ZERO SQUARE RINGS

RICHARD P. STANLEY

A ring R for which $x^2 = 0$ for all $x \in R$ is called a zerosquare ring. Zero-square rings are easily seen to be locally nilpotent. This leads to two problems: (1) constructing finitely generated zero-square rings with large index of nilpotence, and (2) investigating the structure of finitely generated zerosquare rings with given index of nilpotence. For the first problem we construct a class of zero-square rings, called *free* zero-square rings, whose index of nilpotence can be arbitrarily large. We show that every zero-square ring whose generators have (additive) orders dividing the orders of the generators of some free zero-square ring is a homomorphic image of the free ring. For the second problem, we assume $R^n \neq 0$ and obtain conditions on the additive group R_+ of R (and thus also on the order of R). When n = 2, we completely characterize R_+ . When n > 3 we obtain the smallest possible number of generators of R_+ , and the smallest number of generators of order 2 in a minimal set of generators. We also determine the possible orders of R.

Trivially every null ring (that is, $R^2 = 0$) is a zero-square ring. From every nonnull commutative ring S we can make $S \times S \times S$ into a nonnull zero square ring R by defining addition componentwise and multiplication by

$$(x_1, y_1, z_1) imes (x_2, y_2, z_2) = (0, 0, x_1y_2 - x_2y_1)$$
 .

In this example we always have $R^3 = 0$. If S is a field, then R is an algebra over S. Zero-square algebras over a field have been investigated in [1].

2. Preliminaries. Every zero-square ring is anti-commutative, for $0 = (x + y)^2 = x^2 + xy + yx + y^2 = xy + yx$. From anti-commutativity we get $2R^3 = 0$, for yzx = y(-xz) = -(yx)z = xyz and (yz)x = -x(yz), so 2xyz = 0 for all $x, y, z \in R$. It follows that a zero-square ring Ris commutative if and only if $2R^2 = 0$.

If R is a zero-square ring with n generators, then any product of n + 1 generators must contain two factors the same. By applying anti-commutativity we get a square factor in the product; hence $R^{n+1} = 0$. In particular, every zero-square ring is locally nilpotent.

If G is a finitely generated abelian group, then by the fundamental theorem on abelian groups we have

$$egin{array}{lll} (1) & G=C_{a_1}\oplus\cdots\oplus C_{a_n}, a_i\,|\,a_{i+1}\,\,\, ext{for}\,\,\,1\leq i\leq k-1\;, \ a_{k+1}=\cdots=a_n=\infty\;, \end{array}$$

where C_{a_i} is a cyclic group of order a_i . If $X = \{x_1, \dots, x_n\}$ generates G and if there is some decomposition (1) for which x_i generates C_{a_i} , $1 \leq i \leq n$, then we call X a standard set of (group) generators for G. Now let R be any finitely generated ring with a minimal set of ring generators $X' = \{x_1, \dots, x_n\}$. Let $\langle X' \rangle$ denote the additive group generated by X' (whose elements are considered now as group, not ring, generators), and let X be a standard set of generators for $\langle X' \rangle$. Then X generates R as a ring since it generates $\langle X' \rangle$ as a group. Such a set X will be called a standard set of ring generators for R, and it follows that every finitely generated ring has a standard set of ring generators.

3. Free zero-square rings. For every positive integer n and every *n*-tuple (a_1, \dots, a_n) , where $a_i | a_{i+1}$ for $i = 1, \dots, k-1$, and $a_{k+1} = \dots = a_n = \infty$, we define the *free* zero-square ring $R_F(a_1, \dots, a_n)$ and derive its basic properties. Free zero-square ring are constructed from combinations of indeterminates called special monomials.

DEFINITION 3.1. Let a_1, \dots, a_n be integers ≥ 2 or ∞ , such that for some $k \leq n, a_i | a_{i+1}$ for $i = 1, \dots, k-1$, while $a_{k+1} = \dots = a_n = \infty$; and let x_1, \dots, x_n be indeterminates. We say that $x_{i_1}x_{i_2} \cdots x_{i_q}$ is a *special monomial* if $1 \leq i_1 < i_2 < \dots < i_q \leq n$, and if a_{i_1} is even or ∞ whenever q > 2.

Thus the special monomials consist of

$$egin{array}{lll} x_i \ , & 1 \leqq i \leqq n \ x_i x_j \ , & 1 \leqq i < j \leqq n \ x_{i_1} x_{i_2} \cdots x_{i_q} \ , & q \geqq 3 ext{ and } a_{i_1} ext{ even or } \infty \ . \end{array}$$

Now let y_1, y_2, \dots, y_r denote the *r* distinct special monomials (in some order) corresponding to a_1, a_2, \dots, a_n . If $y_j = x_{i_1}x_{i_2}\cdots x_{i_q}$ is a special monomial, we define

$$b_j = b(y_j) = egin{cases} a_{i_1}, \ {
m if} \ q = 1 \ {
m or} \ 2 \ 2, \ {
m if} \ q \ge 3 \ . \end{cases}$$

Let $R_F(a_1, \dots, a_n)$ denote the set of formal sums

$$egin{aligned} R_{\scriptscriptstyle F}(a_{\scriptscriptstyle 1},\,\cdots,\,a_{\scriptscriptstyle n}) &= \left\{ \sum\limits_{i=1}^r c_i y_i \,|\, 0 \leq c_j < b_j ~~ ext{if}~~ b_j
eq \infty
ight. \ &- \infty < c_j < \infty ~~ ext{if}~~ b_j = \infty
ight\} \,. \end{aligned}$$

We define addition and multiplication on R_F as follows:

Addition. Define

$$\sum\limits_{i=1}^{r} c_{i}y_{i} + \sum\limits_{i=1}^{r} d_{i}y_{i} = \sum\limits_{i=1}^{r} e_{i}y_{i}$$
 ,

where $e_i \equiv c_i + d_i \pmod{b_i}$, $0 \leq e_i < b_i$ if $b_i \neq \infty$, $e_i = c_i + d_i$ if $b_i = \infty$. We are adding the i^{th} components mod b_i .

Multiplication. We first define multiplication of special monomials. If y_i and y_j have a factor x_s in common, define $y_jy_i = y_iy_j = 0$. In particular, $x_s^2 = 0$. If $y_i = x_s$, $y_j = x_i$ with s < t, define $(ay_i)(by_j) = a\overline{b} x_s x_i$; where if $b_i \neq \infty$, then $a\overline{b}$ is defined by $a\overline{b} \equiv ab \pmod{b_i}$, $0 \leq a\overline{b} < b_i$, while if $b_i = \infty$, then $a\overline{b} = ab$. If we think of a and b as representatives of the congruence classes mod b_i and b_j , then since $b_i \mid b_j$ the product ab always represents the same element mod b_i regardless of the choice of a and b. Similarly define $(by_j)(ay_i) = -a\overline{b}(x_s x_i)$. If y_i and y_j do not have a factor x_s in common, and if at least one of y_i, y_j contains at least two distinct factors x_s and x_i , then define $(ay_i)(by_j) = cy_i$, where y_i is obtained by rearranging the factors x_h of y_i and y_j in ascending subscript order and defining

$$c = egin{cases} 0, ext{ if } a_q ext{ is odd} \ 0, ext{ if } a_q ext{ is even or } \infty ext{ and } ab ext{ is even} \ 1, ext{ if } a_q ext{ is even or } \infty ext{ and } ab ext{ is odd} \ . \end{cases}$$

where a_q is the order of the indeterminate x_q with least subscript appearing in y_l .

We now define in general

$$\left(\sum\limits_i c_i y_i
ight)\!\!\left(\sum\limits_j d_j y_j
ight) = \sum\limits_{i,j} \left(c_i y_i
ight)\!\left(d_j y_j
ight)$$
 ,

where this sum is to be rearranged according to the previously defined rules of special monomial multiplication and of addition.

We call this set $R_F(a_1, \dots, a_n)$, together with the operations of addition and multiplication just defined, the *free zero square ring* $R_F(a_1, \dots, a_n)$.

THEOREM 3.2. $R_F(a_1, \dots, a_n)$ is a zero-square ring.

Proof. All the desired properties follow from the definitions except associativity of multiplication and the zero-square property.

It follows from the definition of multiplication that we need only to verify associativity for monomials $c_h y_h$, where c_h is a constant between 0 and $b_h - 1$ for $b_h \neq \infty$, while $-\infty < c_h < \infty$ for $b_h = \infty$, and y_h is a special monomial. But if either of y_h , y_i , y_j contain an indeterminate x_s of odd order, then $(c_h y_h)(c_j y_j)(c_j y_j) = 0$ upon any association, while if all orders are even or ∞ , then

$$(c_h y_h)(c_i y_i)(c_j y_j) = egin{cases} 0, & ext{if two of } y_h, y_i, y_j ext{ contain} \ a ext{ common factor } x_e \ 0, & ext{if any of } c_h, c_i, c_j ext{ is even} \ y_h y_i y_j, & ext{ otherwise} \end{cases}$$

upon any association.

It remains only to show $(\sum c_i y_i)^2 = 0$. Now

$$(\sum c_i y_i)^2 = \sum_{i < j} c_i c_j (y_i y_j + y_j y_i) + \sum c_i^2 y_i^2 \; .$$

The latter sum is 0 by definition of special monomial multiplication. If $y_i y_j$ is the product of more than two indeterminates, then

$$c_i c_j (y_i y_j + y_j y_i) = 2 c_i c_j y_i y_j = 0$$
 ,

since either $y_i y_j = 0$ or $2c_i c_j$ is taken mod 2. This completes the proof.

THEOREM 3.3. If $a_n \neq \infty$ and *i* is the least integer for which a_i is even (except that if a_n is odd, put i = n), then $R_F(a_1, \dots, a_n)$ has order

$$a_1^n a_2^{n-1} \cdots a_n^1 2^{2^{n-i+1}-1} 2^{-(n-i+1)(n-i+2)/2}$$
 .

Proof. In general there are $\binom{n-j}{k-1}$ distinct special monomials with k factors such that j is the least subscript appearing among the factors. Such a monomial has order a_j if $k \leq 2$, while if k > 2 the monomial has order 2 when a_j is even and vanishes when a_j is odd. Thus the order of R_F is given by

$$(a_1a_2\cdots a_n)(a_1^{n-1}a_2^{n-2}\cdots a_{n-1})\left[2^{\binom{n-i}{2}}+\binom{n-i-1}{2}+\cdots+\binom{2}{2}\right].\\ \cdot\left[2^{\binom{n-i}{3}}+\binom{n-i-1}{3}+\cdots\binom{3}{3}\right]\cdots\left[2^{\binom{n-i}{n-i}}\right]\\ =a_1^na_2^{n-1}\cdots a_n^n2^{2^{n-i-1}-1}2^{-\binom{n-i+1}{(n-i+2)/2}},$$

as asserted.

The next theorem elucidates the "free" nature of R_F .

THEOREM 3.4. If R is a zero-square ring with a standard set of ring generators x'_1, \dots, x'_n of orders a'_1, \dots, a'_n , and if $R_F(a_1, \dots, a_n)$ is a free zero-square ring with $a'_i | a_i$ for $1 \leq i \leq n$ (with the convention that every integer and ∞ are divisors of ∞), then R is a homomorphic image of $R_F(a_1, \dots, a_n)$. *Proof.* Let x_1, \dots, x_n be the indeterminates (generators) of R_F . Let y_1, \dots, y_r be the special monomials of R_F and y'_1, \dots, y'_r the corresponding monomials of R, so that if $y_i = x_{i_1} \dots x_{i_g}$, then $y'_i = x'_{i_1} \dots x'_{i_g}$. (Of course for some i we may have $y'_i = 0$.) We then claim that the mapping $\varphi: \sum c_i y_i \to \sum c_i y'_i$ is the desired homomorphism.

Since $a'_i | a_i$, the ring of integers mod a'_i is a homomorphic image of the ring of integers mod a_i . It follows from its definition that φ preserves sums and products. It remains only to verify that φ is onto R, i.e., that every element of R occurs among $\sum c_i y'_i$, $0 \leq c_i < b_i$ if $b_i \neq \infty$, $-\infty < c_i < \infty$ if $b_i = \infty$. This, however, is an immediate consequence of the fact that R is anti-commutative and satisfies $R^{n+1} = 0$ and $2R^3 = 0$, and that the order of an anti-commutative product cannot exceed the g.c.d. of the orders of its factors. This completes the proof.

In general, a subring (or ideal) of $R_F(a_1, \dots, a_n)$ need not be free. For instance, if n > 2 and each a_i is even, then $R_F^{\lfloor (n/2)+1 \rfloor}$ is a null ideal with more than one generator.

If $R_F = R_F(a_1, \dots, a_n)$ is a free zero-square ring such that i is the least integer for which a_i is even or ∞ , and if $n - i \ge 1$, then it is easily verified that R_F has index of nilpotence n - i + 2. Thus free zero-square rings provide examples of zero-square rings with arbitrarily large index of nilpotence.

4. Nonnull finite zero-square rings. In this section we characterize the additive groups of nonnull finite zero-square rings and as a corollary characterize the orders of such rings. For this purpose we introduce a function f(G) of a finitely generated abelian group G.

DEFINITION 4.1. If G is a finitely generated abelian group, define $f(G) = \max \{n: R \text{ is a zero-square ring, } R^n \neq 0, G \text{ is isomorphic to the additive group } R_+ \text{ of } R\}.$

It follows from the local nilpotence of zero-square rings that f(G) is finite. In this section and the next we assume G is finite to avoid looking at a large number of cases. The results can easily be extended to arbitrary finitely generated G.

THEOREM 4.2. Let G be a finite abelian group. Then $f(G) \ge 2$ if and only if either of the following hold:

(i) The dimension of G is greater than two; or

(ii) $G = C_{a_1} \bigoplus C_{a_2}$, where $a_1 | a_2$ and either $(a_2/a_1, a_1) \neq 1$ or a_1 is divisible by a square > 1. (This condition on a_1 and a_2 is equivalent to $a_1 | a_2$ and the existence of an integer $b, 0 < b < a_2$, such that $a_2 | b(a_1, b)$.)

Proof. We first prove sufficiency of (i) and of (ii). Assume that $G = C_{a_1} \bigoplus C_{a_2} \bigoplus \cdots \bigoplus C_{a_n}$, with $a_i | a_{i+1}$ and $n \ge 3$. Let Z be the null ring with additive group $C_{a_4} \bigoplus C_{a_5} \bigoplus \cdots \bigoplus C_{a_n}$. Let x_1, x_2 be generators for the free ring $R_F(a_2, a_3)$, and let J be the ideal of R_F generated by $a_1x_1x_2$. Then it is easily seen that the ring $(R_F/J) \bigoplus Z$ is a nonnull zero-square ring with additive group isomorphic to G. This proves the sufficiency of (i).

The equivalency of the two conditions in (ii) can be verified straightforwardly. To prove the sufficiency of (ii), assume that $G = C_{a_1} \bigoplus C_{a_2}$ where a_1 and a_2 satisfy the conditions of (ii). In view of Theorem 3.4 we need to prove that if $R_F(a_1, a_2)$ is generated by x_1, x_2 , then the ideal J generated by $x_1x_2 - bx_2$ does not contain x_1x_2 , where b is defined in (ii). Assume to the contrary that $x_1x_2 \in J$. Then for some $y \in R_F$ and some integer c,

$$x_1x_2 = c(x_1x_2 - bx_2) + y(x_1x_2 - bx_2)$$
.

Since $y(x_1x_2 - bx_2)$ contains no term in x_2 , we must have $cbx_2 = 0$. This means $a_2 | bc$. The remaining way an x_1x_2 term can appear is for $y = dx_1$. Thus we get

$$x_{1}x_{2} = (c - bd)x_{1}x_{2}$$
 .

We therefore have $(a_1, c - bd) = 1$, since the order of x_1x_2 in $R_F(a_1, a_2)$ is a_1 . This implies $(a_1b, bc - b^2d) = b$. We have just proved $a_2 | bc$, and from $a_2 | b(a_1, b)$ we get $a_2 | a_1b$ and $a_2 | b^2$. Thus $a_2 | (a_1b, bc - b^2d)$, or $a_2 | b$, contradicting $0 < b < a_2$. This proves the sufficiency of (ii).

If G has one generator, then R is clearly null. Hence to prove necessity, we need to show that if R is generated by x_1, x_2 of orders a_1, a_2 with $a_1|a_2$ and $R^2 \neq 0$, then a_1 and a_2 satisfy the conditions in (ii). Let

$$x_1x_2 = b_1x_1 + b_2x_2$$

in R. Without loss of generality it may be assumed that $0 \leq b_1 < a_1$, $0 \leq b_2 < a_2$.

Assume first that $b_2 = 0$. Then $x_1x_2 = b_1x_1$, so $0 = x_1x_2^2 = b_1x_1x_2 = b_1^2x_1$; hence $a_1 | b_1^2$. If a_1 is divisible by a square > 1, we have satisfied one of the conditions. Otherwise $b_1 = 0$ since $b_1 < a_1$. In this case R is null, a contradiction.

Now consider the remaining case $x_1x_2 = b_1x_1 + b_2x_2$, $b_2 \neq 0$. Let c be the order of x_1x_2 . Then from $0 = cx_1x_2 = cb_1x_1 + cb_2x_2$, we get $0 = cb_1x_1 = cb_2x_2$, so $a_2 \mid cb_2$. Moreover, $0 = x_1^2x_2 = b_2x_1x_2$ gives $c \mid b_2$. Thus $a_2 \mid b_2^2$. But $a_1x_1x_2 = a_1b_2x_2$ gives $a_2 \mid a_1b_2$. Then from $a_2 \mid b_2^2$ and $a_2 \mid a_1b_2$ we deduce $a_2 \mid b_2(a_1, b_2)$. Since $b_2 \neq 0$, we can take $b = b_2$. This completes the proof.

COROLLARY 4.3. There exists a nonnull finite zero-square ring of order r if and only if r is divisible by a cube.

COROLLARY 4.4. The smallest nonnull zero-square ring has order 8.

A simple direct proof of Corollary 4.4 is given in [2], (see also Th. 5.7.) It can be shown that there are exactly two nonisomorphic nonnull zero-square rings of order 8. One of these is $R_F(2, 2)$.

5. Additive group structure of finite zero-square rings. In this section we extend Theorem 4.2 by considering conditions on G which make $f(G) \ge n$ for n > 2. Theorem 5.5 gives some necessary conditions, while Theorem 5.6 provides a converse.

R will denote a finite zero-square ring and R_+ its additive group, while *G* denotes a finite abelian group and G_2 its Sylow 2-subgroup. Let x_1, x_2, \dots, x_n be a fixed standard set of ring generators of *R*. Let *x* denote the element $x_1x_2 \dots x_n$ and $\overline{x_i}$ the element $x_1x_2 \dots x_{i-1}x_{i+1} \dots x_n$. More generally, if $y = x_{i_1}x_{i_2} \dots x_{i_m}$, $i_1 < i_2 < \dots < i_m$, then \overline{y} denotes the element $x_{j_1}x_{j_2} \dots x_{j_{n-m}}$, $j_1 < j_2 < \dots < j_{n-m}$, such that the *i*'s and *j*'s include all the integers $1, 2, \dots, n$. When n > 2 note that $y\overline{y} = x$. If $x \neq 0$, we call *m* the *length* of *y*, denoted by |y|. Note $|y| + |\overline{y}| = n$. If $z \in R$, then c(z) denotes the additive order of *z*.

LEMMA 5.1. Every symmetric matrix of odd order over GF(2) with 0's on the main diagonal is singular.

The proof is a straightforward application of the definition of the determinant and will be omitted.

LEMMA 5.2. If a matrix E has the form

$$E = egin{pmatrix} E_1 & & 0 \ & E_2 & & \ & & \ddots & \ & & \ddots & \ & & & E_t \end{pmatrix}$$
 ,

where the E_k are square matrices and some E_j is singular, then E is singular.

Proof. This is a special case of the well-known result det $E = (\det E_i) \cdots (\det E_t)$.

The next theorem reduces the problem of evaluating f(G) to the case where G is a 2-group.

THEOREM 5.3. If G is a finite abelian group and $f(G) \ge 3$, then $f(G) = f(G_2)$.

Proof. Let R be a finite zero-square ring with $R^n \neq 0, n \geq 3$. By anti-commutativity the elements R' of R whose additive order is a power of two form a subring. If $z_i \in R, 1 \leq i \leq n$, such that $z_1 z_2 \cdots z_n \neq 0$, where $c(z_i) = a_i 2^{b_i}, a_i$ odd, then $a_i z_i \in R'$ and

$$(a_1z_1)(a_2z_2)\cdots(a_nz_n)\neq 0$$

since $2z_1z_2 \cdots z_n = 0$. Hence $(R')^n \neq 0$, so $f(G_2) \geq f(G)$.

Conversely, assume $\mathbb{R}^n \neq 0$ and \mathbb{R}_+ is a 2-group. If G is a finite abelian group with $G_2 \cong \mathbb{R}_+$, write $G = G_2 \bigoplus H$, and let S be the null ring with $S_+ \cong H$. Then $(\mathbb{R} \bigoplus S)_+ \cong G$ and $(\mathbb{R} \bigoplus S)^n \neq 0$, so that $f(G_2) \leq f(G)$. Thus $f(G) = f(G_2)$ and the theorem is proved.

We can now assume in what follows that the additive group R_+ of R is a 2-group.

LEMMA 5.4. Let R be a finite zero-square ring (with R_+ a 2-group) with $n \ge 3$ elements x_1, \dots, x_n satisfying $x = x_1 \dots x_n \neq 0$.

(i) There exists a standard set of group generators for R_+ containing every special monomial y_j in the x_i of length $3 \leq |y_j| \leq n-2$.

(ii) The group generated by those y_j satisfying $1 \leq |y_j| \leq n-2$ is generated irredundantly by them (though not necessarily standardly).

(iii) If we assume x_1, \dots, x_n is a standard set of ring generators for the ring R' they generate, then there exists a standard set of group generators for R'_+ containing every special monomial y_j in the x_i satisfying $|y_j| = 1$ or $3 \leq |y_j| \leq n-2$.

Proof. (i) If G is a finite abelian p-group and $t_1, \dots, t_s \in G$, then t_1, \dots, t_s extend to a standard set of group generators for G if and only if the following two condition are satisfied:

(1) For any integers a_1, \dots, a_s ,

$$\sum\limits_{i=1}^{s}a_{i}t_{i}=pz$$
 \Rightarrow $p\sum\limits_{i=1}^{s}b_{i}t_{i}=pz$,

for some integers b_1, \dots, b_s .

(2) For any integers a_1, \dots, a_s ,

$$\sum\limits_{i=1}^{s}a_{i}t_{i}=0$$
 \Rightarrow $a_{i}t_{i}=0$, all i .

To prove (1) in our case, assume

(3)
$$\sum_{3 \leq |y_i| \leq n-2} a_i y_i = 2z$$
.

Since $2y_i = 0$ when $|y_i| \ge 3$, we can take $a_i = 0$ or 1. Let y_j be a special monomial of minimal length satisfying $a_j = 1$. Then from (3) we get

$$x = \overline{y_j} \sum_{3 \leq |y_i| \leq n-2} a_i y_i = 2(\overline{y_j}z) = 0$$
 ,

since $\overline{y_j}z \in R^s$ when $|y_j| \leq n-2$. This contradicts $x \neq 0$ and proves (1). To prove (2), assume

(4)
$$\sum_{3 \le |y_i| \le n-2} a_i y_i = 0$$
,

where at least one $a_i y_i \neq 0$. As in (1), let y_j be of minimal length such that $a_j y_j \neq 0$. Multiplying (4) by \overline{y}_j gives the contradiction x = 0, and completes the proof of (i).

(ii) We need to prove that

(5)
$$\sum_{1 \le |y_i| \le n-2} a_i y_i = 0 \Longrightarrow a_i = 2b_i \text{ all } i.$$

Letting y_i be of minimal length such that $a_i \neq 2b_i$ for any integer b_i , an argument similar to those used in (i) leads to a contradiction.

(iii) We must show (1) and (2) hold, where the t_i 's are the y_j 's satisfying $|y_j| = 1$ or $3 \leq |y_j| \leq n-2$, and p=2. The proof of (1) is similar to the proof of (5). To prove (2), assume that

$$\sum\limits_{i=1}^{n}a_{i}x_{i}+\sum\limits_{_{3\leq|}y_{j}|\leq n-2}b_{j}y_{j}=0$$
 .

By (1), each $b_j y_j = 0$. It follows that each $a_i x_i = 0$ since x, \dots, x_n is a standard set of ring generators. This completes the proof of the lemma.

We can now give necessary conditions for $f(G) \ge n \ge 4$.

THEOREM 5.5. Let G be a finite abelian 2-group.

(i) If $f(G) \ge n \ge 4$, then the dimension of G is at least $2^n - 2[(n+2)/2]$, i.e., every generating set of G has at least $2^n - 2[(n+2)/2]$ elements. (Brackets denote the integer part.)

(ii) If $f(G) \ge n \ge 4$, then at least $2^n - n(n+1)/2 - 2[(n+2)/2]$ generators in a standard set of generators for G have order 2.

Proof. (i) Suppose R is a zero-square ring with $R^n \neq 0$ and $R_+ \cong G$, and that $x_1 x_2 \cdots x_n \neq 0$ in $R(n \ge 4)$. Let R' be the subring

of R generated by x_1, x_2, \dots, x_n . Since dim $R'_+ \leq \dim R_+$, it suffices to show dim $R'_+ \geq 2^n - 2[(n+2)/2]$. By Lemma 5.4 (ii), dim R'_+ is equal to at least the number of special monomials y_i in the indeterminates x_1, \dots, x_n satisfying $1 \leq |y_i| \leq n-2$. The number of such special monomials is $\binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-2} = 2^n - n - 2$. Hence to complete the proof of (i) we need only to prove that when n is odd, we cannot have dim $R'_+ = 2^n - n - 2$.

Assume that n is odd and R'_+ has $2^n - n - 2$ generators, $R'^n \neq 0$. By Lemma 5.4 there is a standard set of group generators for R'_+ containing (1) x_1, \dots, x_n , (2) all special monomials y_j in the x_i satisfying $3 \leq |y_j| \leq n-2$, and (3) a standard set of generators $y'_1, \dots, y'_m \left(m = \binom{n}{2}\right)$ for the group generated by all y_j of length 2. Since this accounts for $2^n - n - 2$ generators, these in fact generate all of R'_+ . In particular the special monomials $\overline{x_1}, \dots, \overline{x_n}$ of length n - 1 can be written as

(6)
$$\overline{x}_j = \sum_{1 \leq |y_i| \leq n-2} b_{ij} y_i$$
, $j = 1, \dots, n$,

where b_{ij} is an integer. (This representation may not be unique since the y_i 's of length 2 need not be standard generators.)

We show that b_{ij} is even. Let y_k be a term appearing on the right side of (6) whose coefficient b_{kj} is odd, such that no y_i of smaller length has an odd coefficient. Then we get $0 = \bar{x}_j \bar{y}_k = b_{kj} y_k \bar{y}_k = x$, a contradiction, so every b_{ij} is even. In particular, the terms $b_{ij}y_i$ with $|y_i| \geq 3$ vanish since $2R'^3 = 0$. If we re-express \bar{x}_j as a linear combination of the standard generators given above, then the terms $b_{ij}y_i$ with $|y_i| = 1$ remain the same. Since $2\bar{x}_j = 0$ when n > 3, we have $b_{ij} = 1/2 c(y_i)$ or $b_{ij} = 0$ whenever $|y_i| = 1$. (This is where the argument fails for n = 3.) Hence we can rewrite (6) as

(7)
$$\overline{x}_j = 2a_j + \sum_{i=1}^n h_{ij} \left(\frac{1}{2} c(x_i)\right) x_i$$
,

where

$$2 z_j = \sum\limits_{|y_i|=2} b_{ij} y_i$$
 ,

and where $h_{ij} = 0$ or 1.

We claim that the matrix $H = (h_{ij})$ over GF(2) is nonsingular. If H were singular, then if we regard $1/2 c(x_j)x_j$ as indeterminates over GF(2), we can eliminate them from (7) and get a relation of the form

$$\sum\limits_{i=1}^n r_i(\overline{x_i}+2z_i)=0$$
 ,

where some $r_j = 1$. But then

$$x = x_j \sum_{i=1}^n r_i(\overline{x_i} + 2z_i) = x_j \cdot 0 = 0$$
 ,

a contradiction. Hence H is nonsingular.

Therefore we can solve (7) for the *n* unknowns $1/2 c(x_j)x_j$ over GF(2) to get

$$(8) \qquad \frac{1}{2} c(x_j) x_j = 2 \sum_{i=1}^n e_{ij} z_i + \sum_{i=1}^n e_{ij} \overline{x_i} , \qquad j = 1, \cdots, n ,$$

where each $e_{ij} = 0$ or 1. If *E* denotes the matrix (e_{ij}) over GF(2), then $E = H^{-1}$, so *E* is nonsingular.

We will now reach a contradiction by showing that E is singular. We first show $e_{jj} = 0$. We have

$$0 = rac{1}{2} c(x_j) x_j^2 = 2 \sum_{i=1}^n e_{ij} z_i x_j + \sum_{i=1}^n e_{ij} \overline{x_i} x_j = e_{jj} x \; .$$

Since $x \neq 0$, $e_{jj} = 0$.

Define s_1, s_2, \dots, s_t by

$$egin{aligned} c(x_1) &= c(x_2) = \cdots = c(x_{s_1}) \ &< c(x_{s_1+1}) = c(x_{s_1+2}) = \cdots = c(x_{s_2}) \ &< \cdots < c(x_{s_{s_{s-1}+1}}) = \cdots = c(x_{s_t}) \ , \end{aligned}$$

where $s_t = n$. Let E_k be the square submatrix of E defined by $E_k = (e_{ij}), s_{k-1} + 1 \leq i, j \leq s_k$, for $k = 1, 2, \dots, t$. (Here s_0 is taken to be 0.) We show that each E_k is symmetric. Assume $e_{ij} = 1$ for some $s_{k-1} + 1 \leq i, j \leq s_k$. Then from (8) we get $1/2 c(x_i) x_i x_j = x$, so $1/2 c(x_j) x_i x_j \neq 0$. But $1/2 c(x_j) = 1/2 c(x_i)$, as $s_{k-1} + 1 \leq i, j \leq s_k$. Hence $1/2 c(x_i) x_i x_j \neq 0$. From (8) we again get $0 \neq 1/2 c(x_i) x_i x_j = e_{ji} x$, so $e_{ji} = 1$. This proves that E_k is symmetric. Moreover, E_k has 0's on the main diagonal since each $e_{jj} = 0$.

We now show that if for some k we have $i \leq s_k, j > s_k$, then $e_{ij} = 0$. As in the previous paragraph we have

(9)
$$\frac{1}{2}c(x_j)x_ix_j = e_{ij}x$$
.

Since $i \leq s_k$, $j > s_k$ we have $c(x_i) < c(x_j)$. Therefore $1/2 c(x_i)x_ix_j \neq 0$. But from (4), $1/2 c(x_i)x_ix_j = e_{ji}x$, so $c(x_i)x_ix_j = 2e_{ji}x = 0$ (since 2x = 0). But $c(x_i) < c(x_j)$ implies $c(x_i) \leq 1/2 c(x_j)$, so $1/2 c(x_j)x_ix_j = 0$. Comparing with (9) shows $e_{ij} = 0$, as asserted.

This shows that E has the form given in Lemma 5.2. Since the

sum of the orders of the E_j must be the order of E, some E_k has odd order. Then by Lemma 5.1 E_k is singular, so by Lemma 5.2 E is singular, a contradiction. This completes the proof of (i).

(ii) Using the notation of part (i), it follows from $2R^{r_3} = 0$ that every special monomial y_i satisfying $3 \leq |y_i| \leq n-2$ has order 2. There are $\binom{n}{3} + \binom{n}{4} + \cdots + \binom{n}{n-2} = 2^n - n(n+1)/2 - (n+2)$ such y_i , and by Lemma 5.4 they extend to a standard set of group generators for R_+ . Moreover, we have just shown that when n is odd, there is at least one y_j with $|y_j| = n-1$ which cannot be expressed in the form $y_j = \sum_{1 \leq |y_j| \leq n-2} s_i y_i$. Exactly as in the proof of Lemma 5.4 it follows that the set of all y_i satisfying $3 \leq |y_i| \leq n-2$, along with y_j , extend to a standard set of group generators for R_+ . Thus we have found $2^n - n(n+1)/2 - 2[(n+2)/2]$ generators of order 2, proving (ii) and completing the proof of the theorem.

The following theorem shows that the results of the previous theorem are best possible.

THEOREM 5.6. Let $n \ge 4$ be an integer.

(i) Given any integer $N \ge 2^n - 2[(n+2)/2]$, there exists a finite abelian 2-group G of dimension N, such that f(G) = n.

(ii) Given any integer $M \ge 2^n - n(n+1)/2 - 2[(n+2)/2]$, there exists a finite abelian 2-group G with precisely M generators of order 2 (in a standard set of generators), such that f(G) = n.

Proof. Clearly to prove both (i) and (ii) it suffices to construct a finite zero-square ring R with $R^n \neq 0$ $(n \ge 4)$, such that R_+ has precisely $N = 2^n - 2[(n+2)/2]$ standard group generators, with precisely $M = 2^n - n(n+1)/2 - 2[(n+2)/2]$, of these generators of order 2. Let $m = \lfloor n/2 \rfloor$ and let $R_F(a_1 = 8, a_2 = 8, \dots, a_n = 8)$ be a free ring with generators x_1, \dots, x_n (as defined in §3). If n is even let J be the ideal generated by $\{\overline{x}_1 - 4x_2, \overline{x}_2 - 4x_1, \overline{x}_3 - 4x_4, \overline{x}_4 - 4x_3, \dots, \overline{x}_{n-1} - 4x_n, \overline{x}_n - 4x_{n-1}\},\$ while if n is odd let J be generated by $\{\bar{x}_1 - 4x_2, \bar{x}_2 - 4x_1, \cdots, \}$ $\overline{x}_{n-2} - 4x_{n-1}, \overline{x}_{n-1} - 4x_{n-2}$. Let $R = R_F/J$. Then R is generated by the images of all y_i satisfying $1 \leq |y_i| \leq n-2$ when n is even; with the additional generator \bar{x}_n when *n* is odd. This gives a total of $2^n - 2[(n+2)/2]$ generators, as desired. Moreover, when n is even, a standard set of group generators for R_+ has n+1 elements of order 8, $2m^2 - m - 1$ elements of order 4, and exactly M elements of order 2. When n is odd, there are n+1 elements of order 8, $2m^2 + m - 1$ elements of order 4, and exactly M elements of order 2. Hence it remains to prove that the image of x in R_F/J is not 0, i.e., that $x \notin J$. We treat only the case when n is even; the case n odd is almost exactly the same.

Assume $x \in J$. Then

$$egin{aligned} &x=z_1(\overline{x}_1-4x_2)+z_2(\overline{x}_2-4x_1)+\cdots+z_n(\overline{x}_n-4x_{n-1})\ &+b_1(\overline{x}_1-4x_2)+b_2(\overline{x}_2-4x_1)+\cdots+b_n(\overline{x}_n-4x_{n-1}) \ , \end{aligned}$$

where $z_i \in R_F$, $b_i = 0$ or 1. Hence we need at least one $z_j = x_j$, say $z_1 = x_1$. We then also get the term $-4x_1x_2$, which can only be cancelled by $z_2 = x_2$, giving another $-4x_1x_2$. But this also gives another x, and x + x = 0. Hence $x \notin J$, and the theorem is proved.

REMARK. The proofs of Theorems 5.5 and 5.6 are not valid for n = 3, basically because from $|y_i| = n - 1$ we cannot deduce $2y_i = 0$. If Theorem 5.5 (i) were false for n = 3, then there would be a 2-group G with three generators such that f(G) = 3. Although this seems highly unlikely, the question remains open. Clearly G cannot have less than three generators. Note that Theorem 5.5 (ii) is trivially satisfied for n = 3. Finally, Theorem 5.6 is easy to verify for n = 3 (though in part (ii) we of course must have $M \ge 0$).

It is considerably simpler to get results on the *order* of zero-square rings satisfying $R^n \neq 0$.

THEOREM 5.7. Assume n > 2. Then there exists a zero-square ring of order r satisfying $\mathbb{R}^n \neq 0$ if and only if $2^{2^{n-1}} | r$.

Proof. Assume $R^n \neq 0$. We know from the proof of Theorem 5.3 that there are elements x_1, \dots, x_n in the Sylow 2-subgroup R_2 of R_+ such that $x_1 \dots x_n \neq 0$. Let $y_1, y_2, \dots, y_{2^{n-1}}$ be the special monomials in the x_i . Claim that the $2^{2^{n-1}}$ elements of the form $\sum_{i=1}^{2^n-1} b_i y_i, b_i = 0$ or 1, are all distinct, otherwise we would have a relation of the form

$$\sum b_i y_i = 0$$
 ,

with at least one $b_i = 1$. Let y_j be a special monomial of shortest length such that $b_j = 1$. Then multiplying (6) by \bar{y}_j gives x = 0, a contradiction. Hence R_2 has order at least $2^{2^{n-1}}$, so that $2^{2^{n-1}}||R_2|$. Hence $2^{2^{n-1}}|r$.

Conversely, if $2^{2^{n-1}} \cdot s = r$, then we take R_+ to be $C_2^{2^{n-1}} \bigoplus C_s$. If we impose the free ring $R_F(2, 2, \dots, 2)$ on $C_2^{2^{n-1}}$ and the null ring on C_s , then $R^n \neq 0$.

Finally we have the result of [3].

COROLLARY 5.8. The smallest zero-square ring R satisfying $R^n \neq 0$, n > 1, has order $2^{2^{n-1}}$.

RICHARD P. STANLEY

References

1. A. Abian and W. A. McWorter, On the index of nilpotency of some nil algebras, Boll. Un. Mat. Ital. (3) **18** (1963), 252-255.

2. L. Carlitz, Solution to E 1665, Amer. Math. Monthly 72 (1965), 80.

3. G. A. Heuer, Two undergraduate projects, Amer. Math. Monthly 72 (1965), 945.

Received September 9, 1968. This paper was written for the 1965 Bell prize at the California Institute of Technology, under the guidance of Professor Richard A. Dean.

California Institute of Technology Harvard University