney on graphs. The reader should 
be warned that I-2, Prop. 1, p. 358] is false when k >  1. However, the proof  is valid 
when k = 1, and this is the case which will concern us here. 

We proceed to describe the broken circuit theorem. Let L be a finite geometric 
lattice of rank n, and let a t, a2, ..., at be an ordering of the atoms A o fL .  A subset 
C of A is called a circuit if the rank of the join of the elements of C is [CI - 1, while 
the rank of the join of the elements of any proper subset C' of  C is 1C'l. A subset 
B =  {a~,, a~2 .... , a~} of A is called a broken circuit if there exists an atom am such that 
m > i ,  for r =  1, 2, . , . , j ,  and such that B w  {am} is a circuit. Note  that the notion of a 
circuit depends only on L, while that of a broken circuit also depends on the ordering 
chosen for the elements of A. 

BROKEN CIRCUIT T H E O R E M  (G.-C. Rota). Let L be a finite geometric lattice 
of  rank n with an ordering al, a2, ..., at of  the atoms of  L. Let ~t be the M6bius function 
of L. Then ( -  1)" ~l(6, T) is equal to the number of  sets of  n atoms of  L not containing 
any broken circuit. [] 

Given an ordering a~, a2 .. . . .  at of the atoms of a finite geometric lattice L of  rank n, 
define a labeling 09 of L by 09 (a~) = t -  i + 1, so i < j  implies oJ (a~) > o~. By Proposition 
2.2, (L, w) is an admissible lattice. Let 6=Xo<Xl  < . ' .  < x , = i  be a maximal chain K 
in L satisfying 

x,)>  (xi, x.). (8) 

We know by Corollary 3.3 that the number of such maximal chains Kis  ( -  1)" p (0, ~). 
We would like to relate this fact to the Broken Circuit Theorem by constructing an 
explicit one-to-one correspondence 2 between maximal chains K satisfying (8) and 
sets of n atoms of  L containing no broken circuit. 
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This correspondence 2 is defined as follows. Given a maximal  chain K satisfying 

(8), let 2 (K) be the set {bl, b2 . . . . .  b,} of  those n atoms defined by 09 (b j ) =  ? (x j_ 1, x j). 

5.1. P R O P O S I T I O N .  The function 2 defines a one-to-one correspondence between 
maximal chains K of  L satisfying (8), and sets of  n atoms of  L containing no broken 
circuit. 

Proof. We first prove that 2 (K) contains no broken circuits. Suppose B =  {b~, bi2, 

�9 .., bis} is a broken circuit contained in 2 (K) with i 1 < iz < " "  < is, i.e., 09 (bi~) > 09 (bi2) 
> . . .  > o9 (b~s). By definition of  broken circuit, there exists an a tom a o f  L such that 
09(b~r)>o9(a ) for r = l ,  2, ..., s and B u  {a) is a circuit. By definition o f  the bi's and 

~, xis_~ v b~s = xis and bi~ < xi,_, for r = 1, 2 .. . .  , s -  1. Hence since B u {a} is a circuit, 
x~s_~ v a = x~. By definition of  7, this means 09 (b~,) < 09 (a), a contradict ion.  Hence 
2 (K) contains no broken circuit. 

Now let B =  {bl, b2, ..., b,) be a set o f  n atoms containing no broken circuit, with 

09(b l )>09(b2)>  . . ->09(b,) .  Recall that  a basis of  L is a set o f n  a toms cl, c2 .. . . .  c, of  
L such that  Q (cl v c2 v ... v c , ) = n .  Equivalently, a basis is a set of  n a toms containing 
no circuit. N o w  note that B is a basis, since if it contained a circuit it would  contain a 
broken circuit. I f  2 ( K ) = B ,  then K must  be given by x j = b l  v b2 v . - -v  hi, so 2 is 
injective. It  remains to prove that these x j ' s  satisfy ? (x i_ 1, x j) = 09 (bi), which shows 2 
is surjective. By definition o f  the x~'s, x j_ 1 v b j=x j .  Suppose a is an a tom such that 

xj_ t v a = x j  and 09 (a) < 09 (bj). Thus the set {b~, b2 .. . . .  b j, a) contains a circuit C. 
Moreover ,  a~ C since the b~'s are independent. Since o9 (b l) > 09 (b2) > . "  > o9 (b j) and 

og(bj)>og(a) ,  09(a)<og(bi) for 1 < i < j .  Hence C - { a }  is a broken circuit, a contra- 
diction. This completes the proof.  [ ]  
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