FINITE LATTICES AND JORDAN-HÖLDER SETS ${ }^{1}$)

RICHARD P. STANLEY

1. Introduction

In this paper we extend some aspects of the theory of 'supersolvable lattices' [3] to a more general class of finite lattices which includes the upper-semimodular lattices. In particular, all conjectures made in [3] concerning upper-semimodular lattices will be proved. For instance, we will prove that if L is finite upper-semimodular and if L^{\prime} denotes L with any set of 'levels' removed, then the Möbius function of L ' alternates in sign. Familiarity with [3] will be helpful but not essential for the understanding of the results of this paper. However, many of the proofs are identical to the proofs in [3] (once the machinery has been suitably generalized) and will be omitted.

2. Admissible labelings

Let L be a finite lattice with bottom $\hat{0}$ and top $\hat{1}$, such that every maximal chain of L has the same length n. Hence L has a rank function ϱ satisfying $\varrho(\hat{0})=0, \varrho(\hat{1})=n$, and $\varrho(y)=1+\varrho(x)$ whenever y covers x in L. We cail L a graded lattice.

Let I denote the set of join-irreducible elements of L. A labeling ω of L is any map $\omega: I \rightarrow \mathbf{P}$, where \mathbf{P} denotes the positive integers. A labeling ω is said to be natural if $z, z^{\prime} \in I$ and $z \leq z^{\prime}$ implies $\omega(z) \leq \omega\left(z^{\prime}\right)$. If $x<y$ in L and ω is a fixed labeling of L, define

$$
\gamma(x, y)=\min \{\omega(z) \mid z \in I, x<x \vee z \leq y\} .
$$

Thus, $\gamma(x, y)$ is the least label of a join-irreducible which is less than or equal to y but not less than or equal to x. Note that $\gamma(x, y)$ is always defined since y is a join of join-irreducibles. We are now able to make the key definition of this paper. A labeling ω is said to be admissible if whenever $x<y$ in L, there is a unique unrefinable chain $x=x_{0}<x_{1}<\cdots<x_{m}=y$ between x and y (so $m=\varrho(y)-\varrho(x)$) such that

$$
\begin{equation*}
\gamma\left(x_{0}, x_{1}\right) \leq \gamma\left(x_{1}, x_{2}\right) \leq \cdots \leq \gamma\left(x_{m-1}, x_{m}\right) . \tag{1}
\end{equation*}
$$

We then call the pair (L, ω) an admissible lattice. Our motivation for this definition is that admissibility seems to be the weakest condition for which Theorem 3.1 holds.

[^0]The idea for this definition came from [3, Cor. 1.3] and its relation to [3, Thm. 2.1]. Our present Theorem 3.1 is a generalization of [3, Thm. 2.1].

We first note a simple property of admissible labelings.
2.1. PROPOSITION. Let ω be an admissible labeling of a finite graded lattice L. Then ω is natural.

Proof. Suppose $z, z^{\prime} \in I$ with $z<z^{\prime}$ and $\omega(z)>\omega\left(z^{\prime}\right)$. Since z is join-irreducible, it covers a unique element x. Similarly z^{\prime} covers a unique element y. Hence any unrefinable chain between x and z^{\prime} has the form $x<z=y_{0}<y_{1}<\cdots<y_{m}=y<z^{\prime}$ (possibly $m=0$ so $z=y$). Since z is join-irreducible, it follows from the definition of γ that $\gamma(x, z)=\omega(z)$. Similarly $\gamma\left(y, z^{\prime}\right)=\omega\left(z^{\prime}\right)$. Since $\omega(z)>\omega\left(z^{\prime}\right)$, ω cannot be admissible.

We know of two main classes of admissible lattices. The first class is given by the next proposition.

First recall that a lattice L of finite length is said to upper-semimodular if it is a graded lattice whose rank function ϱ satisfies $\varrho(x)+\varrho(y) \geq \varrho(x \vee y)+\varrho(x \wedge y)$ for all $x, y \in L$. Equivalently, L is upper-semimodular if whenever x covers y, then $x \vee z$ covers or equals $y \vee z$, for all $x, y, z \in L$.
2.2. PROPOSITION. Let L be a finite upper-semimodular lattice and ω a natural labeling of L such that whenever z and z^{\prime} are incomparable join-irreducibles then $\omega(z) \neq \omega\left(z^{\prime}\right)$. (Such a labeling of L is clearly possible; in fact, an injective natural labeling can always be found.) Then ω is admissible.

To prove this result, we first need a lemma.
2.3. LEMMA. Let (L, ω) satisfy the hypotheses of Proposition 2.2, and let $x<y$ in L. Let z be a minimal element of the set J of all join-irreducibles z ' of L satisfying $\omega\left(z^{\prime}\right)=\gamma(x, y)$ and $x<x \vee z^{\prime} \leq y$. (J is not empty by definition of $\gamma(x, y)$.) Then $x \vee z$ covers x.

Proof. Let I denote as before the set of join-irreducibles of L. Let $I^{\prime} \subseteq I$ be the set of all $z^{\prime} \in I$ satisfying $z^{\prime}<z$. Let $z^{\prime} \in I^{\prime}$. Since $z^{\prime}<z, x \leq x \vee z^{\prime} \leq y$. Since ω is natural, $\omega\left(z^{\prime}\right) \leq \omega(z)$. If $\omega\left(z^{\prime}\right)<\omega(z)$, then by definition of $\gamma(x, y)$ we cannot have $x<x \vee z^{\prime} \leq y$, so $x=x \vee z^{\prime}$. On the other hand, if $\omega\left(z^{\prime}\right)=\omega(z)$, then by hypothesis we cannot have $x<x \vee z^{\prime} \leq y$, so once again $x=x \vee z^{\prime}$. Thus $x=x \vee z^{\prime}$ for all $z^{\prime} \in I^{\prime}$. Let $w=\vee_{z^{\prime} \in I^{\prime}} z^{\prime}$. Since z is join-irreducible, $w<z$. Since $x=x \vee z^{\prime}$ for all $z^{\prime} \in I^{\prime}$, we have $x \vee w=x$.

Now if z doesn't cover w, then $w<w^{\prime}<z$ for some $w^{\prime} \in L$. But then there is a new join-irreducible $v<z$ such that $w<w \vee v \leq w^{\prime}$, contradicting the definition of w. Hence z covers w. But by upper-semimodularity, if z covers w, then $x \vee z$ covers or equals $x \vee w=x$. By assumption, $x<x \vee z$, so $x \vee z$ covers x.

Proof of Proposition 2.2. Let $x<y$ in L, and let $m=\varrho(y)-\varrho(x)$. We first show the existence of an unrefinable chain $x=x_{0}<x_{1}<\cdots<x_{m}=y$ between x and y satis-
fying (1). Let z_{1} be a minimal element of the set J_{1} of join-irreducibles z satisfying $\omega(z)=\gamma\left(x_{0}, y\right)$ and $x<x \vee z \leq y$. Let $x_{1}=x_{0} \vee z_{1}$. By Lemma 2.3, x_{1} covers x_{0}, while by definition $x_{1} \leq y$.

If $m=1$, we are done, so assume $m \geq 2$. Let z_{2} be a minimal element of the set J_{2} of join-irreducibles z satisfying $\omega(z)=\gamma\left(x_{1}, y\right)$ and $x_{1}<x_{1} \vee z \leq y$. Let $x_{2}=x_{1} \vee z_{2}$. Once again by Lemma $2.3 x_{2}$ covers x_{1}, while again by definition $x_{2} \leq y$. Now by definition of $\gamma\left(x_{0}, y\right)$ we have $\omega\left(z_{1}\right)=\gamma\left(x_{0}, y\right) \leq \omega\left(z_{2}\right)=\gamma\left(x_{1}, y\right)$. Continuing in this way, after m steps we get an unrefinable chain $x=x_{0}<x_{1}<\cdots<x_{m}=y$ satisfying $\gamma\left(x_{0}, y\right) \leq \gamma\left(x_{1}, y\right) \leq \cdots \leq \gamma\left(x_{m-1}, y\right)$. But clearly by definition of γ and the x_{i} 's, $\gamma\left(x_{i}, y\right)=\gamma\left(x_{i}, x_{i+1}\right)$. Hence we have constructed a chain C satisfying (1).

It remains to show the uniqueness of C. We shall prove the following two results:
(i) If $x^{\prime} \in L$ is such that x^{\prime} covers $x, x^{\prime} \leq y$, and $\gamma\left(x, x^{\prime}\right)=\gamma(x, y)$, then $x^{\prime}=x_{1}$;
(ii) If $x=x_{0}^{\prime}<x_{1}^{\prime}<\cdots<x_{m}^{\prime}=y$ is any unrefinable chain satisfying (1), then $\gamma\left(x_{1}^{\prime}, x\right)=\gamma(x, y)$.

Thus (i) and (ii) imply that x_{1}^{\prime} is uniquely determined, viz., $x_{1}^{\prime}=x_{1}$ (where x_{1} $=x_{0} \vee z_{1}$ as defined above). Hence the proof of the proposition follows by induction on m.

Proof of (i). Suppose $x^{\prime \prime} \neq x^{\prime}$ also is such that $x^{\prime \prime}$ covers $x, x^{\prime \prime} \leq y$, and $\gamma\left(x, x^{\prime \prime}\right)$ $=\gamma(x, y)$. Thus there exist $z^{\prime}, z^{\prime \prime} \in I$ such that $\omega\left(z^{\prime}\right)=\omega\left(z^{\prime \prime}\right)=\gamma(x, y), x \vee z^{\prime}=x^{\prime}$, $x \vee z^{\prime \prime}=x^{\prime \prime}$. Since x^{\prime} and $x^{\prime \prime}$ both cover x, they are incomparable. Hence z^{\prime} and $z^{\prime \prime}$ are incomparable. Thus by hypothesis $\omega\left(z^{\prime}\right) \neq \omega\left(z^{\prime \prime}\right)$, a contradiction. Hence $x^{\prime \prime}$ cannot exist.

Proof of (ii). Let $x=x_{0}^{\prime}<x_{1}^{\prime}<\cdots<x_{m}^{\prime}=y$ be an unrefinable chain satisfying (1). Hence $\gamma\left(x, x_{1}^{\prime}\right) \geq \gamma(x, y)$. Suppose $\gamma\left(x, x_{1}^{\prime}\right)>\gamma(x, y)$. Let $z \in I$ satisfy $\omega(z)=\gamma(x, y)$ and $x<x \vee z \leq y$. Let i be the least positive integer for which $x \vee z \leq x_{i}^{\prime}$. (Clearly i exists since $x \vee z \leq x_{m}^{\prime}$.) Then $x_{i-1}^{\prime} \vee z=x_{i}^{\prime}$, so $\gamma\left(x_{i-1}^{\prime}, x_{i}^{\prime}\right)=\gamma(x, y)<\gamma\left(x, x_{1}^{\prime}\right)$. Thus (1) cannot hold.

The second main class of admissible lattices are the supersolvable lattices [3]. If L is a finite lattice and Δ a maximal chain of L, we call the pair (L, Δ) a supersolvable lattice (or $S S$-lattice) if the sublattice of L generated by Δ and any chain in L is distributive. It is easily seen that if (L, Δ) is an $S S$-lattice, then L is graded (cf. [3, §1]).
2.4. PROPOSITION. Let (L, Δ) be an SS-lattice with Δ given by $\widehat{0}=x_{0}<x_{1}<$ $<\cdots<x_{n}=\hat{1}$. Define a labeling $\omega: I \rightarrow \mathbf{P}$ by letting $\omega(z)$ be the least positive integer t for which $z \leq x_{t}$. Then ω is admissible

Proof. Recall that an interval $[u, v]$ of a lattice is prime if it contains exactly two elements, i.e., if v covers u. In a distributive lattice D, two prime intervals $[x, y]$ and $[u, v]$ are said to be projective if there is a unique join-irreducible z such that $y=x \vee z$ and $v=u \vee z$. This is easily seen to be equivalent to the usual definition of projectivity (e.g., [1, p. 14]) if one thinks of D as being coordinatized by a ring of sets.

If y covers x in L, then it is easily seen [3, p. 198] that there is a unique positive integer t, which we denote by $\gamma^{\prime}(x, y)$, for which the prime intervals $[x, y]$ and $\left[x_{t-1}, x_{t}\right]$ are projective in the distributive lattice $D_{x y}$ generated by Δ and $\{x, y\}$. In [3, Cor. 1.3], it was shown that for any $x^{\prime}<y^{\prime}$ in L, there is a unique unrefinable chain $x^{\prime}=x_{0}^{\prime}<x_{1}^{\prime}<\cdots<x_{m}^{\prime}=y$ between x^{\prime} and y^{\prime} such that

$$
\gamma^{\prime}\left(x_{0}^{\prime}, x_{1}^{\prime}\right)<\gamma^{\prime}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)<\cdots<\gamma^{\prime}\left(x_{m-1}^{\prime}, x_{m}^{\prime}\right) .
$$

Hence it suffices to prove that $\gamma(x, y)=\gamma^{\prime}(x, y)$ whenever y covers x.
We shall need the following elementary facts concerning projectivity in a finite distributive lattice D. The proofs are immediate from the above definition of projectivity.
(a) The prime intervals $[x, y]$ and $[u, v]$ are projective in D if and only if $x=(x \vee u) \wedge y$ and $y=(x \vee v) \wedge y$.
(b) If $[x, y]$ and $[u, v]$ are projective prime intervals in D, then $y \not \ddagger u$.
(c) Suppose $[w, z]$ is a prime interval in D and z is join-irreducible. If y covers x in D and $z \leq y, z \ddagger x$, then $[w, z]$ and $[x, y]$ are projective.

We proceed to prove that if y covers x in L, then $\gamma(x, y)=\gamma^{\prime}(x, y)$. By definition of $\gamma(x, y)$, there is a join-irreducible z satisfying $x \vee z=y$ and $\omega(z)=\gamma(x, y)$. Let w be the unique element of L covered by z, and set $s=\omega(z)$. By (c), $[w, z]$ and $\left[x_{s-1}, x_{s}\right]$ are projective in the distributive lattice $D_{w z}$ generated by Δ and $\{w, z\}$, so $\gamma^{\prime}(w, z)=s$. If z^{\prime} is a join-irreducible of L such that $z^{\prime}<z$, then it follows from (b) (taking D to be generated by Δ and $\left\{z, z^{\prime}\right\}$) that $\omega\left(z^{\prime}\right) \neq \omega(z)$. Since $\omega\left(z^{\prime}\right) \leq \omega(z)$, thus $\omega\left(z^{\prime}\right)<\omega(z)$.
We claim that $w \leq x$. It suffices to prove $z^{\prime} \leq x$ for all join-irreducibles $z^{\prime} \leq w$. If z^{\prime} is such a join-irreducible, then by the above $\omega\left(z^{\prime}\right)<\omega(z)$. Hence by the definition of $z, x \vee z^{\prime}=y$. But $x \vee z^{\prime} \leq y$ since $z \leq y$. Since y covers x, we must have $z^{\prime} \leq x$. Hence $w \leq x$.

We need to show $\omega(z)=t$, i.e., $s=t$. By (a) and (c) this is equivalent to $w=\left(w \vee x_{t-1}\right)$ $\wedge z$ and $z=\left(w \vee x_{t}\right) \wedge z$. Since $\gamma^{\prime}(x, y)=t$, we know by (a) that

$$
\begin{align*}
& x=\left(x \vee x_{t-1}\right) \wedge y \tag{2}\\
& y=\left(x \vee x_{t}\right) \wedge y . \tag{3}
\end{align*}
$$

Since $w \leq x, z \nleftarrow x, z \leq y$, and z covers w, from (2) we get $w=x \wedge z=\left(x \vee x_{t-1}\right) \wedge z$. Thus since $w \leq x$ and $w \leq z, w \leq\left(w \vee x_{t-1}\right) \wedge z \leq\left(x \vee x_{t-1}\right) \wedge z=w$ so $w=\left(w \vee x_{t-1}\right) \wedge z$ as desired. To prove the other equality $z=\left(w \vee x_{t}\right) \wedge z$, we need to show $w \vee x_{t} \geq z$. Since w is the only element which z covers, this is equivalent to $x_{t} \ddagger w$. But if $x_{t} \leq w$, then $x_{t} \leq x$ since $w \leq x$. From (3) this would imply $y=x \wedge y=x$, a contradiction.

It follows from Proposition 2.4 that the theory of $S S$-lattices, as developed in [3], is a special case of the theory of admissible lattices. A large class of examples of $S S$ lattices, some of which are not semimodular, is given in [3, §2].

3. Jordan-Hölder sequences

Let (L, ω) be an admissible finite graded lattice. Let $x \leq y$ in L, and suppose K is an unrefinable chain in L between x and y given by $x=x_{0}<x_{1}<\cdots<x_{m}=y$. Define the Jordan-Hölder sequence (or J-H sequence) associated with K to be the sequence $a_{1}, a_{2}, \ldots, a_{m}$ of positive integers given by $a_{i}=\gamma\left(x_{i-1}, x_{i}\right)$. We shall denote this sequence by π_{K} and shall write

$$
\pi_{K}=\left(a_{1}, a_{2}, \ldots, a_{m}\right)
$$

In [3] π_{K} was called a ' J - H permutation' but here repetitions among the a_{i} are possible.
Now define the Jordan-Hölder set (or J-H set) $\mathscr{F}_{x y}(L, \omega)$ of $(L, \omega ; x, y)$ (denoted $\mathscr{J}_{x y}$ for short) to be the set of all $J-H$ sequences π_{K}, including repetitions, as K ranges over all unrefinable chains between x and y. It follows from the definition of an admissible labeling that there is a unique element $\pi_{K}=\left(a_{1}, \ldots, a_{m}\right)$ of $\mathscr{J}_{x y}$ satisfying $a_{1} \leq a_{2} \leq \cdots \leq a_{m}$. If $x=\hat{0}$ and $y=\hat{1}$, we denote $\mathscr{J}_{x y}(L, \omega)$ simply by $\mathscr{J}(L, \omega)$ or just \mathscr{J}, and call it the J - H set of (L, ω).

If $k \in \mathbf{P}$, let \mathbf{k} denote the set $\{1,2, \ldots, k\}$. We also write $S=\left\{m_{1}, m_{2}, \ldots, m_{s}\right\}<$ to signify that $S=\left\{m_{1}, m_{2}, \ldots, m_{s}\right\}$ and $m_{1}<m_{2}<\cdots<m_{s}$. Suppose L is a finite graded lattice and $[x, y]$ is an interval of L of length (rank) m, i.e., $\varrho(y)-\varrho(x)=m$. If $\left\{m_{1}, \ldots, m_{s}\right\}_{<}=S \subseteq m-1$, define $\alpha_{x y}(S)$ to be the number of chains

$$
x<y_{1}<\cdots<y_{s}<y
$$

in L satisfying $\varrho\left(y_{i}\right)-\varrho(x)=m_{i}, i=1,2, \ldots, s$. Thus if $S=\{k\}$, then $\alpha_{x y}(S)$ is the number of elements z of $[x, y]$ of rank k in $[x, y]$ (i.e., $\varrho(z)-\varrho(x)=k$). Moreover, $\alpha_{x y}(\phi)=1$ and $\alpha_{x y}(\mathbf{m}-1)$ is the total number of unrefinable chains in L between x and y. Now define for $S \subseteq \mathbf{m}-1$,

$$
\beta_{x y}(S)=\sum_{T \subseteq S}(-1)^{|S \sim T|} \alpha_{x y}(T),
$$

so by the Principle of Inclusion-Exclusion [2],

$$
\alpha_{x y}(S)=\sum_{T \leq S} \beta_{x y}(T)
$$

As mentioned in [3, p. 198], if $L_{x y}(S)$ denotes the partially ordered set of all $z \in L$ satisfying either (a) $z=x$; (b) $z=y$; or (c) $x<z<y$ and $\varrho(z)-\varrho(x) \in S$, then

$$
\begin{equation*}
\mu_{S}(x, y)=(-1)^{s+1} \beta_{x y}(S) \tag{4}
\end{equation*}
$$

where μ_{S} is the Möbius function of $L_{x y}(S)$ and $|S|=s$. For this reason we call the function $\beta_{x y}(\cdot)$ the rank-selected Möbius invariant of the interval $[x, y]$.

If $\pi=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is a finite sequence of integers, then a pair $a_{j}>a_{j+1}$ is called a descent of π, and the set

$$
D(\pi)=\left\{j: a_{j}>a_{j+1}\right\}
$$

is called the descent set of π. We can now state the fundamental combinatorial property of $J-H$ sets. This result is a direct generalization of [3, Thm. 1.2]. The proof is identical to the proof of [3, Thm. 1.2], except that here the definition of an admissible lattice plays the role of Lemma 3.1 of [3]. Thus no condition is needed about distributive sublattices of L.
3.1. THEOREM. Let (L, ω) be an admissible lattice, and let $[x, y]$ be an interval of L of length m. If $S \subseteq \mathbf{m}-1$, then the number of sequences π in the $J-H$ set $\mathscr{J}_{x y}(L, \omega)$ with descent set $D(\pi)=S$ is equal to $\beta_{x y}(S)$. (The reader is reminded that $\mathscr{J}_{x y}(L, \omega)$ contains one sequence π for each maximal chain of $[x, y]$, so that repeated sequences are taken into account.)
3.2. COROLLARY. Let (L, ω) be an admissible lattice. If $[x, y]$ is an interval of L of length m and if $S \subseteq \mathbf{m}-\mathbf{1}$, then $\beta_{x y}(S) \geq 0$.

In view of (4), Corollary 3.2 may be restated as follows:
3.2' COROLLARY. Let (L, ω) be an admissible lattice of length n, and let $S \subseteq \mathbf{n - 1}$. Then the Möbius function μ_{s} of the rank-selected partially ordered set $L(S)$ alternates in sign; i.e., if $[x, y]$ is an interval in $L(S)$ of length k, then

$$
(-1)^{k} \mu_{S}(x, y) \geq 0
$$

Since by Proposition 2.2 every finite upper-semimodular lattice has an admissible labeling, Corollary 3.2^{\prime} applies to all such lattices, and in particular, to finite geometric lattices.
3.3. COROLLARY. Let (L, ω) be an admissible lattice and $[x, y]$ an interval of L of length m. Let μ denote the Möbius function of L. Then $(-1)^{m} \mu(x, y)$ is equal to the number of unrefinable chains $x=x_{0}<x_{1}<\cdots<x_{m}=y$ between x and y satisfying

$$
\gamma\left(x_{0}, x_{1}\right)>\gamma\left(x_{1}, x_{2}\right)>\cdots>\gamma\left(x_{m-1}, x_{m}\right) .
$$

Proof. Let $S=\mathbf{m}-1$ in Theorem 3.1, and use (4).

4. Applications

We shall state those results in [3] proved for $S S$-lattices which remain true for admissible lattices. The proofs are exactly the same as in the $S S$-case once suitable
analogues are given for two concepts in [3]. First, the role of the 'induced M-chain $\Delta_{x y}$ between x and y^{\prime} is replaced by the unique unrefinable chain $x=x_{0}<x_{1}<\cdots<x_{m}=y$ between x and y satisfying $\gamma\left(x_{0}, x_{1}\right) \leq \gamma\left(x_{1}, x_{2}\right) \leq \cdots \leq \gamma\left(x_{m-1}, x_{m}\right)$. Secondly, we need a replacement for statement (A) in the proof of Theorem 5.2 of [3]. Although a direct analogue of (A) can be given, it is simpler to use the following fact:
4.1. LEMMA. If $[x, y]$ is an interval of an upper-semimodular admissible lattice (L, ω) such that y is the join of atoms of $[x, y]$, then there is an unrefinable chain $x=x_{0}<x_{1}<\cdots<x_{m}=y$ between x and y such that $\gamma\left(x_{0}, x_{1}\right)>\gamma\left(x_{1}, x_{2}\right)>\cdots>$ $\gamma\left(x_{m-1}, x_{m}\right)$.

Proof. Recall that a geometric lattice is an upper-semimodular lattice whose joinirreducibles are its atoms. If L^{\prime} denotes the partially ordered set of all elements of $[x, y]$ which are a join of atoms of $[x, y]$ (including x as the void join), then L^{\prime} has the structure of a geometric lattice (though L^{\prime} is not necessarily a sublattice of L). If μ denotes the Möbius function of L and μ^{\prime} that of L^{\prime}, then from [2, Cor. on p. 349] we conclude $\mu(x, y)=\mu^{\prime}(x, y)$. Hence by $[2, \S 7$, Thm. 4], $\mu(x, y) \neq 0$. The desired result now follows from Corollary 3.3.

The reader can now verify that the proofs of the following results are the same as the analogous results for $S S$-lattices given in [3].
4.2. PROPOSITION. (Generalizes [3, Prop. 3.3]). Let (L, ω) be an admissible lattice, and let $[x, y]$ be an interval of L length m. Let $S \subseteq m-1$. If $\beta_{x y}(S)>0$ and $T \subseteq S$, then $\beta_{x y}(T)>0$.

Suppose L is a finite geometric lattice. Then L is upper-semimodular, so by Proposition $2.2 L$ possesses an admissible labeling. Moreover, every interval of L is a geometric lattice, and the Möbius function of L is never 0 . It follows from (4) and Proposition 4.2 that Corollary 3.2^{\prime} can be strengthened in the case of geometric lattices as follows:
4.3. COROLLARY. Let L be a finite geometric lattice of rank n, and let $S \subseteq \mathbf{n - 1}$. Then the Möbius function μ_{S} of the rank-selected partially ordered set $L(S)$ strictly alternates in sign; i.e., if $[x, y]$ is an interval in $L(S)$ of length k, then

$$
(-1)^{k} \mu_{S}(x, y)>0
$$

For some related properties of geometric lattices, see the next section.
Recall $[3, \S 5]$ that a Loewy chain between x and y in a lattice L of finite length is a chain $x=x_{0}<x_{1}<\cdots<x_{r}=y$ such that each $x_{i}, i \in \mathrm{r}$, is the join of the atoms of the interval $\left[x_{i-1}, x_{i}\right]$.
4.4. PROPOSITION. (Generalizes [3, Lemma 5.1]). Let (L, ω) be an admissible
lattice with $[x, y]$ an interval of length m. Let K be an unrefinable chain in L between x and y :

$$
K: x=y_{0}<y_{1}<\cdots<y_{m}=y .
$$

Let $0<m_{1}<m_{2}<\cdots<m_{r}=m$. Then the subchain

$$
x=y_{0}<y_{m_{1}}<y_{m_{2}}<\cdots<y_{m_{r}}=y
$$

of K is a Loewy chain between x and y if

$$
\mathbf{m}-\mathbf{1}-D\left(\pi_{K}\right) \subseteq\left\{m_{1}, m_{2}, \ldots, m_{r-1}\right\}
$$

4.5. THEOREM. (Generalizes [3, Thm. 5.2]). Let L be a finite upper-semimodular lattice with $[x, y]$ an interval of L of length m. Let $S=\left\{m_{1}, m_{2}, \ldots, m_{s}\right\}<\subseteq \mathbf{m}-\mathbf{1}$. There exists a chain C,

$$
C: x=y_{0}<y_{1}<\cdots<y_{s}<y_{s+1}=y
$$

satisfying the two conditions
(i) $\varrho\left(y_{i}\right)-\varrho(x)=m_{i}, 1 \leq i \leq s$ (where ϱ as usual is the rank function of L);
(ii) C is a Loewy chain between x and y,
if and only if $\beta_{x y}((\mathbf{m}-\mathbf{1})-S)>0$.
Now recall $[3, \S 6]$ that if q is a fixed positive integer, then a q-lattice is a lattice L of finite length with the property that every interval $[x, y]$ of L for which y is the join of atoms of $[x, y]$ is isomorphic to the lattice of subspaces of a projective geometry of degree q (or to a Boolean algebra if $q=1$). Such a lattice is necessarily upper-semimodular [3, pp. 213-214] and hence possesses an admissible labeling. A q-lattice, however, need not be supersolvable, so the next proposition is strictly stronger than the corresponding Lemma 6.4 of [3]. For instance, let L^{\prime} be the lattice of subgroups of a finite abelian p-group of type $(3,3)$. Let L be L^{\prime} truncated above rank 3 , i.e., identify all elements of L^{\prime} of rank at least 4 . Then L is a p-lattice but is not supersolvable.
4.6. PROPOSITION. (Replaces [3, Lemma 6.4]). Let (L, ω) be an admissible q-lattice of rank n. Let $S \subseteq \mathbf{n}-\mathbf{1}$, with $(\mathbf{n}-\mathbf{1})-S=\left\{j_{1}, j_{2}, \ldots, j_{t-1}\right\}<$. Also let $j_{0}=0$, $j_{t}=n$. Define $N(S)$ to be the number of maximal chains K of L satisfying $D\left(\pi_{K}\right) \supseteq S$, where $D\left(\pi_{K}\right)$ is the descent set of the $J-H$ sequence π_{K}. Then $N(S)=q^{k} M$, where

$$
\begin{equation*}
k=\sum_{n=1}^{t}\binom{j_{r}-j_{r-1}}{2} \tag{5}
\end{equation*}
$$

and where M is the number of Loewy chains

$$
\begin{equation*}
\hat{0}=y_{0}<y_{1}<\cdots<y_{t}=\hat{1} \tag{6}
\end{equation*}
$$

such that $\varrho\left(y_{i}\right)=j_{i}, 0 \leq i \leq t$.

Since Proposition 4.6 is not a strict analogue of [3, Lemma 6.4], we shall give a proof.

Proof. If K is a maximal chain of L such that $D\left(\pi_{K}\right) \supseteq S$, then by Proposition 4.4 the subchain C of K consisting of all $x \in K$ such that $\varrho(x)=j_{i}(0 \leq i \leq t)$ is a Loewy chain. Hence it suffices to prove that if we have a Loewy chain (6) with $\varrho\left(y_{i}\right)=j_{i}$, then the number of refinements of C to a maximal chain K satisfying $D\left(\pi_{K}\right) \supseteq S$ is equal to q^{k}, where k is given by (5).

Assume we have such a Loewy chain C. Since L is a q-lattice, each interval $\left[y_{r-1}, y_{r}\right](1 \leq r \leq t)$ is a projective geometry of degree q (or a Boolean algebra if $q=1)$. Hence $\mu\left(y_{r-1}, y_{r}\right)=(-1)^{b} q^{k_{r}}$, where $b=j_{r}-j_{r-1}$ and $k_{r}=\binom{j_{r}-j_{r-1}}{2}$. Now by Corollary 3.3 the number of maximal chains $y_{r-1}=z_{0}<z_{1}<\cdots<z_{b}=y_{r}$ of the interval $\left[y_{r-1}, y_{r}\right]$ such that

$$
\gamma\left(z_{0}, z_{1}\right)>\gamma\left(z_{1}, z_{2}\right)>\cdots>\gamma\left(z_{b-1}, z_{b}\right)
$$

is just $(-1)^{b} \mu\left(y_{r-1}, y_{r}\right)=q^{k_{r}}$. Hence the total number of refinements of C to a maximal chain K satisfying $D\left(\pi_{K}\right) \supseteq S$ is equal to $q^{k_{1}} q^{k_{2}} \ldots q^{k_{t}}=q^{k}$, and the proof follows.
4.7. COROLLARY. (Generalizes [3, Corollary 6.5]). Let L be a q-Iattice of rank n, and let $S \subseteq \mathbf{n - 1}$, with $(\mathbf{n - 1})-S=\left\{j_{1}, j_{2}, \ldots, j_{t-1}\right\}<$ and $j_{0}=0, j_{t}=n$. Then $\beta(S)$ is divisible by q^{k}, where k is given by (6).

The derivation of Corollary 4.7 from Proposition 4.6 is not quite as trivial as the derivation of [3, Corollary 6.5] from [3, Lemma 6.4], so we shall give a proof.

Proof. Fix an admissible labeling ω of L. By Theorem 3.1, $\beta(S)$ is equal to the number of maximal chains K of L satisfying $D\left(\pi_{K}\right)=S$. Hence if $N(S)$ is defined as in Proposition 4.6, we have

$$
N(S)=\sum_{T \Xi S} \beta(T),
$$

so

$$
\begin{equation*}
\beta(S)=\sum_{T \supset S}(-1)^{|T-S|} N(T) . \tag{7}
\end{equation*}
$$

Suppose we have $\mathbf{n} \mathbf{- 1} \supseteq T \supseteq S$ where $(\mathbf{n} \mathbf{- 1})-T=\left\{i_{1}, i_{2}, \ldots, i_{s-1}\right\}<$ and $(\mathbf{n} \mathbf{- 1})-S=$ $\left\{j_{1}, j_{2}, \ldots, j_{t-1}\right\}_{<}$, and $i_{0}=j_{0}=0, i_{s}=j_{t}=n$. An easy computation shows that

$$
\sum_{r=1}^{s}\binom{i_{r}-i_{r-1}}{2} \geq \sum_{r=1}^{t}\binom{j_{r}-j_{r-1}}{2} .
$$

It follows from Proposition 4.6 that each term $N(T)$ appearing in (7) is divisible by q^{k}, so the proof follows.
4.8. THEOREM. (Generalizes [3, Theorem 6.6]). Let L be a q-lattice of rank n, and let $S \subseteq \mathbf{n} \mathbf{- 1}$ with $|S|=s$. Then $\beta(S)$ is divisible by $q^{Q(n, s)}$, where

$$
Q(n, s)=\frac{1}{2}\left[\frac{n}{n-s}\right]\left(n+s-(n-s)\left[\frac{n}{n-s}\right]\right)
$$

(brackets denote the integer part). This result is best possible in the sense that given n and $0 \leq s \leq n-1$, there exists a q-lattice (which can even be chosen to be modular) of rank n and a set $S \subseteq \mathbf{n} \mathbf{- 1}$ of cardinality s such that $\beta(S)=q^{Q(n, s)}($ see $[3, \mathrm{p} .216])$.

5. The broken circuit theorem

In this section we shall point out the connection between our work and the socalled 'broken circuit theorem' of G.-C. Rota [2, Prop. 1, p. 358], which generalizes to arbitrary finite geometric lattices a result of Whitney on graphs. The reader should be warned that [2, Prop. 1, p. 358] is false when $k>1$. However, the proof is valid when $k=1$, and this is the case which will concern us here.

We proceed to describe the broken circuit theorem. Let L be a finite geometric lattice of rank n, and let $a_{1}, a_{2}, \ldots, a_{t}$ be an ordering of the atoms A of L. A subset C of A is called a circuit if the rank of the join of the elements of C is $|C|-1$, while the rank of the join of the elements of any proper subset C^{\prime} of C is $\left|C^{\prime}\right|$. A subset $B=\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{j}}\right\}$ of A is called a broken circuit if there exists an atom a_{m} such that $m>i_{r}$ for $r=1,2, \ldots, j$, and such that $B \cup\left\{a_{m}\right\}$ is a circuit. Note that the notion of a circuit depends only on L, while that of a broken circuit also depends on the ordering chosen for the elements of A.

BROKEN CIRCUIT THEOREM (G.-C. Rota). Let L be a finite geometric lattice of rank n with an ordering $a_{1}, a_{2}, \ldots, a_{t}$ of the atoms of L. Let μ be the Möbius function of L. Then $(-1)^{n} \mu(\hat{0}, \hat{1})$ is equal to the number of sets of n atoms of L not containing any broken circuit.

Given an ordering $a_{1}, a_{2}, \ldots, a_{t}$ of the atoms of a finite geometric lattice L of rank n, define a labeling ω of L by $\omega\left(a_{i}\right)=t-i+1$, so $i<j$ implies $\omega\left(a_{i}\right)>\omega$. By Proposition 2.2, (L, ω) is an admissible lattice. Let $\hat{0}=x_{0}<x_{1}<\cdots<x_{n}=\hat{1}$ be a maximal chain K in L satisfying

$$
\begin{equation*}
\gamma\left(x_{0}, x_{1}\right)>\gamma\left(x_{1}, x_{2}\right)>\cdots>\gamma\left(x_{n-1}, x_{n}\right) . \tag{8}
\end{equation*}
$$

We know by Corollary 3.3 that the number of such maximal chains K is $(-1)^{n} \mu(\hat{0}, \hat{1})$. We would like to relate this fact to the Broken Circuit Theorem by constructing an explicit one-to-one correspondence λ between maximal chains K satisfying (8) and sets of n atoms of L containing no broken circuit.

This correspondence λ is defined as follows. Given a maximal chain K satisfying (8), let $\lambda(K)$ be the set $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of those n atoms defined by $\omega\left(b_{j}\right)=\gamma\left(x_{j-1}, x_{j}\right)$.

5.1. PROPOSITION. The function λ defines a one-to-one correspondence between

 maximal chains K of L satisfying (8), and sets of n atoms of L containing no broken circuit.Proof. We first prove that $\lambda(K)$ contains no broken circuits. Suppose $B=\left\{b_{i_{1}}, b_{i_{2}}\right.$, $\left.\ldots, b_{i_{s}}\right\}$ is a broken circuit contained in $\lambda(K)$ with $i_{1}<i_{2}<\cdots<i_{s}$, i.e., $\omega\left(b_{i_{1}}\right)>\omega\left(b_{i_{2}}\right)$ $>\cdots>\omega\left(b_{i_{s}}\right)$. By definition of broken circuit, there exists an atom a of L such that $\omega\left(b_{i_{r}}\right)>\omega(a)$ for $r=1,2, \ldots, s$ and $B \cup\{a\}$ is a circuit. By definition of the b_{i} 's and $\gamma, x_{i_{s-1}} \vee b_{i_{s}}=x_{i_{s}}$ and $b_{i_{r}} \leq x_{i_{s-1}}$ for $r=1,2, \ldots, s-1$. Hence since $B \cup\{a\}$ is a circuit, $x_{i_{s}-1} \vee a=x_{i_{s}}$. By definition of γ, this means $\omega\left(b_{i_{s}}\right)<\omega(a)$, a contradiction. Hence $\lambda(K)$ contains no broken circuit.

Now let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a set of n atoms containing no broken circuit, with $\omega\left(b_{1}\right)>\omega\left(b_{2}\right)>\cdots>\omega\left(b_{n}\right)$. Recall that a basis of L is a set of n atoms $c_{1}, c_{2}, \ldots, c_{n}$ of L such that $\varrho\left(c_{1} \vee c_{2} \vee \cdots \vee c_{n}\right)=n$. Equivalently, a basis is a set of n atoms containing no circuit. Now note that B is a basis, since if it contained a circuit it would contain a broken circuit. If $\lambda(K)=B$, then K must be given by $x_{j}=b_{1} \vee b_{2} \vee \cdots \vee b_{j}$, so λ is injective. It remains to prove that these x_{j} 's satisfy $\gamma\left(x_{j-1}, x_{j}\right)=\omega\left(b_{j}\right)$, which shows λ is surjective. By definition of the x_{i} 's, $x_{j-1} \vee b_{j}=x_{j}$. Suppose a is an atom such that $x_{j-1} \vee a=x_{j}$ and $\omega(a)<\omega\left(b_{j}\right)$. Thus the set $\left\{b_{1}, b_{2}, \ldots, b_{j}, a\right\}$ contains a circuit C. Moreover, $a \in C$ since the b_{i} 's are independent. Since $\omega\left(b_{1}\right)>\omega\left(b_{2}\right)>\cdots>\omega\left(b_{j}\right)$ and $\omega\left(b_{j}\right)>\omega(a), \omega(a)<\omega\left(b_{i}\right)$ for $1 \leq i \leq j$. Hence $C-\{a\}$ is a broken circuit, a contradiction. This completes the proof.

REFERENCES

[1] Garrett Birkhoff, Lattice Theory, 3rd Ed., American Mathematical Society, Providence, Rhode Island, 1967.
[2] .G.-C. Rota, On the foundations of combinatorial theory: I: Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie, 2 (1964), 340-368.
[3] R. Stanley, Supersolvable lattices, Algebra Universalis, 2 (1972), 197-217.

> University of California at Berkeley Berkeley, California
> U.S.A.

[^0]: ${ }^{1}$) The research was supported by a Miller Research Fellowship at the University of California at Berkeley.

