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Introduction. A (real) hyperplane arrangement is a discrete set of hyperplanes
in R". We will be concerned with hyperplane arrangements that “interpolate” between
two well-known arrangements: (1) the set B,, of hyperplanes z; = z;,for1 <1i < j <n,
and (2) the set B, of hyperplanes z; — zj =m, for 1 <i<j<nandm € Z. The
arrangement, 3, is known as the braid arrangement or the reflection arrangement of
type An—1 (i-e., the set of reflecting hyperplanes of the symmetric group &,, which
is the Coxeter group of type A,—1). Similarly, B,, is the affine braid arrangement or
reflection arrangement of type A, i.e., the set of reflecting hyperplanes of the affine
Weyl group &,, of type A,.

The class of arrangements we will discuss is the following. For k > 1 define the
extended Shi arrangement S to be the collection of hyperplanes

vi—x;=—k+1,-k+2,..k for1<i<j<n.

The arrangement S} = S, is known as the Shi arrangement or sandwich arrangement,
and was first considered by Shi [15, Ch. 7][16] and later Headley [9, Ch. VI][10, §5].
Some properties of S,, are stated without proof in [20, §5]. In this paper we extend
these results to S¥ and provide the proofs. For some additional arrangements related
to B, see [20] and [14].

The main property of S¥ to concern us here will be the number of regions R
separated from a “natural” base region Ry by a given number r of hyperplanes in the
arrangement. Let us make this notion more precise. If we remove the union of the
hyperplanes of an arrangement A from R™, then we obtain a disjoint union of open
cells, called the regions of A. Fix a region Ry of A, called the base region. Given
a region R of A, let d(R) denote the number of hyperplanes H of A which separate
Ry from R, i.e., Ry and R lie on different sides of H. (This number will always be
finite since A is discrete.) For instance, d(Rp) = 0. Think of d(R) as the “distance”
of R from Ry. Define the distance enumerator of A (with respect to Rp) to be the

generating function
Dalg) =) ¢"?,
R

where R ranges over all regions of A. Thus D 4 is a formal power series, which becomes
a polynomial if A is finite.

Let us first consider the braid arrangement B,,. It is most natural for us to let Ry
be defined by the conditions xy > x5 > -+- > x,,. There is a canonical way to label
the regions R by the elements w of &,,, namely, G,, acts on R" as a group generated
by reflections in the hyperplanes of B,,. This action permutes the regions, and for any
region R there is a unique w € &,, for which w(Rp) = R. Label by w this region
w(Ro). (The transitivity of &,, on the regions shows that Dp_ is independent of the
choice of Ry.) Equivalently, the label of region R is the unique permutation w such
that for i < j we have w(i) > w(j) if and only if the hyperplane x; = ; separates Ry
from R. It follows that d(R) is the number ¢(w) of inversions of w, i.e., the number
of pairs i < j for which w(i) > w(j). This number ¢(w) is also the length of w in
the Coxeter group sense, i.e., the minimum number p such that w can be written as a
product of p adjacent transpositions. It is then well-known, either from combinatorics
[19, Cor. 1.3.10] or Coxeter group theory [1, Cor. 4.7][3, Exercise 10(a), pp. 230-231],
that

D, (q) =(1+q)(1+q+¢°) - (1+g+---+¢""), (1)

the standard g-analogue of n!.
There is another way of labeling the regions and obtaining the formula (1). Let
N=1{0,1,2,...}. We will label each region with an n-tuple A(R) = (ay,...,a,) € N
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as follows. Let e; € N denote the vector with a 1 in the ¢th coordinate and 0’s
elsewhere. First label the region Ry by A(Ro) = (0,0,...,0). Suppose now that R
has been labelled, and that R’ is an unlabelled region which is separated from R by
a unique hyperplane z; = z;, where i < j. Then define A(R') = A(R) +¢;. It is
easy to see that this labeling is independent of the order in which the regions are
labelled. In fact, if R = w(Ryp) (i.e., R corresponds to the permutation w € &,) and
AR) = (a1, ...,an), then

a; = #{j[j > iand w(j) <w(i)}.

Thus A(R) is essentially the inversion table or code of w, as defined in [19, p. 21].
Moreover,

dR)=a1 +as+ -+ apn.

The codes of permutations w € &,, are precisely those sequences (a1, ...,a,) € N?
satisfying a; < n — i. These observations make equation (1) obvious.

Similar results hold for B,,. Define Ry to be the region given by z7 > x5 > --- >
x, > x1; — 1. For any region R, there is a unique element w € Sn such that w(Ry) = R,
and d(R) = {(w), the length of w as an element of the Coxeter group &,. By e.g. [3,
Exercise 10(b), p. 231] we have

l+qg+---+¢"!
s, @)= 3 ¢ = (2)
weS,
We can also ask if there is a labeling of the regions R by n-tuples A\(R) € N*, similar
to what was done for B,,. Later we will describe such a labeling as a limiting case of
a labeling of the regions of SF.

2. Labeling the extended Shi arrangements. We will define a labeling
A(R) € N" of the regions R of the extended Shi arrangement S similar to what
is described above for the braid arrangement B,. For the Shi arrangement itself
(k = 1), this method of labeling was suggested by I. Pak and is described in [20, §5].
Some similarities between the Shi arrangement and the extended Shi arrangements
were pointed out by A. Postnikov! after which it was straightforward to extend Pak’s
method of labeling. (However, there remained the problem of actually proving that
Pak’s labeling and its extension to S* had the desired properties.)

Define the base region Ry of S¥ by

Ry: 1 >x0> - >xp>a1 — 1,

the same as for B,,. First label the region Ry by A(Ry) = (0,0,...,0) € N*. Suppose
now that R has been labelled, and that R’ is an unlabelled region which is separated
from R by a unique hyperplane z; — z; = m, where ¢ < j and m < 0. Then define
A(R'") = M(R)+e;. On the other hand, if instead m > 0, then define A(R') = A(R) +e;.
It is easy to see that this labeling is well-defined (i.e., is independent of the order in
which the regions are labelled), since A\(R) depends only on the set of hyperplanes
separating R from Rp.
From the definition of A we see immediately that if A(R) = (a1, ..., a,), then

d(R)=a1+ -+ an. (3)

'For instance, the characteristic polynomial (as defined e.g. in [20]) of S¥ is equal
to q(q — kn)" L.
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In order to describe the labels that occur, we define a k-parking function of length
n to be a sequence a = (ay,...,a,) € N satisfying the following condition: if b; <
by < --- < b, is the monotonic rearrangement of the terms of a, then b; < k(i — 1).
A 1-parking function is called simply a parking function. Parking functions (defined
slightly differently, but equivalent to our definition) were first considered by Konheim
and Weiss [11]. Other references include [4][5][12]. (In [12] a sequence (n + 1 —
ai,...,n+l—a,), where (ay,...,a,) is a parking function, is called a “suite majeure.”)
See for example [11][4, p. 10][20, p. 2625] for the reason for the terminology “parking
function.”

The main theorem on the arrangements S¥ is the following.

2.1 Theorem. The labels \(R) of the extended Shi arrangement S are just the
k-parking functions of length n, each occuring exactly once.

Proof. For simplicity we will assume here that & = 1. A region R of the Shi
arrangement S,, may be thought of as a pair (w, I), where w € &,, and I is a collection
of sets [w(i), w(j)] := {w(i),w(i + 1),...,w(j)} with the following properties: (1) if
[w(i),w(j)] € I then 1 < i < j <n and w(i) < w(j), and (2) the elements of I,
ordered by inclusion, form an antichain , i.e., no element of I is a subset of another
element of I. We regard such a pair (w, I) as defining the region

Ty(1) > Tw(2) > > Tw(n),

Ty(r) — Tu(s) < 1if [w(r),w(s)] € I,

Ty(r) — Tu(s) > 1if r < s,w(r) <w(s), and no set
[w(i),w(y)] € I satisfies i <r < s < j.

In general, define a wvalid pair or valid t-pair to be an ordered pair (v,J) where v =
v(1),...,v(t) is a permutation of some t-element subset of {1,2,...,n} and .J is an
antichain of subsets of the form {v(i),v(i + 1),...,v(j)}, where i < j. We call the
elements ¢ of J intervals, and say that ¢ is an interval of J. If i < j, v(i) < v(j), and
no interval of J contains both v(i) and v(j), then we say that the pair (v(i),v(j)) is
separated. Similarly if i < j and v(i) > v(j), then we say that the pair (v(i),v(j)) is
an inversion. If (v,J) is a valid ¢t-pair and 1 <7 < ¢, then define

F(v,J,i) = {j:(i,4) is an inversion} U {j : (4, j) is separated}
fv, J,0) = #F(v,J,1).

If (w,I) corresponds to the region R, then (w(i),w(j)) is an inversion if and only if
the hyperplane z,,(j) — ;) = 0 separates R from Ry, while (w(i), w(j)) is separated
if and only if @,y — Ty (j) = 1 separates R from Ry. There follows

AMR) = (f(w,I,1), f(w,1,2),..., f(w,I,n)). (4)

It is easy to see that A(R) is a parking function. Indeed, f(w,I,w(7)) cannot
exceed n — i, the number of elements in w to the right of w(7).

The essence of the proof of the theorem is to show that for every k-parking function
« there is a unique region R for which A(R) = a. The following lemma, on the structure
of valid pairs will be of crucial importance.

Lemma. Let (v, J) be a valid pair. Suppose that i < j, and that either (v(i),v(5))
is an inversion or (v(i),v(j)) is separated. Then f(v,J,v(i)) > f(v, J,v(j)).

Proof of lemma. Suppose (v(i),v(j)) is an inversion. If h > j then (v(i),v(h)) is
an inversion whenever (v(j),v(h)) is an inversion (since (v(i) > v(j)). Suppose now
that (v(j),v(h)) is separated. If v(h) < v(i) then (v(i),v(h)) is an inversion. On the
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other hand, if v(h) > v(i) then (v(i),v(h)) is separated (since any interval containing
v(i) and v(h) would also contain v(j)). Hence f(v, J,v(i)) > f(v, J,v(j)). But since
(v(i),v(j)) is an extra inversion not yet taken into account, we have strict inequality.

A similar argument works when (v(é),v(7)) is separated. If h > j then (v(i),v(h))
is separated whenever (v(j),v(h)) is separated. Suppose now that (v(j),v(h)) is an
inversion. If v(i) > wv(h) then (v(i),v(h)) is an inversion, while if v(i) < v(h) then
(v(i),v(h)) is separated. Thus f(v, J,v(i)) > f(v, J,v(j)), and we get strict inequality
since (v(i),v(j)) is separated. This completes the proof of the lemma.

Now consider a parking function a = (ay,...,a,), such as

a=(2,3,0,0,7,2,3,0,3). (5)

We will build up the pair (w,I) corresponding to the region R satisfying A(R) = «
one step at a time. After the mth step we will have a valid m-pair (w™,I™). Let
b1,ba,...,b, be the permutation of 1,2,...,n obtained by listing the indices (coor-
dinates) of the smallest terms of « from right-to-left, then the indices of the next
smallest terms from right-to-left, etc. For « given by (5) we have by,...,by =
8,4,3,6,1,9,7,2,5. Then w™ will be a permutation of by,...,b,,, obtained by in-
serting b,, into a certain position of w™~!, while I™ will be obtained from I™~!
by adjoining a certain interval (possibly empty) [bm,cn] and removing any interval
properly contained in another (so that I"™ remains an antichain).

If A(R) = a, then by (4) we need that f(w, I,i) = a; for all i. It follows from the
lemma that we must insert b,, into w™ ! so that f(w™ 1, I™ L h) = f(w™,I™, h)
for all terms h of w™~!. This means that b,, cannot be inserted to the right of a larger
element, and cannot be inserted to the right of a smaller element ¢ unless there is some
d > c to the right of b such that (¢, d) is not separated. Moreover, the interval [b,,, ¢p]
cannot contain two terms that are separated in (w™ 1, I™"1). (Le., separated pairs
stay separated.) We claim that there is exactly one way to insert b, and to choose
I'™ according to these rules, so that f(w™,I™, by) = a;.

First note that once we decide where to insert b,,, say after w™ !(p) (or at
the beginning, in which case we set p = 0), then the interval [b,,, cy] in uniquely
determined (if it exists at all) by the condition f(w™,I™,b,,) = a;. Thus if there are
two ways to insert b,,, then we must insert b,, into different places of w™!, say after
w™ 1 (p) and w™~1(j), where p < j, to get permutations w™ and @™, respectively.
Let [bm,cm] be the interval corresponding to the insertion of by, after w™=!(p), and
similarly [by,, d,,] for w™~1(5). By the lemma, we have that w™=!(j — 1) < b,,,. Thus
Cm < dm, 80 (b, dn) is separated in w™. Therefore (w(j —1),d,,) is separated in
w™, so also in w™ 1. But then by the lemma (w(j — 1),d,,) must remain separated
in @™, a contradiction. Hence there is at most one choice of w™ and I"™ for each m,
and in particular at most one choice of the pair (w,I) = (w", I").

The above argument shows that the map R — A(R) from regions to parking
functions is injective. Since the number of regions of S, is known to equal (n + 1)"~!
[15, Thm. 7.3.1], and similarly for the number of parking functions of length n [4][12],
the proof follows for the case k = 1.

For general k, the proof is analogous but more complicated. The regions of S¥ are
specified by a (k+1)-tuple (w, I, ..., I}), where w € &,, and I, ..., I} are antichains
of subsets of {1,2,...,n} of the form {w(i),w(i + 1),...,w(j)}. The permutation
w specifies the order of the coordinates (as in the case k¥ = 1), and the antichains
I,,, specify which coordinates are with distance m of each other. There are certain
compatibility conditions which w and the I,;,’s must satisfy. Given a k-parking function
a = (ai,-..,a,), we build up (w,I,...,I) one step at a time as before, inserting
elements in the same order as for k = 1, i.e, first the coordinates in descending order of
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the smallest terms of «, then the coordinates in descending order of the next smallest
terms of «, etc. There will always be a unique choice with the necessary properties.
The details are tedious and will be omitted. O

Example. For the example (5), the successive valid pairs (w™, I"™) are as follows
(beginning with m = 3):

348, {[3,8]}

6348, {[6,8]}

16348, {[1,3],[6,8]}
169348, {[1,3],[6,8]}
1769348, {[1,3],[7,8]}

21769348, {[2,3],[7,8]}
521769348, {[5,7],[2,3],[7,8]}.

Combining equation (3) and Theorem 2.1, we obtain the following corollary.
2.2 Corollary. The distance enumerator of the extended Shi arrangement S¥ is

given by
Dsp(q) = Z gt
(a1,...,an)
where (ay,...,a,) ranges over all k-parking functions of length n.
If we let k — oo in our labeling A of the regions of S* . then we obtain a labeling
of the regions of the affine braid arrangement B,, by vectors (a1, ...,a,) € N* such

that at least one a; = 0. Hence, letting P = {1,2,...}, we get

Do) = Y gt

n
(ag,..., ap)ENT
not all a;>0

— Z qa1+---+an _ Z qa1+---+an

(a1,...,an)EN" (a1,...,an)EP™
1 q"

(I-gm Q-9

1+q+--+q¢""!

(I—-gnt 7

agreeing with (2). Bjorner and Brenti [1, §4] describe a labeling of elements of S,, by
sequences in N"\P"; presumably this labeling is equivalent to ours.

3. Enumeration of k-parking functions. Corollary 2.2 is not an entirely sat-
isfactory “determination” of Dgx (q) since it does not lead immediately to any explicit
formulas, generating functions, recurrences, etc. We need a better understanding of
k-parking functions. First let us recall the well-known situation for the case k = 1.
A rooted forest on [n] is a graph on the vertex set [n] = {1,2,...,n} for which every
connected component is a rooted tree. An inversion of a rooted forest F' is a pair (i, j)
for which i < j, and j lies on the unique path connecting k to i, where k is the root
of the tree to which i belongs. Let inv(F') denote the number of inversions of F'. The
inversion enumerator I (q) for labelled forests on [n] is defined to be the polynomial

In(q) — ZquV(F)a
F

where F' ranges over all labelled forests on [n]. (Often I,(q) is called the inversion
enumerator of trees on n + 1 (labelled) vertices. A tree T' can be obtained from
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the rooted forest F' by adjoining a new vertex 0 and connecting it to the roots of
F.) Since it is well-known that there are (n + 1)"~! rooted forests on [n], we have
I,(1) = (n+ 1)L, Some values of I,,(q) for small n are

Li(g) = 1

L(g) = q+2

Iq) = ¢ +3¢+6q+6

Li(q) = ¢°+4¢° +10¢* +20¢° + 30¢> + 36¢ + 24

Ii(q) = ¢'°45¢° 4+ 15¢% + 35¢" + 70¢° + 120¢° + 180¢*

+240¢% + 270¢> + 240q + 120.

The next result summarizes the fundamental properties of I,(g). Property (a) is
implicit in Mallows and Riordan [13], and appears more explicitly in [12]. An elegant
bijective proof was given by Gessel and Wang [7]. Property (b) is equivalent to [13,
equation (2)], and appears more explicitly in [6, equation (14.6)]. Finally, property
(c) is due to Kreweras [12].

3.1 Theorem. (a) We have

In(l + q) = qu(G)ina
G

where G ranges over all connected graphs (without loops or multiple edges) on
n + 1 labelled wvertices, and where e(G) denotes the number of edges of G.
(b) We have the generating function identity

2 Sased )L
Z In(q)(qg — 1)nm = _—(n)x:
n>0 ' Enzoq 2T
(c) We have
(L= Y gutrten
(al,...,an)
where (ay,...,a,) ranges over all parking functions of length n. Hence from equation

(8) and Corollary 2.2 there follows

Dsi(q) = ¢ 1.(1/g).

We want to extend Theorem 3.1 to SE. First we need to generalize the notion
of an inversion of a forest. Define a rooted k-forest to be a rooted forest on vertices
1,2,...,n with edges colored with the colors 0,1,...,k — 1. There is no additional
restriction on the possible colors of the edges. Denote the color of an edge e by (e).
Define the length ¢(F') of a rooted k-forest F' by

(F) =inv(F) + Y kle), (6)
(ve)

where inv(F') denotes the number of inversions of F' (ignoring the edge colors), and
where (v, e) ranges over all vertices v and edges e such that e lies on the unique path
from v to the root of the component of F' to which v belongs. Define the inversion

enumerator I¥(q) by
Ii(a) =Y _¢"",
F
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where F' ranges over all rooted k-forests on [n].
It is easy to see by standard enumerative arguments that there are (kn + 1)" !
rooted k-forests on [n], so

I*(1) = (kn + 1)1, (7)
Some values of I¥(q) for small n and k > 1 are as follows:
If (q) 1
() = ¢ +2¢+2
I2(q) = ¢®+3¢+6¢"+9¢° +12¢> + 120+ 6
I{(q) = q¢"+4¢" +10¢" +20¢° + 34¢° + 52¢" + 74¢° + 96¢°
+114¢* + 120¢® + 108¢> + 72q + 24
B = ¢ +2¢2+2¢+2
() = ¢ 43¢ +6¢"+9¢° +12¢° + 15¢* + 18¢° + 18¢% + 12¢ + 6.

There is a formula for I¥(q) in terms of unlabelled rooted forests (though in Theo-
rem 3.3(b) we will give a more explicit formula in terms of generating functions). Let ¢
be an unlabelled rooted forest, with vertex set V(). Regard ¢ as a poset whose max-
imal elements are the roots. Given a vertex v € V (), let hy = #{u € V(p) : u < v}.
Let e(p) denote the number of linear extensions of ¢ (as defined e.g in [19, p. 110]), and
let [j] = 14+q+---+¢' !, the g-analogue of the nonnegative integer j. If #V () = n,
then it is well-known [18, §22] that

n!

e(yp) = il

vevi(p) v
It was observed by Bjorner and Wachs [2, Thm. 1.3] that
Zqinv(F) =e(p) H (o],

F vEV (p)

where F ranges over all n! labelings of . If a(y) denotes the order of the automor-
phism group of ¢, then the n! labelings of ¢ include a(y) copies of each nonisomorphic
labelled rooted forest whose underlying unlabelled rooted forest is . Hence

Zqinv(F) = E(Lp) H [hv]) (8)
F

a(p) V()

where now F' ranges over all nonisomorphic labelled rooted forests whose underlying
unlabelled rooted forest is (.
3.2 Theorem. We have

Fo =% [T mhle [ el

(] a((’a) vEV () vEV ()

v not a root of v a root of ¢

where @ ranges over all nonisomorphic (unlabelled) rooted forests with n vertices.
Proof. By the definition (6) of ¢(F) for a labelled rooted forest F', there is a contri-
bution to ¢(F) from the vertex labeling, and a completely independent contribution
from the edge coloring. Given F', denote by Y (F') the underlying unlabelled rooted
forest, i.e., erase the vertex labels and edge colors. It follows that for fixed ¢ we have

Z ql(F) — (Z qinv(F')> (Z qz(v’e) n(e)) : (9)
F’ K

F:Y(F)=¢
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where (a) F' ranges over all nonisomorphic vertex labelings of ¢, (b) x ranges over all
edge k-colorings of ¢, and (c) (v,e) is as in equation (6). By (8), the sum over F" is
equal to E(pg [I,ev(p)[ho]- Let e be an edge of ¢, and let ¢ be the vertex of e farthest
from the root of its component. If e is colored «(e) in the labeling F' of ¢, then x(e) is
counted h; times in the sum on the right-hand side of (6). Since all edges are colored
independently, we get that the sum over k in (9) is equal to

H (1 RS q(k—l)hu) _

vEV ()
v not a root of ¢

Since [h,]- (1 + ¢" + ¢*" + -+ + ¢* =) = [kh,], the proof follows by summing (9)
over all p. O

Next we define an extension of the notion of a connected graph (in order to
generalize Theorem 3.1(a)). A multirooted k-graph is a graph G on the vertex set
{1,2,...,n} such that (a) a subset S of the vertices is chosen as a set of “roots,” with
the restriction that every connected component of G' contains at least one root, and
(b) the edges are colored from a set of k colors. We do not allow loops (edges from
a vertex to itself) and multiple edges of the same color. However, it is permissible
to have several edges between two distinct vertices as long as they all have different
colors. Denote by e(G) the number of edges of G and by r(G) the number of roots.
The concept of a multirooted 2-graph is due to Huafei Yan [21], who proved Theorem
3.2(a) below in the case k = 2. It was then routine to extend this result to arbitrary
k.

There is a simple bijection between multirooted 1-graphs G on [n] and connected
graphs G’ on [n+1], as follows. Since k = 1 the color of the edges of G are all the same
and can be ignored. Adjoin a new vertex n + 1 to GG, and connect it to all the roots
of G, yielding a connected graph G’ on [n + 1]. This gives the desired bijection. Note
that e(G') = e(G) + r(G). Thus multirooted k-graphs are indeed a generalization of
connected graphs.

We can now give our extension of Theorem 3.1.

3.3 Theorem. (a) We have

where G ranges over all multirooted k-graphs on [n].
(b) We have the generating function identity

k(2)+na™
S 1t () YT b

= (¢=1)" nl > so qk(g)%
(c) We have
O = Y gt
(a1,..-,an)
where (a1, - . . ,an) ranges over all k-parking functions of length n. Hence from equation

(8) and Theorem 3.1 there follows

Dsi(q) = ¢*G) 1k (1/q).
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Proof. (a) We follow the proof of the k = 1 case in [12]. For k = 2 the argument
is due to H. Yan [21]. We first claim that I*(q) satisfies the recurrence

k — n +2a3+3aq+-+(k—1
Inyi(g) = Z ( )qa2 oo (k—1)as
A1, G2, ..., Qk+1

a1+az+---+ar41=n

(L4 g gt TR (TR () TE (), (11)

A1

n
@1,02y.00yQk41
multinomial coefficient. To prove (11), let Fi,..., Fr+1 be rooted k-forests on disjoint

vertex sets whose union is [n]. Let a; be the number of vertices of F;. We will
“merge” these rooted k-forests into a single rooted k-forest F' on [n + 1] as follows.
The components of Fjy; remain components of F. Let the vertices of Fi,..., Fj be
uy < ug < -+ < up, where r = a1 + ...+ ag. Define u,41 =n + 1. Choose an integer
1< j<r+1,and for all m > j replace vertex u,, in whatever forest it appears by
Umt1- (If j = 7+ 1 then there is nothing to replace.) We have replaced Fi, ..., F}
with isomorphic rooted k-forests FY,..., Fj whose vertices are uy,...,u,4+1 with u;
omitted. Now let FY,..., F} be the subtrees of a root u;, and put color i — 1 on the
edge connecting u; with the root of F}. Putting together this tree T' with the forest
Fy.11 gives a rooted k-forest F' on [n + 1].

where ai,as,...,ar1 are nonnegative integers, and where ( ) denotes a

For each solution to a; + --- + ax41 = n in nonnegative integers, there are
(a1 nak+1) choices for the vertex sets of Fi,..., Fyy;. There are also r + 1 choices

for the integer j. We then get an additional j — 1 ordinary inversions of F (each
involving the root vertex u; of T'), in addition to the inversions already appearing in
Fi,...,Fry1. Moreover, for each 1 < i <k, we get an additional a; pairs (v, e), where
v is a vertex of T" and e is an edge colored ¢ — 1 on the path from v to the root u;.
Namely, v is any vertex of F}, and e is the last edge on the path from v to u;. Thus
the length enumerator for those rooted k-forests F' obtained by fixing a1, ..., ar+1 and
j is given by
qa2+2a3+3a4+...+(k—1)ak . qj_llfl (Q)Ifz (q) - [fk“ (q).

Summing over all a; + - -+ ag+1 = n and all 1 < j < r yields equation (11).

Let J*(q) denote the right-hand side of equation (10). It is clear that J§(q) =
It(qg+ 1) = 1. Hence it suffices to show that J¥(q) satisfies the same recurrence as
I¥(1 +q), viz.,

n
" _ 1 az+2az+3as+-+(k—1)ay
n+1(‘1) Z < 1,02, . -,ak+1>( +q)

aitaz+-t+agp41=n

(1 + q)a1+a2+~~~+ak+1 -1
: T (@13, (@) - Th (@), (12)

q
To prove (12), let G4, ..., Ggy1 be multirooted k-graphs on disjoint vertex sets whose
union is [n]. Let the colors of the edges of G be 1,2,...,k. Let a; be the number of
vertices of G;. We will “merge” these multirooted k-graphs into a single multirooted
k-graph G on [n + 1], as follows. Adjoin a new vertex n + 1, and for each 1 < i < k,
draw an edge colored i from n + 1 to the roots of G;. Also draw any number of
edges with colors less than i from n + 1 to the vertices of G; (as long as there are no
multiple edges of the same color). We now have a connected graph H with colored
edges. “Frase” the roots of H, and choose any nonempty subset of the vertices of H
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to be a new set of roots. Taking the disjoint union of H with G1 gives a multirooted
k-graph G on [n + 1].

The above procedure yields a bijection between multirooted k-graphs G on [n + 1]
and sequences I' = (G, ...,Ggy1,Er, ..., Eg, S), where the G;’s are multirooted k-
graphs on disjoint vertex sets whose union is [n], where F; is a set of edges colored
1,2,...,i—1 connecting n + 1 with vertices in (G;, and where S is a nonempty subset
of the union of the vertices of G1, ..., G}, together with the vertex n+ 1. Write v(K)
for the number of vertices of the graph K. We then have

EG: qe(G)—i-r(G)—n — Z Z q#El . q#Ekq#S

a1+ Fapp1=n (G1,...,Gpy1,B1,., By, S)
v(Gi)=a;

qe(G1)+r(G1)—a1 . qe(Gk+1)+r(Gk+1)—ak+1

Z (1+¢)®(1+q)% - (1+ q)(k_l)ak

a1+...+app1=n

(4 qutte — 1) JE (q) - TE L ()

Ak +1

Now divide both sides by ¢. The left-hand side becomes Jﬁﬂ(q + 1), while the right-
hand side agrees with the right-hand side of equation (12). This completes the proof
of (a).

(b) Let

Ch(e) =Y ",
G

where G ranges over all connected graphs on [n] with k-colored edges, with no loops
and with no multiple edges of the same color. (We do not choose a set of roots of G.)
Without the condition that G is connected, the corresponding generating function is

clearly (1 + q)k(g). Hence by the exponential formula (e.g., [17, Cor. 6.2]), we have

Fo) = YOkt

n>1
ny "
= log Z(l + q)k(2) oy
n>0 ’

We get a multirooted k-graph on [n] by choosing a partition 7 = {Bi,...,B;} of
the set [n], placing a graph enumerated by C¥(q) on each block B;, and choosing a
nonempty subset of B;. Hence

"I = > CE)--CE@I+ )" —1]---[(1+ )% — 1],
nm={Bi1,...,B; }

where 7 ranges over all partitions of [n] and b; = #B;. Again by the exponential
formula we get

S )

- exp (Fk((1+q)a:) —Fk(a:))
n>0 :

(7 1+ n,.n . n
exp | log Z(l + q)’”(z) % —log Z(l + q)’”(z) %
n>0 ’ n>0 ’

sl + )G
sl + @) e
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Now substitute ¢ — 1 for ¢ and use (a) to get the desired formula.
(c) A proof was given by Huafei Yan and appears in [21]. (Another proof was
later found by Igor Pak.) Yan’s proof is based on the following. Let

= T e

(a1,.esan)

where (a1, ...,a,) ranges over all k-parking functions of length n. Yan then gives a
combinatorial proof of the recurrence

n

Prlf+1(q) = Z (7) (1—|—q—|—--.+qk—1)n—i (1+q+‘_‘+qki) Pik(q)P,i,i(qk)-
=0

She then shows combinatorially that

n

J,’fﬂ(q):Z(TiL) (1+(1+q)+"'+(1+q)k—1)"_i(1+(1+q)+...+(1+q)’”)
i=0

TH @) Jnoi (L + ) = 1),

and the proof follows from (a). O

NoOTE. It follows from Theorem 3.3(c) and equation (7) that there are (kn+1)"~!
k-parking functions of length n. A direct way to see this, generalizing an argument
due essentially to Pollack [4, §2] for the case & = 1, is as follows. Let H be the
subgroup of (Z/(kn+ 1)Z)" generated by (1,1,...,1). Then it is not difficult to show
that every coset of H contains exactly one k-parking function, and the result follows.
This argument shows that the set of k-parking functions of length n has the natural
structure of an abelian group isomorphic to (Z/(kn+ 1)Z)"~". It might be interesting
to see if this group structure can be exploited in some way in the study of the extended
Shi arrangements and rooted k-trees.

NoTE. There is a natural two variable polynomial D¥(q,t) that refines the dis-
tance enumerator Dgx (). Namely, define

be (qa t) = Z qa(R)tb(R)a
R

where (a) R ranges over all regions of Sk, (b) a(R) is the number of hyperplanes
x; —x; = m, where 1 <4 < j < n and m > 0, which separate R from Ry, and (c)
b(R) is the number of hyperplanes z; — 2; = m, where 1 < i < j <n and m < 0,
which separate R from Ry. Thus D¥(q,q) = Dk (q). The coefficients of D}, (g, t) for
2 < n < 4 are given by the following tables:

A0 1 2 3 4 5 6
vloias G riIiil
A0 1 0 |1 1 2 1 -
0 |1 1 1 (2 2 2
111 9 |9 9 3 |6 7 9 6
3 |1 4 |5 6 5
5 |3 3
6 |1

We do not know a direct interpretation of D¥(q,t) in terms of rooted k-forests or
k-parking functions, nor do we know of any simple recurrences or generating functions
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for D% (q,t) (though it is easy to describe D¥ (q,0), Dk (0, ), and the coefficients of the
terms of total degree k(%)). We also don’t know a generalization of Theorem 3.3(a)
involving D¥(q,t). Let us note that Haiman [8] has a (conjectured) two variable
refinement of (n + 1)"~! which is completely different from our DL(q,t). We don’t
know of any direct connection between our work and Haiman’s, and such a connection
remains an intriguing area of investigation.

ACKNOWLEDGMENT. Research partially supported by NSF grant DMS-9500714.
I am grateful to Donald Knuth for pointing out several inaccuracies in the original
version of this paper.

References

[1] A. Bjorner and F. Brenti, Affine permutations of type A, Elec. J. Combinatorics
3(2) (1996). Available at the URL
http://ejc.math.gatech.edu:8080/Journal/Volume_3 /foatatoc.html.

[2] A. Bjorner and M. L. Wachs, g-hook length formulas for forests, J. Combinatorial
Theory (A) 52 (1989), 165-187.

[3] N. Bourbaki, Groupes et algébres de Lie, Ch. 4, 5, et 6, Eléments de
Mathématique, fasc. XXXIV, Hermann, Paris, 1968.

[4] D. Foata and J. Riordan, Mappings of acyclic and parking functions, aequationes
math. 10 (1974), 10-22.

[5] J. Francon, Acyclic and parking functions, J. Combinatorial Theory (A) 18
(1975), 27-35.

[6] I. Gessel, A noncommutative generalization and g-analog of the Lagrange inver-
sion formula, Trans. Amer. Math. Soc. 257 (1980), 455-482.

[7] I. Gessel and D.-L. Wang, Depth-first search as a combinatorial correspondence,
J. Combinatorial Theory (A) 26 (1979), 308-313.

[8] M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Algebraic
Combinatorics 3 (1994), 17-76.

[9] P. Headley, Reduced expressions in infinite Coxeter groups, Ph.D. thesis, Univer-
sity of Michigan, Ann Arbor, 1994.

[10] P. Headley, On reduced expressions in affine Weyl groups, in Formal Power Series
and Algebraic Combinatorics, FPSAC 94, May 25-27, 1994, DIMACS preprint,
pp. 225-232.

[11] A. G. Konheim and B. Weiss, An occupancy discipline and applications, SIAM
J. Applied Math. 14 (1966), 1266-1274.

[12] G. Kreweras, Une famille de polynémes ayant plusieurs propriétés énumeratives,
Periodica Math. Hung. 11 (1980), 309-320.

[13] C. L. Mallows and J. Riordan, The inversion enumerator for labeled trees, Bull
Amer. Math. Soc. 74 (1968), 92-94.



14

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Richard P. Stanley

A. Postnikov and R. Stanley, Deformations of Coxeter hyperplane arrangements,
in preparation.

J.-Y. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Lecture Note
in Mathematics, no. 1179, Springer, Berlin/Heidelberg/New York, 1986,

J.-Y. Shi, Sign types corresponding to an affine Weyl group, J. London Math.
Soc. 35 (1987), 56-74.

R. Stanley, Generating functions, in Studies in Combinatorics (G.-C. Rota, ed.),
Mathematical Association of America, Washington, DC, 1978, pp. 100-141.

R. Stanley, Ordered structures and partitions, Mem. Amer. Math. Soc., no. 119,
1972.

R. Stanley, Enumerative Combinatorics, vol. 1, Wadsworth and Brooks/Cole,
Pacific Grove, CA, 1986; second printing, Cambridge University Press, Cam-
bridge/New York, 1996.

R. Stanley, Hyperplane arrangements, interval orders, and trees, Proc. Nat. Acad.
Sci. 93 (1996), 2620-2625

C. H. Yan, Generalized tree inversions and k-parking functions, in preparation.

Department of Mathematics 2-375
Massachusetts Institute of Technology
Cambridge, MA 02139



