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1. Introduction 

We shall investigate a certain class of  finite lattices which we call supersolvable 

lattices (for a reason to be made clear shortly). These lattices L have a number of  
interesting combinatorial properties connected with the counting of  chains in L, 
which can be formulated in terms of  Mtibius functions. I am grateful to the referee 
for his helpful suggestions, which have led to more general results with simpler proofs. 

1.1. D E F I N I T I O N .  Let L be a finite lattice and A a maximal chain of  L. If, for 
every chain K of L, the sublattice generated by K and A is distributive, then we call 
A an M-chain of L;  and we call (L, A) a supersolvable lattice (or SS-lattice). 

Sometimes, by abuse of notation, we refer to L itself as an SS-lattice, the M-chain 
A being tacitly assumed. 

A wide variety of  examples of  SS-lattices is given in the next section. In this 
section, we define two fundamental concepts associated with SS-lattices, viz., the 
rank-selected M6bius invariant and the set o f  Jordan-Holder permutations. We shall 
outline their connection with each other, together with some consequences. Proofs 
will be given in later sections. 

I f  L is an SS-lattice whose M-chain A has length n (or cardinality n + I), then 
every maximal chain K of L has length n since all maximal chains of  the distributive 
lattice generated by A and K have the same length. Hence if 6 denotes the bot tom 
element and i the top element of  L, then L has defined on it a unique rank function 
r : L ~  {0, 1, 2, ... n} satisfying r (6 )=0 ,  r ( 1 )= n ,  r (y ) ' - - r (x )+ 1 i f y  covers x (i.e., y > x  
and no z ~ L  satisfies y > z > x ) .  Let S be any subset o f  the set n -  1, where we use the 
notation 

k = { 1 , 2  .... ,k} .  

We will also write S =  {m~, m2, ..., ms} < to signify that m, <m2 < .-- <ms. Define =(S) 
to be the number of  chains 

0 = Y o  < Y l  < ' . . <  ys < T 

in L such that r (y~) = m~, i =  1, 2 . . . . .  s. In particular, if S = {m}, then ~ (S) is the number 
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of  elements of  L of  rank m; while if S = n - 1 ,  then a(S) is the number of  maximal 
chains in L. Also, a(~b)= 1. Now define 

fl(S)= E (-1) Is-rla(T), 
TC_S 

so by the Principle of  Inclusion-Exclusion, 

(s)  = 2 ( r ) .  
T=_S 

Our main object is to investigate the numbers fl(S) when L is an SS-Iattice. It will be 
seen that these numbers have many remarkable" properties. First, we consider an 
alternative interpretation of  fl(S). 

I f  S _ n - 1 ,  define L(S )  to be the sub-ordered set of L consisting of  8, 1, and all 
elements of  L whose ranks belong to S. Thus, L(q~) is a two-element chain, and 
L ( n -  1) =L .  It follows from a basic result on M6bius functions due to Philip Hall [11] 
(see also [15, p. 346]) that 

t) = ( -  1) "+I p (s) ,  (1) 

where/l  s is the M/Sbius function of  L(S)  and s =  ISI. For this reason, we call fl(S) the 
rank-selected MSbius in variant o f L. 

Somewhat more generally, if Ix, y] is a segment in L of  length m (i.e., r ( y ) -  
r(x)=rn) and if S _ m - 1 ,  then we denote by flxy(S) the rank-selected M/Sbius 
invariant of  the segment Ix, y] ,  considered as a lattice in its own right. 

In order to define the second fundamental concept associated with SS-lattices, we 
first review some properties of finite distributive lattices. If P is a partially ordered set, 
then an order ideal of P is a subset I of  P such that if x ~ l  and y <<. x, then y eL  Recall 
the structure theorem of Birkhoff [1, p. 59"] that every'finite distributive lattice L is 
isomorphic to the set of order ideals of  some finite partially ordered set P, ordered 
by inclusion. This correspondence is denoted L = J(P) .  If 1is an element of L of rank 
m, then as an order ideal of P, I has cardinality m. Every maximal chain ~b =Io  <11 < 
�9 . . < I n = P  in L corresponds to an order-compatible permutation a = ( x  1, x2 .. . . .  x,)  
of  the elements x, of  P, i.e., i f x < y  in P, then x appears before y in a. This correspon- 
dence is determined by the condition 

x, eli+ I -- I i. 

Now let A :~b = I o < I~ < . . .  < In = P  be any fixed maximal chain in L, and let J cover 
I in L (so I J - I I  = 1). Then there is a unique integer ien  such that the prime interval 
[I, J ]  is projective to the prime interval [ I  i_ t, I J .  We denote this integer i as ~ (I, J) .  
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It is easily seen that i is determined by the condition 

J - -  I = I t -  I t_ t .  

This fact is essentially the well-known Jordan-HSlder correspondence for finite 
distributive lattices. 

Suppose now that l<J  in L. Define the subset F(I, J) of n by the condition 

F ( l , J ) = { i l x , ~ J - I } .  

Hence, IF(L J)l=lJ-11. If I=q5 (the bottom element of L), then F(L J) is denoted 
simply F(J), so F(I, J)=F(J)-F(1).  Note that if J covers / ,  then y(/,  J )  is the 
unique element of F(I, J). 

Suppose that 
r K:I = I o  < I~ < . . . <  I "  = J 

is an unrefinable chain between 1 and J. Define the Jordan-Hiilder permutation (or 
J-Hpermutation) rcr:F(L J )~  F(L J) associated with K (relative to A) by 

= (Zo, r,) ,  r . . . ,  r ( r _ , ,  

Now let (L, A) be an SS-lattice, with x<y in L. The set F(x, y) is still defined, 
viz., F(x, y) is computed in the distributive lattice generated by A and the chain x<y. 
Similarly, we still have the notion of y (x, y) (when y covers x) and of  the J-H permu- 
tation zr K : F (x, y) ~ F (x, y), where K is an unrefinable chain between x and y. The 
set of all J-H permutations ~rx, including repetitions, as K ranges over all unrefinable 
chains between x and y, is called the J-H set of (L, A ; x, y) and is denoted Jxy(L,  A) 
(or agxy for short). If x = 0  and y = i ,  then the corresponding J-H set is called the J-H 
set of (L,A) and is denoted simply J ( L ,  A) or just J .  

Figure 1, for example, shows an SS-lattice (L, A)(actually the lattice of subgroups 
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of an abelian 2-group of type (2,2)), with the M-chain A indicated by open dots. In 
Figure l(a), each element x e L  is marked by the largest element o fF (x ) ;  in Figure l(b), 
the numbers 7 (x, y) are indicated. From Figure 1 (b), we read off the J-H set J (L, A): 

1 2 3 4  
I 3 2 4 
1 3 2 4  
1 3 4 2  
1 3 4 2  
3 4 1 2 
3 1 2 4  
3 1 4 2  
3 1 4 2 
3 4 1 2  
3 1 2 4  
3 1 4 2  
3 1 4 2  
3 4 1 2  
3 4 1 2  

If  n = (i 1, i 2, ..., i,,) is a permutation of some finite subset of the integers, then a 
pair i j >  t)+ 1 is called a descent of n, and the set 

m(~z) = {j: i] > ij+l} 

is called the descent set of n. The fundamental result connecting the J-H set Jxy(L,  A) 
with the rank-selected M6bius function flxy(S) of the segment [x, y] is the following: 

1.2 THEOREM. Let (L, A) be an SS-lattice, and let [x, y] be a segment of  L of 
length m. l f  S~_m-1 ,  then the number of permutations 7c in the J-H set J~y(L, A) with 
descent set D(rc )=S  is equal to flxy(S) 

The proof of Theorem 1.2 is given in Section 3. It was proved in [16, Thm 9.1] 
when L is a distributive lattice ( under a different terminology). The present paper is 
a result of extending the lattice-theoretical portions of [16] as far as possible. 

By way of illustration, we list the descent sets of the 15 elements of the J-H set 
J (L, A) of the SS-lattice (L, A) in Figure 1. 

1 2 3 4  
1 3 2 4 2 
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1 3 2 4 2 
1 3 4 2 3 
1 3 4 2 3 
3 4 1 2 2 
3 1 2 4 I 
3 1 4 2 1,3 
3 1 4 2 1,3 
3 4 1 2 2 
3 I 2 4 1 
3 1 4 2 1,3 
3 1 4 2 1,3 
3 4 1 2 2 
3 4 1 2 2 

Hence/~(~b)= 1, ~(1)=2, /~(2)=6,  
Using the interpretation (1) of/~ 

to Theorem 1.2. 

fl(3)=2,/~(1, 3)=4,  and all other f l (S)=O. 
(S), we immediately get two interesting corollaries 

1.3 COROLLARY. Let (L, A) be an SS-lattice with x < y  in L. Then there is a 
unique unrefinable chain 

t ! t 

X = X O < X l < ' " < X m ~ y  

between x and y such that 

? (x~,, ~;) < v(xl, x;) < . . .<  r (x;_~, x ' ) .  

1.4 COROLLARY. Let (L, A) be an SS-lattice with x < y in L, with r ( y ) - r ( x ) =  
= m. Then the number of  unrefinable chains 

I ! I 

X ~ X  0 <~X 1 < ' " <  X m ~ y  

between x and y satisfying 

~, (x~,, x l )  > y (xl,  x~) > . . .  > +, (x '_ , ,  ~; )  

is equal to ( -  1) = I~(X, y), where # is the Mi~bius function o f  L. [] 
Let Axy denote the unique chain between x and y given by Corollary 1.3. It is not 

hard to see that Axy is an M-chain of I-x, y] (this will be done in Section 3), so in fact 
(Ix,  Y'l, A~,y) is an SS-lattice. Hence there is no loss of generality in restricting our 
attention to ]3 rather than to/~y. 

From Theorem 1.2, we immediately see that 

/ ~ , ( s )  >i o. (2) 
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Using the M0bius-theoretic interpretation (1) of/~, (2) may be restated as follows: 

1.5 COROLLARY. Let (L, A) be an SS-lattice of  rank n, and let S ~ n - 1 .  Then 
the M6bius function tz s of  the rank-selected subset L(S)  of  L alternates in sign, i.e., i f  
[x, y] is a segment of  L (S )  of  length k, then 

0. [] 

Theorem 1.2 is a powerful tool for studying properties of/~(S), e.g., we trivially 
have (2). Observe also that the collection of descent sets (including repetitions) of 
the elements of J (L, A) depend only on L and not on the M-chain A, since the same 
is obviously true of fl(S). A further result which will be given in Section 3 is: 

(a) I f / ~ ( S ) > 0  and T_S ,  then/~(T) > 0 (Proposition 3.3). 
SS-lattices L which are also upper semimodular enjoy a number of properties not 

shared by general SS-lattices. Some of these are: 
(b) When L is an upper semimodular SS-lattice (USS-Iattice, for short), a neces- 

sary and sufficient condition for/~(S) > 0 is given in terms of the existence of Loewy 
chains (i.e., chains Yo <Yl < " "  <Ys for which every yj, 1 <<,j<~s, is the join of atoms of 
the segment [Y j - l ,  Yj]) in L (Theorem 5.2). 

(c) The Birkhoffpolynomial (also called the characteristic polynomial) of a USS- 
lattice L has positive integral roots related to the structure of L (Theorem 4.1). 

(d) For a special class of USS-lattices, B (S) is divisible by a large power of an 
integer q (Section 6). This gives a lattice-theoretical generalization of some well-known 
results in the enumerative theory of p-groups. 

In addition to the lattice-theoretical results mentioned above, our work also has 
applications to the combinatorial theory of permutations. The problem of analyzing 
permutations by their descents has received considerable attention (see, e.g., 19], 
[16]), and here we introduce a new and more general point of view. 

2. Examples 

The next proposition will make it easy to give a wide variety of examples of SS- 
lattices. First, we recall some lattice-theoretical results. These results were discovered 
mostly in the 1930s by Garrett Birkhoff, L. R. Wilcox, R. P. Dilworth, and others 
(see ['1]). If  x and y belong to a lattice L, we say that (x, y) is a modular pair (written 
xMy) if, for all z ~<y, we have z v (x ̂  y) = (z v x) n y. In general, the relation of being 
a modular pair is not symmetric. In fact, Wilcox [18] showed that the relation of 
being a modular pair is symmetric if and only if L is upper semimodular. We say that 
x is a modular element of the lattice L if and only i f xMy  and yMx for all y~L. If every 
element of L is modular, then L is a modular lattice. 
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2.1 PROPOSITION. Let  L be a finite lattice and d a max imal  chain o f  L such that 

every element o f  A is modular. Then A is an M-chain o f  L. 
Proof. The p roof  is essentially the same as Birkhoff's proof  of the less general result 

that a modular lattice generated by two chains is distributive (see [1, pp. 65-66"1). 
We will merely point out why Birkhoff's proof  applies to our more general result. 

The only point of  Birkhoff's proof  which invokes modularity is in establishing the 
identities 

(a~ A bD v . . .  v (a, A b,) = a~ A (bl  v az) A . . .  A (b ,_ t  v a,) A b,;  (3) 
(bl v a l )  ^ . - - ^  (b, v a,) = bl v (a l  ^ b2) , , . . . v  (a,_1 ^ b,) v a , ,  (4) 

when a~>~a~+l and b~<~b~+ 1 in a modular lattice. We show that these identities still 
hold, however, if one only assumes that the a~'s are modular, from which the proof of 
Proposition 2.1 follows. 

We first prove (4) by induction on r. Set A = ( b l  v a 0 A " - A  (b, var) .  Now bl 
(b 2 v a2) ^ . . -  A (b, v a,). Hence since a l M ( b  2 v a2) ^ - . .  ^ (b, v a,), we have 

A = bl  v [a~ A (bs v a D  A . . .  A (b,  v a r ) ] .  

By induction, 

A = bx v [ a l  A {b2 v (a 2 A b3) v - . . v  (a,_x A b,) v a , } ] .  

Now a , ~ a  1. Hence since b2 v (a s A b3) v . . .  v (a,_ I A b D M a  D we have 

A = bl v [ a  I A {b2 v (a z A ba) v . . . v  (a,_~ A b , ) } ]  v a,. 

Now (a s A b3) v ... v (a,_ I A b,)<<,a 1. Hence since b2Mal ,  we have 

A = b  I v ( a  1 ^ b 2 )  v (a 2A b3) v ' " v  (a ,_ ,  A b , ) v a , .  

This proves (4). 
We cannot just dualize (4) to prove (3), since the property of  being a modular 

element is not self-dual. Instead, setting B = (a 1 A b 1) v--- v (a, ^ b,), we have (a z v b 2) v 
�9 .. v (a, Abr)<~a I and b lMal ,  so 

B = a I ^ [b 1 v (a2 ^ bs) v . . .  v (a~ ^ b,)].  

Nowb  1 v (as ^ b 2 ) v  . "  v (at-1 Ab,-1)<~b,  anda ,  Mb, ,  so 

B = a  1 ^ [ b l v ( a 2 A b 2 )  v . . . v ( a r _  1 ^ b , _  D v a , ] A  b,. 
By (4), 

B = a ,  ^ (b, v as)  a (bs v a3) ^ . . . a  ( b , _ ,  v at)  ^ b,. 

This proves (3), and with it, the proposition. [ ]  
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The converse to Proposition 2.1 is false in general. For  instance, take L to be the 
lattice of  subsets of  {a, b, c} ordered by inclusion except that the relation {a} = {a, b} 
is excluded. Let A be the chain q~ < {c} < {b, c} < {a, b, c}. Then A is an M-chain, but 
{a} M {b, c} is false. We have, however, the following partial converse. 

2.2 PROPOSITION. Let (L, A) be an SS-lattice. I f  x~A and y~L, then xMy. 
Proof. Let z<<.y. Since the sublattice generated by A, y, and z is distributive, a 

fortiori so is the sublattice generated by x, y, and z. Hence, xMy. [] 
The converse to Proposition 2.2 is also false: take L to be the 5-element non- 

modular lattice and A to be the maximal chain of length 3. 
Since the relation xMy is symmetric in an upper semimodular lattice, we deduce 

from Propositions 2.1 and 2.2, the following corollary. 

2.3 COROLLARY.  Let L be a finite upper semimodular lattice, and let A be a 
maximal chain of L. Then A is an M-chain if and only i f  every element of  A is modular. 

We are now in a position to give numerous examples of SS-lattices. 

2.4 Example. If L is a finite modular lattice and A is any maximal chain of L, 
then trivially (L, A) is an SS-lattice. 

2.5 Example. Let G be a supersolvable finite group and L(G) its lattice of sub- 
groups. Now every normal subgroup of any group G is a modular element of its lattice 
of subgroups [-1, p. 172]. Hence since G is supersolvable, L(G) contains a maximal 
chain of normal subgroups (corresponding to a chief series of G). Hence L(G) is 
an SS-lattice, and every chief series of G is an M-chain (there may be other M-chains). 
Since it is the supersolvability of G which implies the existence of an M-chain in L(G), 
this explains our terminology 'supersolvable lattice'. 

Observe that from Corollary 1.5 (with S = n - 1 ) ,  we deduce the following interes- 
ting result: the Mrbius function of the lattice of subgroups of  a finite supersolvable 
group alternates in sign. 

2.6 Example. Let 17 n denote the lattice of partitions of an n-set S [-1, p. 95]. It is 
not difficult to see that a partition n of S is a modular element of/-/n if and only if at 
most one block of  zc has more than one element. From this it follows tha t /7 ,  is an 
SS-lattice with exactly n!/2 M-chains (n> 1). These M-chains are permuted among 
themselves transitively by the automorphisms of /7 , .  

The next two examples generalize the previous example. 

2.7 Example. A finite graph whose lattice of contractions [,15, Section 9] is an 
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SS-lattice will be called an SS-graph. The next proposition (whose proof  we omit) 
gives a characterization of SS-graphs. The case of complete graphs corresponds to 
the lattices H ,  of  the previous example. 

2.8 PROPOSITION.  Let G be a finite graph. Then G is an SS-graph if  and only 
i f  the vertices of G can be labeled as v 1, v2, ..., v, such that whenever 1 <~ i <j  < k <~n and 
Vk is connected by an edge to both vi and v j, then vi and vj are connected by an edge. I f  
G is doubly-connected, then the number of M-chains in the lattice of contractions of G 
is equal to exactly half the number of such labelings (the labeling v 1, Vz ..... v, being 
paired with the labeling obtained by interchanging vl and v2). [] 

SS-graphs have been considered previously in different contexts under the name 
triangulated graphs or rigid circuit graphs. They are defined to be graphs for which 
every cycle of  length at least four contains a chord. 

2.9. Example. Let V be a projective space of rank n over GF(q). Let L be the 
lattice of  flats of  the geometry (in the sense of  Crapo-Rota  [5]) determined by all 
the vectors in V with one or two nonzero entries. Then L is a geometric lattice of  
rank n. These interesting lattices were discovered by Dowling [8-1, who derived their 
basic properties (see also Doubilet-Rota-Stanley [7, Section 5 (c)]). In particular, 
when q = 2 ,  we get the partition lattices/-/,§ For  any q, the boolean algebra gener- 
ated by the vectors in V which contain one nonzero entry consists of  modular ele- 
ments of  L. (There will be additional modular elements only if q = 2). Hence L is an 
SS-lattice, with n! M-chains when q>2 .  

2.10 Example. Let a l, az ... . .  a, be any sequence of positive integers with a 1 = 1. 
Let G be them geometry consisting of n independent points vl, v2,..., v,, with an 
additional a ~ -  1 points inserted on the line vxv~, i>  1. Then the lattice L of flats of G 
is an SS-lattice. L possesses an M-chain 0 = x o < x 1 <'. . .  < x, = 1 such that the number 
of  points contained in x~ but not in x~_ 1 is a~ ( i= 1, 2,... ,  n). The significance of this 
remark will become clear in Example 4.7. 

2.11 Example. Let 92 denote the set of  all partial orderings P on the set {1, 2, ..., n} 
satisfying i< j  in P ~  i<j  as integers. Define P~< Q in 92 if i<~j in P ~  i<~j in Q. Dean 
and Keller [6] showed that this order relation makes 92 into a lower semimodular 
lattice of  rank N =  (~). Let A be the maximal chain 6 = P o < P I < " "  < P N = I  of 92 
where P, is generated by the first i terms of the sequence 1 <n ,  1 < n -  1, 1 < n - 2 ,  ..., 
l < 2 , 2 < n ,  2 < n - 1 , . . . , 2 < 3 , 3 < n ,  3 < n - 1 , . . . , 3 < 4 , . . . , n - l < n .  Then A is an 
M-chain of  92, so (9l, A) is an SS-lattice. 

In all the above examples except for some cases of  Example 1.3, either the lattice 
E or its dual L* is upper semimodular. (It is clear that if (L, A) is an SS-lattice, then 
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so is (L*, A*).) Some special properties of supersolvable semimodular lattices will 
be discussed in Sections 4-6, and additional properties will be given in a later paper. 

3. Properties of SS-lattices 

We begin by proving Theorem 1.2, viz., that the number of permutations zc in the 
J-H set J : ,y  = ag~,y (L, A) (where [x, y] is a segment of length m in an SS-lattice (L, A)) 
with descent set D (re)= S c m - 1  is equal to fl~y (S). The proof is based on a simple 
lemma which is in fact a special case of Corollary 1.3 

3.1 LEMMA. Let (L, A) be a distributive SS-lattice, and let I < J  in L. Then there 
is a unique unrefinable chain 

I = d o < J  1 < . . . <  Jm = J 

in L between I and J such that 

rVo, Ji) < r(J1, J:) <-'-< (Jm-,, J,) .  (5) 

Proof. Let L = J ( P ) .  Suppose A is given by qb=Io<I i< . . .< l~=P.  Label the 
elements of P as xt, x2 .... , Xm SO that x i~ l i - - I i_  1. Suppose J - I = { x i o  xi2, ..., xim}, 
where il < i2 < ' --  < im. Then condition (5) requires that Jk = I u  {Xi,, Xi2 .. . .  , Xi~}. More- 
over, with this definition of dk, we indeed have that 3"o < J1 < " "  <Jm is an unrefinable 
chain between I and J, so the proof is complete. [] 

Proof of  Theorem 1.2. Let 6xy(S) be the number of permutations nsaCxy with 
descent set S. Thus we need to show that fl~y (S)= 3~y (S) for all S _  m - 1 .  

Let K be a maximal chain of the segment l-x, y], 

K:  x = Yo < Yl < " "  < Ym = Y, (6) 

with associated J-H permutation zc K. If  S =  {m 1, m2,..., ms} < _ m -  1, denote by K s 
the chain 

Ks: Ym, < Ym2 <""  < Ym," (7) 

We shall show that the correspondence K ~  K s is a bijection between maximal chains 
K of Ix, y] satisfying D (nK)-  S and chains Ks of L satisfying 

{ r ( z ) -  r (x) [  z~Ks}  = S .  (8) 

This will show that ~, 6,~y(T) is equal to the number of chains satisfying (8), i.e., 
T_=S 

2 (T) = (9) 
T - S  
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But (9) uniquely determines the 6x,(S)'s and is also the recursion satisfied by the 
fix, (S)'s. Hence it will follow that 6~, (S) = fl~, (S). 

We need to show that given a chain K' satisfying ( r ( z ) - r ( x ) [ z e K ' }  =S,  then 
there is a unique maximal chain K of Ix, y] satisfying (i) D ( ~ r ) - S ,  and (if) Ks = K'. 
Condition (if) is equivalent to: K' is a subchain of K. Thus if K' is given by (7) and 
K by (6), then condition (i) is equivalent to the conditions 

~(Y0, Yl) < ~(Yl, Y2) < " ' <  ~(Ym,-1, Y,,,), (10) 
~(Ym,, Ymt+l) < ]~ (Yml+l, Ymt+=) < ' " <  ]~ (Ym=-l, Ymz), 

(Y,,., Y,,s+l) < V (Y,,s+l, Y,,s+2) < ' " <  V (Y,,-i, Y,,)" 

Let L' be the distributive lattice generated by K'  u {x, y} and A. Then by Lemma 
3.1, there is a unique maximal chain K of L' satisfying (i) and (ii). K is also a maximal 
chain of Ix, y]  since every maximal chain of L' has the same length as A. If K~ were 
another maximal chain of L satisfying (i) and (ii), then since K'_~ K~ the distributive 
lattice generated by K i w {x, y} and A would contain the two chains K and K 1 satis- 
fying (i) and (ii). This contradicts Lemma 3.1, so the theorem is proved. [] 

We now clarify the relationship between the J-H sets of~, (L, A) (where x ~< y in L) 
and J (L, A). 

3.2 PROPOSITION. Let (L, A) be an SS-lattice, and let x<~y in L. Denote by 
L'  the segment Ix, y], considered as a lattiee in its own right. Let A '=Ax ,  be the unique 
maximal chain in L'  given by Corollary 1.3. Then 

(i) (L', A') is an SS-lattice. 
(if) Suppose A is given by 0 = Xo < Xx < ' "  < x,  = T and A' by x = yo < Yl <""  <yr. = Y. 

Let ~ refer to (L ,A)  and y' to (L',A').  Suppose y' covers x', where x' and y' lie in L'. 
I f  i=y  (x', y ' )  and j=~ '  (x', y'), then i and j satisfy 

i = ~ (x,_ l, x,) = ~ (Yi- l, Y j) 
J = ~' (Y j -  1, Yi)" 

(iii) I f  y '  covers x'  and y" covers x", where x', y', x", y" all lie in L', then 
~(x', y ' ) >  ~ (x", y") i f  and only i f  ~' (x', y ' )>~ '  (x", y"). 

Proof. (i) Let K' be a chain in L'. We need to prove that A' and K' generate a 
distributive lattice. Now K " = K ' u  (x, y} is also a chain, so d and K" generate a 
distributive lattice D. But A' is contained in the lattice generated by A and {x, y}. 
Hence A'~_ D, so the lattice generated by A' and K" is distributive. 

(if) That i=~(x~_l,  x~) and J=~'(Yj- I ,  Yi) is immediate from the definition of 
and ~'. Thus the prime intervals Ix', y ']  and [Yj-i, Y~] are projective in L'; hence 

they are projective in L. Since projectivity is transitive, [Y j - i ,  Y j] and [x~_ l, x J  are 
projective. Thus ~ (Yy-1, Y j) = i. 
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(iii) Follows immediately from (ii). [] 
The significance of Proposition 3.2(iii) is that it allows one to compute the J-H 

set J(L ' ,  A') once the 'relative' J-H set Jxy(L,  A) is known. For instance, a per- 
mutation (4, 8, 2, 6, 3) in J~,r(L, A) corresponds to a permutation (3, 5, 1, 4, 2) in 
:(L',  z'). 

We turn to an interesting property of the numbers ~ (S). 

3.3 PROPOSITION. Let (L, A) be an SS-lattice of  rank n, and let S _ n - 1 .  1_/" 
fl (S) > 0 and T~  S, then fl (T) > O. 

Proof. Suppose S =  {m 1, m2, ..., m~}< and fl(S)>0. Then there is a maximal chain 

K:O = Yo <Yl  < " ' < Y , = ' ~  

such that D (7rK) = S, where D (nK) is the descent set of the J-H permutation n r. For 
any i satisfying 1 <~i<~s, we have, by Corollary 1.3, a (unique) unrefinable chain 

Y,~,-1 = Y; < yl < " "  < y; = y,,, +, 

between Y,n,_ 1 and Ym,+ ~ (with the convention m o = O, ms+~ =n) satisfying 

Y(Y'o, Yl) < ~(Yl, Yl) < ' " <  ? (Y;-1, Y')" 

Hence the chain K'  given by 

t r ! 

O=Yo <Y~ <"'<Ym+-~ <Y~ <Yz <'"<Y,<Ym,+,+t < Ym,+~+2 < - . . <  y,  =T 

satisfies D(nr')=S-{m~},  so f l(S-{m,})>O. By a trivial inductive argument, 
f l ( T ) > 0 f o r a n y T ~ _ S .  [] 

The numbers fl (S) provide a means of giving 'q-analogues' and 'H-analogues' of 
certain well-known combinatorial numbers. For instance, let L be a direct product of 
chains of lengths n 1,n 2 .... ,n,,  so that L is a distributive lattice of rank n =  
nl+nz+. . .+n, .  If  S={m 1, m2,.'~., m s } < ~ n - 1 ,  then MacMahon [13, Sections 
167-168] has studied the relation between the numbers fl(S) and the theory of 
distribution of  objects. He uses the notation N(I~)x=fl(S), where 2 is the partition 
o f n  into parts nt, n2, ..., ns, and where S={#1, #1+#2, #1+#2+#3,-- . ,  # 1 + g 2 + " "  
+/~,-1 }. The p-analog of the lattice L (at least when p is prime) is the lattice of sub- 
groups of an abelian p-group of type (nl, n2,..., n,). Hence we get a p-analog of 
MacMahon's invariants N(g)x. Some properties of these numbers will be discussed 
in a subsequent paper. 

As a further example, if L is a boolean algebra of rank n and 0 ~< s ~< n -  1, then 
A, s=~  fl(S) is an Eulerian number [-14], where the sum is over all subsets of n - 1  
of cardinality n - s  (see 1"16, Section 13]) Hence if L is the lattice of subspaces of a 
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projective geometry of  dimension n over GF(q), we get a q-analog of  the Eulerian 
numbers. These q-Eulerian numbers differ from those of Carlitz [3]. In fact, Carlitz's 
q-Eulerian numbers A,s (q) can be defined as 

A,s (q) = Z fl (S) q~S, 
S 

where L is a boolean algebra of rank n, S ranges over all subsets of n -  1 of cardinality 
n - s ,  and ~ S is the sum of the elements of S. 

If  we take L=II,+ 1 (cf. Example 2.6), then ~ fl(S), where S ranges over all 
subsets of  n - 1  of cardinality n - s ,  is a '/-/-Eulerian number'. These numbers seem 
never to have been considered before and may be of further interest. 

4. The Birkhoffpolynomial 

In the remaining three sections of this paper, we will be largely concerned with 
upper-semimodular SS-lattices, or USS-lattices for short. Let L be a finite lattice 
with a rank function r, and let n be the rank of L. The Birkhoffpolynomialp (4) (also 
called the characteristic polynomial [5] or Poincar~ polynomial [4]) of L is defined by 

p (2) = Z (0, 
x ~ L  

where/~ denotes the Mtibius function of L. This concept is due to G. D. Birkhoff [2], 
though usually it is only defined for more restrictive classes of lattices. 

We shall show that the Birkhoff polynomial p (4) of  a USS-lattice L of rank n 
has nonnegative integral roots a t = 1, a2 .... , a, connected with the structure of L. In 
particular, l.t((3,'i)=(-1)"ala2...a,. This fact can be proved in a purely lattice- 
theoretic way by applying the 'factorization theorem' of Stanley [17] (in fact, the 
following theorem led to the discovery of the factorization theorem), but in the super- 
solvable case we can gain more insight into the structure of p(4)  by employing a 
different approach. Specifically, the coefficients of  p(4) are symmetric functions in 
the at's, and we shall attach a combinatorial meaning to each term of these symmetric 
functions. 

4.1 THEOREM.  Let (L, A) be a USS-lattice of rank n with A given by 8= 
=Xo <Xl <. . .<x,=' f ,  and let at be the number of atoms x of  L satisfying 7(0, x)=i  
(i.e., x<~xi but xzgxi-1). Then 

p ( 4 )  = ( 4  - a t ) ( 4  - ( 4  - a . ) .  

In particular, # (0, T) = ( -  1)"aiaz... an. 
Proof. Let x e L  with r(x)=m. By Corollary 1.4, ( - 1 )  m #(0, x) is equal to the 
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number of  chains 8=yo<yl<.. .<y'=x such that i:>i2>...>i', where i j=  
?(Ys-:, YJ)" Hence the coefficient of ~."-" in p(2) is equal to ( - 1 ) "  times the total 
number of chains 6=yo  <Y: < "'" <Y,, with ix >.i2 > ".. >i, ,  (where ij=?(yj-i, yj) as 
before). 

Fix a sequence n > i x > i 2 >- . .  > i,,/> 1. We prove by induction on m that: 
(A) The number of  chains 8=yo<yt<.'.<y,, satisfying r(y,,)=m and i j=  

?(Y/-1, Yj) ( j = l ,  2,.. . ,  m) i s  a,, a,....a,, . 
Assertion (A) is clearly true for m = 1, by definition of a v Assume true for m -  1. 

We thus have a~ai2...ai.,_~ chains O=yo<yl<...<y,,_ 1 with i~=y(yj_l, yj) 
(1 <<.j<<.m- 1), and it suffices to prove that there are precisely a~m elements y"  covering 
Y ' - :  such that i,,=y(y'-l, y'). Suppose y"  covers Y,,-1 and i'=y(y,,_ 1, y'). Then 
i" is the least element of the set F (y ' ) .  Applying Corollary 1.3 to the case x = 13, y = y ' ,  
it follows that there is a unique atom x'~L satisfying x'<~y" and ?(13, x')=i'. Con- 
versely, given any atom x'  satisfying ?(13, x')=i', then we can take y ' = x ' v y ' _  1. 
(This is where the assumption of  upper-semimodularity is needed.) Hence there is a 
one-to-one correspondence between the y " s  and the atoms x' of  L satisfying 
? (13, x ' ) =  i ' .  Since there are a~., such atoms, the proof  of (A) follows by induction. 

Thus the coefficient of 2 " - "  in p(2) is equal to (-1)m ~'~ ai, ai2...ai=, the sum 
being over all sequences n t> i 1 > i~ > . . -  > i" I> I, so p (2) = (2 - a~ ) (2 - a2)...  (2 - a,). [] 

Note that Theorem 4.1 shows that no matter what M-chain A we choose for L, 
the set of a~'s is uniquely determined; on the other hand, easy examples show that 
their order can vary (though trivially, a I = 1). 

We now give various examples which illustrate Theorem 4.1. 

4.2 Example. If  L is a boolean algebra of rank n, then each a~ = i sop (2) = (2 -1 ) " .  

4.3 Example. If  L is a projective geometry of rank n over GF(q), then a~= 
q' so p (2) = ( 2 - 1 )  ( 2 -  q)...  ( 2 -  q"-  ~). 

4.4 Example. Let L =/-/B + 1 with the M-chain of Example 2.6. Then a s = i so p (2) = 
( I - -  1) (2--2) . . .  (l--n). 

4.5 Example. Let L be Dowling's lattice of rank n over GF(q) (cf. Example 2.9). 
Let 0=Xo < x l  < ... <x,='l be the M-chain in L such that x~ contains all the vectors 
v generating L whose nonzero entries appear among the first coordinates of  v. Thus 
x~ contains i vectors with one nonzero entry and (~) ( q -  1) vectors with two nonzero 
entries. Hence 

a,= [ i + ( ~ ) ( q - 1 ) ] - [ i - l + ( i : l ) ( q - 1 ) ]  

= 1 + (i- I) (q- I). 
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Therefore p (2) = ( 2 - 1 )  ( 2 -  q) ( 2 -  2q + 1) ( 2 -  3q + 2)-.. ( 2 -  ( n -  1) q + n -  2), a result 
proved by Dowling by other means. 

4.6 Example. Let G be an SS-graph, as defined in Example 2.7. Let v~, v z, ..., v n 

be a labeling of the vertices of G in accordance with Proposition 2.8. Suppose v~ is 
connected to exactly at-1 vertices vj with j <  i. Then by Proposition 2.8, these vertices 
form a clique (complete subgraph), from which it follows that the chromatic poly- 
nomial of  G is given by 2 ( 2 - a l )  ( ) . -az) . . .  (2-an).  By [15, Section 9], the Birkhoff 
polynomial p(2)  of  the lattice of contractions of  G is ( 2 - a l ) ( 2 - a 2 ) . . . ( 2 - a n ) .  
Loosely speaking, an SS-graph is a graph whose chromatic polynomial can be 
'trivially' calculated. Note that a polynomial p (2) is the Birkhoff polynomial of the 
lattice of  contractions of some SS-graph if and only if the roots o f p  (2) are positive 
integers such that if a > 1 is a root, then a -  1 is a root. 

4.7 Example. In Example 2.10, a geometric SS-lattice was constructed with an 
M-chain 8 = X o < X l < . - .  < x n = l ,  such that exactly ai atoms x satisfy ~,(6, x)=i ,  for 
any set al, az .... , an of positive integers with a 1 = 1. Hence p (2)= ( 2 - a  1) (2 -a2 ) . . .  
( 2 -  an). It follows that a polynomial p (2) is the Birkhoff polynomial of a geometric 
SS-lattice if and only if the roots o fp  (2) are positive integers, including the integer 1. 
Unfortunately, there exist finite geometric lattices which are not SS-lattices but whose 
Birkhoff polynomials have only positive integral roots. For instance, take a 5-point 
line and two others points in the same plane. The Birkhoff polynomial of the resulting 
geometric lattice L is ( 2 - 1 )  ( 2 - 3 )  z, but L is not supersolvable. 

5. Loewy chains 

Following Zassenhaus [19, p. 215] (who, however, only considers modular lattices), 
we define a Loewy chain in a lattice L of finite length as a chain 

O= yo < yl  < . . .<  y , = ' l  

such that each y~ is the join of  the atoms of the segment Lv~_ 1, y~]. If  L is upper-semi- 
modular, this is equivalent to saying that each segment Lv~-l, yd is complemented. 
This does not mean that each segment [Y~-I, Y~] is relatively complemented, or that 
every element of [Yi-1, Yi] is a join of atoms of [Yi-1, Yd (in other words, Lv~-l, yi] 
need not be a geometric lattice). Recall, however, that every complemented modular 
lattice is relatively complemented [1, p. 16]. 

A sufficient condition for a chain of an SS-lattice to be a Loewy chain is provided 
by the next lemma. 

5.1 LEMMA. Let (L, A) be an SS-lattice, and let K be a maximal chain 
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i nL ,  

K : 1 3 = y o < y  1 < - - - <  y.  = i .  

Let 0 < m ~ < m 2 < - - -  <m,=n.  Then the subchain 

is a Loewy chain i f  

= Yo < Yml < Y,,z <""  < Ym, = "f 

n - -  1 --  D ( n K )  ~_ { m l ,  m 2 . . . .  , m ~ _ l } .  

Proof. We need to prove that if, for l<~j<k<~n, we have Y(Yj, Yi+I) 

> Y (Y j+ 1, Yi+ 2) > " "  > Y (Yk- 1, Yk), then Yk is the join of  atoms of  the segment [y j, Yk]" 
First method. If V (yj, y j + l ) >  .-. >7(Yk-I ,  Yk), then by Corollary 1.4, p(yj ,  Yk)#O. 

By a theorem of P. Hall [11, Thm. 2.3] (see also, Rota [15, p. 349]), Yk is the join of 

atoms of [Yi, Yk]. 
Second method. Let A' be the M-chain of  [y j, Yk] induced by A (via Proposition 

3.2), say, A':yj=x'o <x'l <. . .  < x ' = y k  ( m = k - j ) .  Let L ' = J ( P )  be the distributive 
lattice generated by A' and the chain Yj<Yj+I < "'" <Yk. Regarding each x~ and y~ as 
an order ideal of P, and assuming V (YJ, YJ + 1 ) > " "  > V (Yk- 1, Yk), we see that xi + 1 - xi = 
Y , , - ~ - Y , , - ~ - v  It follows that P is an antichain, so L'  is a boolean algebra. Thus Yk 
is the join of  atoms of L'. Since every atom of L' is an atom of tv i, Yk], the proof 
follows. [ ]  

We now come to a fundamental theorem telling us when fl (S)>  0 in a USS-lattice. 

5.2 THEOREM.  Let (L,A) be a USS-lattice of  rank n, and 
(m v m2, ... , ms} < ~ n -  1. There exists a chain C, 

C:~3 = Yo < Yl < ' " <  Y, < Ys+l = 5, 

let S= 

satisfying the two conditions 
(i) r(y i )=mi,  1 <<.i<<.s; 

(ii) each Yi (1 <<.i<~s + 1) is the join of  atoms of  the segment [Yi-1, Y~], i.e., C is a 
Loewy chain, i f  and only i f  fl ( n -  1 - S) > 0. 

Proof. I f  fl ( n - 1 -  S ) >  0, then there exists a maximal chain K such that D (rCK)= 
n - - l - - S .  By Lemma 5.1, the subchain O = y o < y l < . . . < y s < y s + l = i  of  K satisfying 
r(y~)=mi (1 <~i<~s) is a Loewy chain. 

Conversely, suppose we have a chain C : 8 = y o < y l < ' "  < y s < y s + l = ]  ", satisfying 
(i) and (ii). Let k satisfy 1 <~k<~s+ 1, and define X=yk_ . Y=Yk" Suppose r ( y ) - - r ( x )=  
m. We will establish the existence of  a maximal chain Kk in [x, y], 

Kk:X --" go < zl < ' " <  Zm = Y ,  
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such that 
~(Zo, z~) > ~(z~, z,~) > . . - >  ~ (z,_~, z~). 

The proof is based on the following lemma: 

(A) I f  [u, v] is a segment of  an SS-lattice such that v is the join o f  atoms of  [u, v], 
then there is an atom w of  [u, v] such that ~ (u, w) is the largest element o f  F (u, v). 

Proof of(A).  Let v' be the element of the induced M-chain A uo which is covered 
by v. Since v is a join of atoms, some atom w of [u, v] satisfies wz~v'. Hence y(u, w) 
is the largest element of F (u, v), proving (A). 

Now, since y is the join of atoms of Ix, y], by (A), we have an atom z 1 such that 
7(Zo, zl) is the largest element of F(x,  y). Since L is upper-semimodular, for any 
zs  [x, y], we have that y is the join of atoms of [z, x]. (This is where the assumption 
of upper-semimodularity is needed.) In particular, y is the join of atoms of [z~, y]. 
Thus, by (A), there is an atom z 2 of [z~, y] such that ~ (z~, zz) is the largest element of 
F(zl ,  y). Continuing in this way, we get a maximal chain Kk:X=Z o <z~ < ... <Zm=y 
such that y(zi_ 1, zl) is the largest element of F(zi_~, y), so 

r(Zo, zl) >  (z1, z2) > ' . . >  zm). 

The union of these chains K k (1 <<.k<~s+ 1) is then a maximal chain K of L (con- 
taining C), satisfying n -  1 - D (nK) ~ S. Then n -  1 - S ~_ D (nr), so by Proposition 3.3, 

[] 

Conjecture. Equation (2), Proposition 3.3, and Theorem 5.2 are valid for any 
finite upper-semimodular lattice L. 

6. q-USS-lattices 

Recall that the degree of a projective geometry V is one less than the number of 
points on a line. In particular, if V is coordinatized by the field GF(q), then deg V= q. 
If L is the lattice of subspaces of a projective geometry of degree q, then the integer 
q enters into many of the combinatorial properties of L. Our object in this section is 
to define a general class of upper-semimodular lattices L 'based on' the integer q, and, 
in the SS-case, to show how q enters into the global combinatorial properties of L. 

6.1 DEFINITION. Let q be a fixed positive integer. A q-lattice is a lattice L of 
finite length with the property that every segment [x, y] of L for which y is the join 
of atoms of [x, y] is isomorphic to the lattice of subspaces of a projective geometry of 
degree q (or to a boolean algebra if q=  1). 

Observe that every q-lattice is necessarily upper-semimodular, since if y and z 
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cover x, then the segment [x, y v z] is a projective geometry or boolean algebra, so 
y v z covers y and z. 

6.2 Example. Let L* (G) denote the dual of  the lattice of subgroups of  a finite 
p-group G. Since G is supersolvable, we know from Example 2.5 that L* (G) is an 
SS-lattice. In addition, L* (G) is a p-lattice. This fact is essentially well known, but 
for  the sake of  completeness we shall sketch a proof. If  G is any finite p-group and if 

(G) is the Frattini subgroup of G (intersection of all maximal subgroups), then the 
quotient group G/q~ (G) is an elementary abelian p-group [10, Thm. 12.2.1 ]. Hence, if 
H e L *  (G) and H' denotes the join of all elements in L* (G) covering 1-I, then H ' =  �9 (H), 
and the segment [H, H'] is isomorphic to the dual of the lattice of  subgroups of the 
elementary abelian p-group H/H'. Since this lattice is a projective geometry over 
GF(p), L* (G) is a p-lattice. We therefore say that L* (G) is a p-SS-lattice. 

6.3 Example. Let 92 denote the lattice of  natural partial orders on the set n, as 
defined in Example 2.1 1. It is easily seen that the dual 92* is a 1-SS-lattice. Indeed, if 
[P, Q] is a segment of  92* such that y is a join of atoms of [P, Q], then Q is obtained 
from P by removing a set S of relations of the form i<j wherej  covers i in P;  and the 
general element of  [P, Q] is obtained by removing an arbitrary subset of  the relations 
in S. Hence [P, Q] is a boolean algebra. 

The basic result on q-SS-lattices is the following. 

6.4 LEMMA. Let (L, A) be a q-SS-lattice of  rank n; let 0- be a permutation of 
{ 1, 2, ..., n} with n -  1 - D (0-) = {/'1, Jz .... , Jr} < (where D (0-) is the descent set of 0-); and 
let Jo = 0, Jt =n. Then the number of maximal chains K of L satisfying 0- = n~ is equal 
to qkM, where 

and where M is the number of Loewy chains 

C:13 = Y0 <Yz < ' - ' <  yt =" ~ (12) 

such that r(y,)=j, and F(y,)={a(1), 0"(2) .. . . .  a(],)}, O<<.i<.Nt'. 
Proof. If K is a maximal chain of L, satisfying rczc = a, then by Lemma 5.1, the 

subchain C of  K consisting of all x e K  such that r(x)=Ji (O<.N i<-N t) is a Loewy chain, 
while, by definition of  rc~: and F, we have F(y,)={a(1), 0-(2) .. . . .  0-(],)}. Hence it 
suffices to prove that if we have a Loewy chain (I2) with r(yi)=j, and F(y~)= 
{a(1), a(2) , . . . ,  0-(jl)), then the number of refinements of C to a maximal chain K, 
satisfying n x = 0-, is equal to qk, where k is given by (1 1). 

Assume we have such a Loewy chain C. Since L is a q-lattice, each segment 



Vol. 2, 1972 SUPERSOLVABLE LATTICES 215 

[y~_~,y,] (l~<r~<t) is a projective geometry of degree q. Hence /~(y,_1, y , )=  

( -1)bq  k', where b = j , - j , - 1  and k , = ( J ' 2 J ' - * ' ) N o w ,  by Corollary 1.4, the number 

of maximal chains Y,-t =Zo <z~ < ... <zb=y,  of the segment [Y,-1, 3',] such that 

(~0, z l )  > r (z l ,  z2) >""  > r ( ~ -  1, ~ )  

is just ( -  1)b/~ (y,_ 1, Y,) = q k'.Hence the total number of refinements of C to a maximal 
chain K, satisfying rc K = ~r, is equal to qk, qk2.. qk,= qk, and the proof follows. [] 

6.5 COROLLARY. Let (L, A) be a q-SS-lattiee o f  rank n, and let S _ n - 1 .  Set 
n - l - S = { ] l , j z  .... ,j,_1}<, with jo=O,j ,=n.  Then fl(S) is divisible by qk, where k is 
given by (1 I). [] 

If n is a positive integer and O < s ~ n -  1, define 

Q (n, s)  = ~ n + s - (. - s) 

(brackets denote the integer part). 

6.6 THEOREM. Let (L, A) be a q-SS-lattice o f  rank n, and let S _ n - 1  with 
IS] =s.  Then f l (S)  is divisible by q(~("" ~). This result is best possible in the sense that, 
given n and O<~s<n-1,  there exists a q-SS-lattice o f  rank n and a set S _ n - 1  of  
cardinality s such that fl ( S ) = qQ ("" ~ ). 

Proof  Let K be a maximal chain of L with D (n r )=  S, and let n - 1 - S =  { ]1, 
J2 .. . . .  Jr-l}<, so s + t = n .  It follows from Corollary 6.5 that f l (S)  is divisible by qm, 
where 

the minimum being taken over all sequences 0 =Jo <Jl < " "  <Jr =n.  We shall show that 
this minimum is equal to Q (n, s). 

If  O<a<b,  then it is easily verified that 

Hence the sum (1 I) is minimized when the differences A - J o ,  J2-A,--- ,  J , - t - 1  are 
as nearly equal as possible. Given n and t/> 1, it is easy to show that there is a unique 
partition 2=2(n ,  t) of n into t parts such that each part is one of two consecutive 
integers. In this partition 2, the part In]t] + 1 appears n - t i n ~ t ]  times and the part 
In/t] appears t (1 + In]t] ) -  n times. Hence the sum (11) is minimized when n - t  In~t] 
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of the d i f fe rencesL-L_  1 are equal to [n/t] + 1 and t (1 + In~t] ) -  n of them are equal 
to [nil]. Setting C=[n/t] and using t = n - s ,  we get 

m = ( n - t c ) ( C q 2 1 ) + ( t ( l + C ) - n ) ( C )  

= �89 (2n  - t - tC) 
= Q (n, s ) .  

To prove that this result is best possible given n and s, choose 0= jo  <Jl < "'" < 
<jt=n so as to minimize the sum (11) (so this minimum value is Q(n, s)). For 
1 ~< r ~< t, let V, be a projective geometry over GF(q) of r a n k S - j , _  1- Let L be obtained 
by 'stacking' the Vr's, i.e., by identifying the top element of  Vr_ 1 with the bottom 
element of 17,. Then L is a q-SS-lattice (in fact, a q-modular lattice), and it is clear 
(e.g., from Theorem 1.2) that if S = n - l - { j l , j 2 , . . . , j t _ l } ,  then IS[ = s  and f l ( S ) =  
= qQ(n, s). []  

For fixed a, the function Q (n, s) exhibits the following behavior: 

C 2 1 )  = Q ( s +  1, s ) > Q ( s +  2, s ) > . . . > Q ( 2 s - 1 ,  s )>Q(2s ,  s) 

= Q (2s  + 1, s )  . . . . .  s .  

Thus the sequence Q(n, s) (for fixed s) becomes 'stable' at the value s when n>~2s. 

6.7 COROLLARY.  Let L be a q-SS-lattice of rank n, and let O<~m<~n, The 
number of elements of L of rank m is congruent to 1 (mod q). 

Proof. The number of such elements is c~ (m) = fl (m) + 1. Now Q (n, 1) = 1, so fl (m) 
is divisible by q. [ ]  

As a special case of Corollary 6.7, we get the well-known result of P. Hall [12] 
that the number of subgroups of a given order in a finite p-group is congruent to 
1 (modp). Thus Theorem 6.6 gives a lattice-theoretical generalization of  this result, 
which, even in the case of the lattice of subgroups of p-groups, appears to be new. 
We ask whether there are similar lattice-theoretic arguments for proving stronger 
results in the enumerative theory of p-groups, e.g., Kulakoff's theorem [19, p. 153]. 

Conjecture. Corollary 6.5 and Theorem 6.6 are valid for any finite q-lattice L. 
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