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Abstract. Kontsevich conjectured that the number of zeros over the field Fq of a certain polyno-
mial QG associated with the spanning trees of a graph G is a polynomial function of q. We show
the connection between this conjecture, the Matrix-Tree Theorem, and orthogonal geometry. We
verify the conjecture in certain cases, such as the complete graph, and discuss some modifications
and extensions.
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1. Introduction

Let G be a (finite) graph with vertex set V �G� � fv1� � � � �vng and edge set E�G� �
fe1� � � � �esg. For now we allow loops (edges from a vertex to itself) and multiple edges.
For each edge e of G, associate an indeterminate xe. If S� E�G�, let

xS � ∏
e�S

xe�

Let T be a spanning tree of G and let T � denote the (edge) complement of T . Define
polynomials PG�x� and QG�x� in the variables x � �xe�e�E�G� by

PG�x� � ∑
T

xT

QG�x� � ∑
T

xT � (1.1)

where both sums range over all spanning trees T of G. For instance, if G is a four-cycle
with edge set f1� 2� 3� 4g, then

PG�x� � x1 � x2� x3 � x4

QG�x� � x1x2x3 � x1x2x4 � x1x3x4 � x2x3x4�
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Note that if G is not connected, then PG�x� � QG�x� � 0. Note also that for any G, we
have

QG�x� �

�
∏

e�E�G�

xe

�
PG�1�x�� (1.2)

where PG�1�x� denotes the result of substituting 1�xe for xe in PG�x� (for all e).
Let q be a prime power, and let fG�q� �respectively, gG�q�� denote the number of

ways of substituting elements of the finite field Fq for the variables xe so that PG�x� �� 0
(respectively, QG�x� �� 0). For instance, if G is a four-cycle as above and we want
PG�x� �� 0, then x1� x2� x3 can be arbitrary; then there are q� 1 choices for x4. Hence,
fG�q� � q3�q� 1�. If we want QG�x� �� 0, then it takes a little more work to see that
gG�q� � q�q�1��q2�2�. More generally, if Cn denotes an n-cycle, then it is not hard
to check (as was done in the case of gCn�q� by J. Stembridge) that

fCn�q� � qn�1�q�1�

gCn�q� � n�q�1�n�1��q�1�n� �q�1�n�1��q�1�n�2

� � � ����1�n�1�q�1��

Note that if G is not connected, then fG�q� � gG�q� � 0, since PG�x� � QG�x� � 0.
In a lecture delivered at the Rutgers University Gelfand Seminar on December 8,

1997, M. Kontsevich stated the conjecture, in connection with the evaluation of certain
integrals appearing in perturbative quantum field theory, that fG�q� is a “universal poly-
nomial” in q, i.e., a polynomial in q independent of the characteristic p of the field F q .
We have been unable to resolve Kontsevich’s conjecture, but in Sections 4 and 5 we
present evidence in its favor while in Section 6 we present evidence against it. Let us
mention that John Stembridge [9] has verified that gG�q� is a polynomial for all graphs
with at most twelve edges.

2. Some General Observations

Given the graph G, let S be a subset of E�G�. Define fG�S�q� �respectively, f�G�S�q��
to be the number of ways of substituting elements of Fq for the variables xe such that
xe � 0 if e � S (respectively, if and only if e � S) so that PG�x� �� 0. Similarly, define
gG�S�q� and g�

G�S�q� using QG�x�. In particular, fG� /0�q� � fG�q� and gG� /0�q� � gG�q�.
Now,

fG�S�q� � ∑
T�S

f�G�T �q�

gG�S�q� � ∑
T�S

g�G�T �q��

Hence, by the Principle of Inclusion-Exclusion, we have

f�G�S�q� � ∑
T�S

��1�#�T�S� fG�T �q�

g�G�S�q� � ∑
T�S

��1�#�T�S�gG�T �q��
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Now, note that gG�S�q� � gH�q�, where H is the spanning subgraph of G with edge set
E�G��S. Similarly, if S is acyclic (contains no cycle), then fG�S�q� � fK�q� where K
denotes G with the edges in S contracted to points. On the other hand, if S contains a
cycle, then fG�S�q� � 0. Finally, observe from Equation (1.2) that for any graph H we
have

f�H� /0�q� � g�H� /0�q��

From these observations we obtain the following result.

Proposition 2.1. Let n� 1. Then fG�q� is a universal polynomial in q for all graphs G
on at most n vertices if and only if the same is true for gG�q�.

From now on we will deal only with QG�x� and gG�q�. Note also that if G� denotes
G with either one new loop added to a vertex or one edge replaced by two edges, then

gG��q� � q �gG�q��

Hence it suffices to assume from now on that G is simple, i.e., has no loops or multiple
edges.

John Stembridge has pointed out that a minimal counterexample to Kontsevich’s
conjecture must have edge-connectivity at least three, i.e, the graph cannot be discon-
nected by the removal of two edges. Indeed, suppose there are two edges e and e � whose
removal disconnects G, leaving the disjoint union of G1 and G2. Let G� denote the graph
obtained from G by contracting e, and let G�� be obtained by further contracting e�. Then
it is easy to check that

gG�q� � q �gG1�q�gG2�q���q�2�gG��q���q�1�gG���q��

As a final remark, recall that by the rationality of the zeta function of an algebraic
variety over a finite field (due to Dwork [5]), for a fixed prime power q, there exist
algebraic integers α1� � � � �αr and β1� � � � �βs such that for all m� 1,

gG�q
m� � ∑αm

i �∑βm
j �

Since the αi’s and β j’s are algebraic integers, it is easy to deduce the following conse-
quence.

Proposition 2.2. If gG�q� is a polynomial in q with rational coefficients, then in fact
gG�q� has integer coefficients.

3. The Matrix–Tree Theorem and Nonsingular Symmetric Matrices

The fundamental tool for our results is the Matrix–Tree Theorem. This result was stated
by J. J. Sylvester in 1857. The first proof was published by C. W. Borchardt in 1860
(though G. Kirchhoff actually proved the theorem in a dual form in 1847). The Matrix–
Tree Theorem is often attributed to A. Cayley because he cited Sylvester’s work in
1856 before it was published. For an exposition of the Matrix–Tree Theorem and more
precise references, see Chapter 5.6 and the Notes to Chapter 5 of [8]. Let G be a graph
without loops or multiple edges on the vertex set fv1� � � � �vng, and as above associate
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the indeterminate xe with every edge e of G. Let L � L�G� � �Li j�
n
1 be the n�n matrix

defined by

Li j �

����
���
�xe� if i �� j and e has vertices vi and v j�

0� if i �� j and there is no edge with vertices vi and v j�

∑e xe� if i � j and e ranges over all edges incident to vi.

Let L0 � L0�G� denote L with the last row and column removed. We call L the
generic Laplacian matrix of G, and L0 the reduced generic Laplacian matrix of G.

Theorem 3.1. (The Matrix–Tree Theorem) We have

QG�x� � detL0�G��

Corollary 3.2. Let L0 be the reduced generic Laplacian matrix of the connected graph
G. Then gG�q� is the number of solutions to detL0 �� 0 over Fq .

We say that a vertex v of the simple graph G is an apex if v is incident to every other
vertex of G. For graphs with apexes, Corollary 3.2 has the following variant.

Theorem 3.3. Let G be a simple graph with vertices v1� � � � �vn such that vn is an apex.
Then gG�q� is equal to the number of �n�1�� �n�1� nonsingular symmetric matrices
M over Fq such that Mi j � 0 whenever i �� j and G has no edge between vi and v j.

Proof. Let ei be the unique edge of G with vertices vi and vn, for 1 � i � n� 1. The
�i� i�-entry �L0�ii of the reduced generic Laplacian matrix L0 has the form xei� other
terms, and nowhere else does xei appear in L0. Hence, we can replace �L0�ii with xei

without affecting the set of q#E matrices we obtain from L0 by letting the xe’s assume
all possible values in Fq . Similarly we do not affect this set by changing the signs of
the off-diagonal entries. But then L0 becomes a symmetric matrix L�0 whose entries are
generic except that �L�0�i j � 0 whenever i �� j and G has no edge between vi and v j, and
the proof follows.

4. The Complete Graph

Theorem 3.3 allows us to evaluate gG�q� explicitly for certain graphs G. We first con-
sider the complete graph Kn, with n vertices and one edge between every pair of dis-
tinct vertices. Hence, by Theorem 3.3, gKn�q� is just the total number of nonsingular
�n� 1�� �n� 1� symmetric matrices over Fq . This number was first computed for q
odd by L. Carlitz [2, Theorem 3] as part of a much more general result. A simpler proof
valid for any q was later given by J. MacWilliams [6, Theorem 2]. We will sketch the
proof of MacWilliams and a second proof based on orthogonal geometry over F q , since
both proofs will lead to generalizations.

Theorem 4.1. We have

gKn�q� �

�
qm�m�1��q�1��q3�1� � � ��q2m�1�1�� n � 2m�

qm�m�1��q�1��q3�1� � � ��q2m�1�1�� n � 2m�1�
(4.1)
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First Proof. (J. MacWilliams) It is more convenient to consider gKn�1�q� rather than
gKn�q�, so that we are enumerating n� n invertible symmetric matrices over Fq . Let
h�n� r� denote the number of n�n symmetric matrices M over Fq of rank r. We claim
that

h�n� r� �

�����
����

s

∏
i�1

q2i

q2i�1
�

2s�1

∏
i�0

�
qn�i�1

�
� 0� r � 2s� n�

s

∏
i�1

q2i

q2i�1
�

2s

∏
i�0

�
qn�i�1

�
� 0� r � 2s�1� n�

(4.2)

An �n�1�� �n�1� symmetric matrix may be written as

N �

	
β y
yt M



�

where M is an n�n symmetric matrix, β � Fq , and y � F n
q . Elementary linear algebra

arguments (given explicitly in [6]) show that from a particular M of rank r we obtain:

� qn�1�qr�1 matrices N of rank r�2,
� �q�1�qr matrices N of rank r�1,
� qr matrices N of rank r,
� no matrices of other ranks.

There follows the recurrence

h�n�1� r� � qrh�n� r���q�1�qr�1h�n� r�1���qn�1�qr�1�h�n� r�2�� (4.3)

One can check that the solution to this recurrence satisfying the initial conditions h�n� 0�
� 1 and h�n� r� � 0 for r � n is given by (4.2). The proof follows from the case r � n.

Second Proof.
Case 1. q odd. Let Sym��n� q� �respectively, Sym��n� q�� denote the set of all
n� n nonsingular symmetric matrices over Fq whose determinant is a square (respec-
tively, a nonsquare) in Fq . Let Ω��n� q� denote the group of all matrices A � GL�n� q�
satisfying AAt � I. (We will be dealing with various groups closely related to the or-
thogonal groups O�n� q�. We will use the notation Ω rather than O to make clear that
our groups are related but in general are not equal to the usual orthogonal groups.)
By standard results concerning orthogonal geometry over a finite field (implicit in
[4]), the map f : GL�n� q� 	 Sym��n� q� defined by f �A� � AAt is surjective, and
f�1�AAt� � A �Ω��n� q�, the left coset of Ω��n� q� in GL�n� q� containing A. Hence,
all fibers f�1�B� have cardinality #Ω��n� q�, so

#Sym��n� q� �
#GL�n� q�
#Ω��n� q�

�

Similarly, let α be a fixed nonsquare in Fq , and let Ω��n� q� denote the group of all ma-
trices A�GL�n� q� satisfying ADAt � D, where D� diag�α� 1� 1� � � � �1�. Then the map
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f : GL�n� q�	 Sym��n� q� defined by f �A� � ADAt is surjective, and f�1�ADAt� �
A �Ω��n� q�. Hence, all fibers f�1�B� have cardinality #Ω��n� q�, so

#Sym��n� q� �
#GL�n� q�
#Ω��n� q�

�

Since Sym�n� q� � Sym��n� q�
S

Sym��n� q�, there follows

#Sym�n� q� �
#GL�n� q�
#Ω��n� q�

�
#GL�n� q�
#Ω��n� q�

� (4.4)

The order of GL�n� q� is well known and easily seen to be

#GL�n� q� � �qn�1��qn�q� � � ��qn�qn�1��

Moreover, the orders of Ω��n� q� and Ω��n� q� were computed by Dickson [4, Theorem
172] as follows:

#Ω��n� q� �

���������
��������

2qm�m�1��qm�1�
m�1

∏
i�1

�q2i�1�� n � 2m� q
 1 �mod 4��

2qm�m�1��qm� ��1�m�
m�1

∏
i�1

�q2i�1�� n � 2m� q
 3 �mod 4��

2qm2
m

∏
i�1

�q2i�1�� n � 2m�1�

#Ω��n�q� �

���������
��������

2qm�m�1��qm �1�
m�1

∏
i�1

�q2i�1�� n � 2m� q
 1 �mod 4��

2qm�m�1��qm ���1�m�
m�1

∏
i�1

�q2i�1�� n � 2m� q
 3 �mod 4��

2qm2
m

∏
i�1

�q2i�1�� n � 2m�1�

Substituting these numbers into Equation (4.4) (after replacing n by n� 1) yields
(4.1) (when q is odd).

Case 2. q even. This case is analogous to the odd case, but the details are somewhat
different. When n is odd, it follows from [1, Theorem 7] that the map f : GL�n� q�	
Sym�n� q� defined by f �A� � AAt is surjective, with # f�1�AAt� � A �Ω�n� q� �where
Ω�n� q� � f�1�I��. Hence,

#Sym�n� q� �
#GL�n� q�
#Ω�n� q�

�

Dickson [4, p. 206] showed that

#Ω�2m�1� q� � qm2
m

∏
i�1

�q2i�1��
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so (4.1) follows in this case.
When n � 2m, let Sym��n� q� �respectively, Sym��n� q�� denote the set of n� n

nonsingular matrices over Fq with at least one nonzero entry on the main diagonal
(respectively, with all 0’s on the main diagonal). (When n is odd, we have Sym��n� q��
/0, since a symmetric matrix of odd order with zero diagonal over a field of characteristic
two is singular.) It was shown by Albert [1, Thm. 7] that the map f : GL�n�q� 	
Sym��n� q� defined by f �A� � AAt is surjective. Let E be the direct sum of m copies

of the matrix

	
0 1
1 0



. The map f : GL�n�q�	 Sym��n� q� defined by f �A� � AEAt is

surjective. If Ω��n� q� � f�1�I�, then f�1�AEAt� � A �Ω��n� q�. Hence reasoning as
before gives

#Sym�n� q� �
#GL�n� q�
#Ω��n� q�

�
#GL�n� q�
#Ω��n� q�

�

It follows from the work of Dickson [4, Chapter VIII] that

#Ω��2m� q� � qm2
m�1

∏
i�1

�q2i�1��

#Ω��2m� q� � qm2
m

∏
i�1

�q2i�1��

from which we obtain (4.1) in this final case.

Note that the first proof of Theorem 4.1 makes it clear from the start that gKn�q� is a
polynomial, while in the second proof (especially when n is even), it appears somewhat
miraculous that the computations in odd and even characteristics lead to the same final
answer. The fact that the two cases yield the same answer boils down to the identity

1
2

�
1

qm�1
�

1
qm �1

�
�

1
qm �

1
qm�q2m�1�

�

5. Some Generalizations of the Complete Graph

The two proofs we gave for Theorem 4.1 can be extended to more general results. For
the first generalization, let G be an n-vertex graph (without loops or multiple edges).
Let L0 denote the reduced generic Laplacian matrix of G, with respect to some vertex
v indexing the last row and column of L. Write h�G� r� for the number of ways of
evaluating L0 over Fq (i.e., the number of ways to substitute elements of Fq for the
variables appearing in L0) such that a matrix of rank r is obtained. Thus, if v is an apex
of G, then by Theorem 3.3, we have h�G� n�1� � gG�q�.

Theorem 5.1. Let G be an n-vertex graph with an apex, and let G� denote G with an
apex adjoined (so G� has at least two apexes). Then

h�G��r� � qrh�G�r���q�1�qr�1h�G�r�1���qn�qr�1�h�G�r�2�� (5.1)
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Proof. The proof is essentially the same as the first proof of Theorem 4.1. Let the
vertices of G� be v1� � � � �vn�1, where v1 and vn�1 are apexes. Let ei denote the edge
from v1 to vi for 2� i� n�1, and write xi for xei . We then have

L0�G
�� �

	
β y
yt L0�G�



�

where y � ��x2� � � � �xn� and β � x2 � � � �� xn � xn�1. Since xn�1 appears in L0�G��
only in the entry β, we may replace β by xn�1 without affecting the set of matrices we
obtain from L0�G�� by letting the xe’s assume all possible values in Fq . Similarly, we
may replace y by �y. From a particular rank r evaluation of L0�G� over Fq , we can
apply the reasoning in the first proof of Theorem 4.1 to get the recurrence (5.1).

Theorem 5.1 provides a simple recursive procedure for computing gG�q� for a graph
with “few” missing edges (and hence many apexes). For instance, for n � k, let Kn�Kk

denote the complete graph Kn on the vertex set �n� � f1� 2 � � � �ng with all edges i j
removed where i� j � f1� 2� � � � �kg, i �� j. When k � n�1, L0�Kn�Kk� is just a generic
diagonal matrix, so we get

h�Kn�Kn�1� r� �

�
n�1

r

�
�q�1�r�

Hence, in principle, Theorem 5.1 can be used iteratively to compute h�Kn � Kk� r�
for any n� k� r. In particular, it follows that gKn�Kk �q� � Z�q�, verifying Kontsevich’s
conjecture in this case. When k � 1, we have Kn�K1 � Kn, which was dealt with in
Theorem 4.1. When k � 2, we have Kn �K2 � Kn� e, the complete graph Kn with
one edge removed. We compute gKn�e�q� by another method in Theorem 5.4 (the case
s � 1). For 3 � k � 5, we use Theorem 5.1 to produce the following conjecture. One
could easily extend this conjecture to other small values of k, but what would be more
interesting is a conjecture for general n and k.

Conjecture 5.2. We have

gK2m�K3�q� � qm�m�1��q�1��q3�1� � � ��q2m�5�1�

��q4m�3�4q2m�4�3q2m�5�q2m�6�1�� m� 2�

gK2m�1�K3�q� � qm2�m�3�q�1��q3�1� � � ��q2m�3�1�

��q2m�1�3q�2�� m� 2�

gK2m�K4�q� � qm�m�1��q�1��q3�1� � � ��q2m�5�1�

��q4m�10�7q2m�6�8q2m�7�3q2m�8�1�� m� 3�

gK2m�1�K4�q� � qm2�m�4�q�1��q3�1� � � ��q2m�5�1�

��q4m�6�8q2m�3�9q2m�4�4q2m�5�q2m�6�4q�3��

m� 2�
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gK2m�K5�q� � qm�m�1��q�1��q3�1� � � ��q2m�7�1�

��q6m�19�16q4m�14�25q4m�15� 16q4m�16�5q4m�17�q4m�18

�q2m�6�11q2m�8�15q2m�9�6q2m�10�1�� m� 3�

gK2m�1�K5�q� � qm2�m�5�q�1��q3�1� � � ��q2m�5�1�

��q4m�9�15q2m�5�24q2m�6�15q2m�7�4q2m�8

�5q�4�� m� 3�

To prove this conjecture for a particular value of k, one could try to guess a formula
for h�Kn�Kk� r� and then verify that it satisfies the recurrence (5.1) (with appropriate
initial conditions).

For our second generalization of Theorem 4.1, we need to consider the inequivalent
nondegenerate symmetric scalar products on the space F n

q . Standard results in orthog-
onal geometry over Fq (essentially equivalent to the results used in the second proof
of Theorem 4.1) show that there are two such scalar products when q is odd. They are
defined as follows, where a � �a1� � � � �an�, b � �b1� � � � �bn� � F

n
q :

ha� bi� � abt � ∑aibi (5.2)

ha� bi� � aDbt � αa1b1 �
n

∑
i�2

aibi�

Here, D and α have the same meaning as in the second proof of Theorem 4.1, so, in
particular, α is a nonsquare in Fq .

Similarly, if n is odd, then all nondegenerate symmetric scalar products are equiva-
lent to (5.2) when q is even. When n � 2m, we have (5.2) together with

ha� bi� � aEbt �
m

∑
i�1

�a2i�1b2i �a2ib2i�1��

where E is defined in the second proof of Theorem 4.1.
Now, suppose G is a graph with vertex set fv1� � � � �vn�1g such that vn�1 is an apex.

Let b�G�q� �respectively, b�G�q�� denote the number of ordered bases �u1� � � � �un� of F n
q

such that
hui� u ji� � 0 (respectively, hui� u ji� � 0)�

whenever i �� j and i j �� E�G�. Such an ordered basis forms the rows of a matrix
A � GL�n�q� such that �AHAt�i j � 0 whenever i �� j and i j �� E�G�, where H � I� D,
or E depending on which of the scalar products we are considering. It follows that the
second proof of Theorem 4.1 extends mutatis mutandis to give the following result.

Theorem 5.3. Let G be as above. If q is odd or if q is even and n is even, then

gG�q� �
b�G�q�

#Ω��n� q�
�

b�G�q�

#Ω��n� q�
�
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If q is even and n is odd, then

gG�q� �
b�G�q�

#Ω�n� q�
�

As an example of the use of Theorem 5.3, let K1�s denote the star consisting of
one vertex connected to s other vertices, and let G � Kn�1�K1�s for n � s�1. In other
words, G consists of Kn�1 with s edges removed which are incident to a common vertex.
In particular, Kn�1 �K1�1 � Kn�1�K2, the special case k � 2 of Kn�Kk considered
above (with n replaced by n�1).

Theorem 5.4. We have

gK2m�1�K1� s�q� � qm2�m�s�1�q�1��q3�1� � � ��q2m�3�1�

��q2m�qs�q�1�� s� 2m�3� (5.3)

gK2m�K1� s�q� � qm�m�1��q�1��q3�1� � � ��q2m�3�1�

��q2m�1�s�1�� s� 2m�2� (5.4)

Proof. According to Theorem 5.3, we need to count the number of ordered bases
�u1� � � � �un� of F n

q satisfying

hu1� u2i� � � � �� hu1� us�1i� � 0�

as well as the number of ordered bases �u1� � � � �un� of F n
q satisfying

hu1� u2i� � � � �� hu1� us�1i� � 0

(except that when q is even and n is odd, we only have one type of scalar product). Let
u�1 denote the set of all vectors orthogonal to u1, with respect to whatever scalar product
is under consideration. We always have dimu�1 � n� 1. Once we have chosen u1, if
u1 �� u�1 , then there are �qn�1 � 1��qn�1 � q� � � � �qn�1 � qs�1� choices for u2� � � � �us�1,
and then �qn � qs�1� � � � �qn � qn�1� choices for us�2� � � � �un. On the other hand, if
u1 � u�1 , then there are �qn�1�q��qn�1�q2� � � � �qn�1�qs� choices for u2� � � � �us�1, and
then �qn� qs�1� � � � �qn� qn�1� choices for us�2� � � � �un as before. Hence, to complete
the computation, we need to know the number N��n� of u1 for which u1 � u�1 , i.e,
hu1� u1i� � 0. When q is even, it is easy to compute N��n�; when n is odd, this number
appears, e.g. in [4, Theorems 65 and 66] and [10, Theorems 1.26 and 1.37]. The values
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are

N��n� � N�n� � qn�1� q odd and n odd�

N��n� � qn�1 �q
n
2 �q

n
2�1� either q is odd and n
 0 (mod 4),

or q
 1 (mod 4) and n
 2 (mod 4)�

N��n� � qn�1�q
n
2 �q

n
2�1� either q is odd and n
 2 (mod 4),

or q
 1 (mod 4) and n
 0 (mod 4)�

N��n� � qn�1�q
n
2 �q

n
2�1� either q is odd and n
 0 (mod 4),

or q
 1 (mod 4) and n
 2 (mod 4)�

N��n� � qn�1 �q
n
2 �q

n
2�1� either q is odd and n
 2 (mod 4),

or q
 1 (mod 4) and n
 0 (mod 4)�

N�n� � qn�1� q even and n odd�

N��n� � qn�1� q even and n even�

N��n� � qn� q even and n even�

It is now a routine computation (which we omit) to obtain the stated formulas (5.3) and
(5.4).

6. Some Related Negative Results

In Theorem 3.3, we showed that the Kontsevich conjecture for graphs with apexes is
equivalent to counting nonsingular symmetric matrices over Fq with specified “holes”
(entries equal to 0), with no holes on the main diagonal. A related problem that comes
to mind is the case of arbitrary matrices, rather than symmetric matrices. Thus, let S be
any subset of �n�� �n�, and let hS�q� denote the number of matrices A�GL�n�q� whose
support is contained in S, i.e., Ai j � 0 whenever �i� j� �� S. For instance,

h�n���n��q� � #GL�n�q� � �qn�1��qn�q� � � ��qn�qn�1��

Question. Is the function hS�q� always a polynomial in q?

According to Kontsevich (private communication), a negative answer follows from
the existence of the Fano plane F (the projective plane of order two, with three points
on a line and seven points in all). We have not been able to understand this remark
of Kontsevich. However, if we take n � 7 and let S � �7�� �7� be the support of the
incidence matrix of F (so #S � 21), then Stembridge has shown that hS�q� is not a
polynomial. More precisely,

hS�q� �

���������
��������

q21�q20�q19�14q18�7q17 �176q16�8q15�1860q14

�5603q13�8880q12�9010q11�6110q10�2603q9

�428q8�248q7�208q6�72q5�13q4�q3� q odd�

q21�q20�q19�14q18�7q17 �175q16�21q15�1938q14

�5889q13�9595q12�10297q11�7826q10�4319q9

�1715q8�467q7�78q6�6q5� q even�



362 R. Stanley

Moreover, Stembridge has also verified that S is the smallest counterexample to the
polynomiality of hT �q�, in the sense that hT �q� is a polynomial whenever #T � 21 or
whenever n� 7, except when T can be transformed to S by row and column permuta-
tions.

Now, let S be a symmetric subset of �n�� �n�, i.e., �i� j� � S � � j� i� � S. Define
kS�q� to be the number of invertible n�n symmetric matrices over Fq whose support is
contained in S. Suppose T is a subset of �n�� �n� for which hT �q� is not a polynomial.
(The discussion above shows that we can take n � 7.) Let A be an n�n matrix over Fq .
Then A is counted by hT �q� if and only if the 2n�2n matrix

B �

	
0 A
At 0




is a nonsingular symmetric matrix with support contained in

S � f�i� j�n�� � j�n� i� : �i� j� � Tg � �2n�� �2n��

Hence, kS�q� is not a polynomial. Unfortunately, all the main diagonal elements of

examples of the form

	
0 A
At 0



are holes, so we cannot use Theorem 3.3 to deduce that

we have a counterexample to Kontsevich’s conjecture.
As pointed out by Stembridge, there are even simpler examples of symmetric sets

S � �n�� �n� for which kS�q� is not a polynomial. Any symmetric matrix of odd order
n with 0’s on the main diagonal over a field of characteristic 2 is singular. Hence, for
n odd, we can choose S to be any subset of �n�� �n� that includes no element of the
form �i� i� and contains at least one transversal (i.e., a subset �i� w�i�� where w is a
permutation of �n�). (This last condition is equivalent to kS�q� �� 0 for some q.) Then
kS�q� � 0 for q � 2m, but kS�q� �� 0 for some q, so kS�q� is not a polynomial. Since
the prime 2 plays such a special role in this example, perhaps the function hS�q� or
kS�q� is a polynomial in q for odd q. A good place to look for a counterexample to this
suggestion would be when S is the support of a projective plane of odd order, but even
for the plane of order 3, we are unable to compute hS�q�.

There are various natural generalizations of Kontsevich’s conjecture. For instance,
the spanning trees of a connected graph G form the bases of the graphic matroid asso-
ciated with G (see, e.g., [3, 1.3.B]). Thus, if M is any matroid on the set fe1� � � � �esg,
then define in complete analogy to (1.1)

QM�x� � ∑
B

xB�

where B ranges over all bases of M. Let gM�q� denote the number of ways of substitut-
ing elements of Fq for the variables of QM�x� such that QM�x� �� 0. We can generalize
Kontsevich’s conjecture by asking whether gM�q� is always a polynomial function of q.
There are, however, very simple counterexamples. For instance, if M is the four-point
line so that

QM�x� � x1x2 � x1x3 � x2x3 � x1x4 � x2x4 � x3x4�
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then it can be shown that

gM�q� �

����
���

q�q�1��q2�1�� q
 1 �mod 3��

q�q�1��q2�1�� q
 2 �mod 3��

q3�q�1�� q
 0 �mod 3��

Matroid theorists will notice that the four-point line is not a regular (or unimodular)
matroid, but every graphic matroid is regular. Hence, it is natural to ask whether gM�q�
might be a polynomial for regular matroids M. However, Stembridge has shown that,
for the regular matroid M called R10 in Oxley’s book [7], gM�q� is not a polynomial.

Although for the four-point line gM�q� is not a polynomial, note that it is a quasipoly-
nomial, i.e., for some N � 0 (here, N � 3), it is a polynomial on the different residue
classes modulo N. Thus, it might be interesting to consider for which matroids M �or
for even more general varieties than the zeros of QM�x�� is gM�q� a quasipolynomial. In
particular, if Kontsevich’s conjecture is false, is it at least true that gG�q� is a quasipoly-
nomial?
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