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For a finite graph G with d vertices we define 2 homogeneous symmetric function
X of degree d in the variables xy, x,, ... If we set x; = --- =x,=1 and all other
x;=0, then we obtain ys(n), the chromatic polynomial of G evaluated at n. We
consider the expansion of X in terms of various symmetric function bases. The
coefficients in these expansions are related to partitions of the vertices into stable
subsets, the Mobius function of the lattice of contractions of G, and the structure
of the acyclic orientations of G. The coefficients which arise when X is expanded
in terms of elementary symmetric functions are particularly interesting, and for cer-
tain graphs are related to the theory of Hecke algebras and Kazhdan—Lusztig poly-
nomials.  © 1995 Academic Press, Inc.

1
1. BACKGROUND

Let G be a (finite) graph. We will consider a symmetric function
Xo(x)=X4(x,, x5, ..) associated with G. Xs(x) will have the property
that the specialization Xg(17) “(short for Xu(x,=x,=---=x,=1,
Xpp1=Xn,o= - =0))is equal to ys(n), the chromatic polynomial of G
evaluated at the positive integer n. We first review some properties of
chromatic polynomials which will be generalized by Xs(x).

Let V'=V(G) and E= E(G) denote the vertex and edge sets of G, respec-
tively. Set d= #V and ¢= #E. (The more customary notation p= #V
would conflict with our use of p for power sum symmetric functions.) We
always assume d>1. Let P={1,2,..}. A function x: ¥V —P is called a
coloring of G. The coloring is proper if k(1) # x(v) whenever « and v are the
vertices of an edge e of G. For a positive integer n, let y(n) denote the
number of proper colorings x : V' — {1, 2, .., n}. In particular, ys(n)=0 if
G has a loop (an edge from a vertex to itself). Moreover, any multiple edge
can be replaced by a single edge without affecting the set of proper
colorings of G. Hence from now on we assume that G is simple, i.e., has no
loops or multiple edges. Thus we think of an edge ¢ as being a two-element
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set {u, v} of vertices, abbreviated e =uv. It is a standard and easy result of
graph theory that y(n) is a polynomial function of n, called the chromatic
polynomial of G. Moreover, y.(n) is monic of degree d, and the highest
power of n which divides y(n) is n%), where ¢(G) denotes the number of
connected components of G. In Theorem 1.1 we state two classical results
?mmobam:% equivalent) which interpret the coefficients of xe(n). Background
information on set partitions, M&bius functions, etc., used here may be
mo:b.a in [30]. Let us call a partition = = {B1, ..., B,} of V connected if the
restriction of G to each block B, of 7 is connected (as a mamvg. The lattice
e.\ contractions (or bond lattice) L of G is the set of all connected parti-
.:ocm of G, partially ordered by refinement. L, is a geometric lattice, so it
is ranked. The rank of ne L is given by d— ||, where .|n| denotes the
number of blocks of 7. Moreover, the Mébius function u of Lg strictly

alternates in sign [24, Sect. 7, Thm. 4; 30, Prop. 3.10.17], which is equivalent
to the inequality

A|Hv&1a§_tA@u ﬁvvov ’ AHV

@H m& ne Lg. Here 0 denotes the unique minimal element of L, (the parti-
tion into d one-clement blocks). ‘

1.1. TeeEOREM: (a) (Whitney [331). For a (loopless) graph G we have

Yoy = T (—1)%8pecs),

ScFE

where ¢(S) is the number of components of the spanning subgraph G of G
with edge set S.

(b) (Whitney [337; equivalent to Birkhoff [2]). We have

xe(m)= Y u(®, m)n™,

nelg

where || denotes the number of blocks of m.

An acyclic orientation o of G is an orientation of each edge of G so that
the RmEadm directed graph has no directed cycles. A sink of o is a vertex v
moﬂ.,i:.or no edge points out of v. In particular, an isolated vertex of G is
a sink in every acyclic orientation of G. Write [#*] f(n) for the coefficient
of n* in the polynomial f(n). ;

H.N.. THEOREM. Amvnaﬁmaou\ [28]). The number of acyclic orientations
of G is 3@\ to (—1)%g(—1). (Note that y,(—1) is defined using the fact
that y(n) is a polynomial in n.)
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(b) (Greene—Zaslavsky [16, Thm. 7.37). Let v .@m any :.mi@.m of G.
Then the number of acyclic orientations of G whose unique .w.S» is v is equal
to (—1)?=[n] y(n) (independent of v). (Note that if G is not .me::.m&m&
then this number is 0, since every connected component of an acyclic orienta-
tion has at least one sink.)

Suppose that the edges of G are Hmcozom 1,2, .., g (each oa% e receiving
a different label a(e)). A circuit is a minimal set of .om._m@m é?ov is not a
forest (i.e., which contains a cycle). A broken circuit is a circuit ,SP :.m
largest edge (with respect to the labeling o.c removed. The broken QMQ::
complex Bg of G (with respect to o) consists o.m all m:dmﬂm of the e mmm
which do not contain a broken circuit. To following result is known as the
Broken Circuit Theorem and is due to Whitney [33, Sect. 7]. For further
information on broken circuits see for instance [3; 5; 6; 24, Sect. 7].

1.3. THEOREM. We have

Kol = T (=1)nt .

Se Bg

A fundamental property of chromatic Uo_uB.onm_m“ msm. the basis H.eoH
inductive proofs of many of their Eov‘waomu is the &&SS:l%ﬁSQ.S:
property. Let e be an edge of Q\ which is not a ﬂoﬂo. (We are mwﬁﬁﬂm
anyway that G has no loops.) Let G\e denote G with Q.S edge e deleted,
and let G/e denote G with the edge e contracted to a point. Then

XQAEVHNQ/%EVIXQ\%:V. (2)
i A i d using (2). We
For instance, Theorems 1.1 and 1.2 can be H@mm;%.?o,\o
will be giving extensions of Theorems 1.1 and 1.2 sgos.woa for X4(x), but
which cannot be proved by deletion—contraction techniques.

2. BASIC PROPERTIES

Let x;,x,,.. be (commuting) indeterminates, and suppose
ﬂ\AQv = %CHV aeey C&HV.

2.1. DeFINITION.  Define

»M\Q ”N‘QARV = \M\QAX: X2, v = M Nicb.vna?uv .vmx?&u
K

where the sum ranges over all proper colorings k : V' — =u./
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It is clear from the definition that X 6(X) is a homogeneous symmetric
function in x = (x,, X3, ...) of degree d= # V. We will use throughout this
paper notation and terminology involving symmetric functions and parti-
tions from Macdonald [18].

Note. An object closely related to X, has been investigated by Ray,
Wright, and Schmitt [21-22] (as well as some other papers less relevant
to what we do here), called the wmbral chromatic polynomial and denoted
by 7*(G; x). From x/(G; x) it is possible to compute X,,. Indeed, in the
preceding references there is defined for each positive integer k a polyno-
mial %(G; k¢) in the variables ¢= (41, ..., ¢,), which can be obtained from
1%(G; x) by “umbral substitution.” Knowing this polynomial is equivalent
to knowing the symmetric function

M QN\N\;L
Ald
1) =k

where the notation follows Eq. (3).

From the definition of X ¢ We see that wsoism Xe(x) is equivalent to
knowing, for each partition A of d, the number of proper colorings of G
with A, vertices colored i. The following result is also immediate from the

definition of X, and shows its connection with the chromatic polynomial
of G.

2.2. PROPOSITION. Let neP. Then X ¢(1") =y (n).

Let us note that the specialization J(1") of a symmetric function S(x)is
well-known in the theory of symmetric function; see, e.g, [18, Exam. 1,
p. 18, and Exam. 4, pp. 28-297.

Many known graphical invariants related to graph coloring can be
computed from X,. For instance, the chromatic difference sequence of
Albertson and Berman [1] can be computed from X - It is also immediate
from Proposition 2.4 that X determines the matchings polynomial (as
defined, e.g., in [15, p- 1]) of the complement G (and hence of G itself by
[15, Thm. 2.37). In particular, if G is bipartite then knowing X is equiv-
alent to knowing the matchings polynomial of G or G. For a special
property of X when G is bipartite, see Corollary 3.6. The fact that X s
determines the matchings polynomial of G can also be seen from
Theorem 2.6, since u(0, 7) = (—1)’ when type (m)= (14-2273,

A natural question to ask about X ¢ is whether it determines G. Naturally
we do not expect such a simply defined combinatorial invariant to deter-
mine G, and such is indeed the case. It turns out that X distinguishes all




e
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. The boﬁ.gmw we consider consists of the power sum symmetric func-
tions p,. Q:\Q.g S S E, let A(S) be the partition of d whose parts are equal
to the vertex sizes of the connected components of the spanning subgraph
of G with edge set S. For instance, if S= ¢ then AS)= 17>, .

Fic. 1. Graphs G and H with Xo=X.
2.5. THEOREM. We have
Xo= M AIC%JQGV. - 4)
SCE

pﬁda\. Given ScE, we have

eleven nonisomorphic four-vertex graphs, but that there is a unique pair
G, H of nonisomorphic five-vertex graphs for which X, = X. These graphs
are shown in Fig. 1. Using the notation of Proposition 2.4, we have

X=X g=2M5y + 45111 + Myga1s-

We do not know whether X, distinguishes trees. Of course all d-vertex
trees have the same chromatic polynomial n(n— 1)1,

Let G+ H denote the disjoint union of the graphs G and H. The follow-
ing result is an immediate consequence of Definition 2.1.

»E@C&H M x",
ke Ky
where K¢ denotes the set of all colorings x : ¥ — P which are mono-

owHoano on the connected components of the spanning subgraph G of G
with edge set S, and where x* = Xe(oy) " * Xye(og)- Hence

2.3. PrROPOSITION. We have X, z=XsX4.

Given a symmetric function f(x), it is natural to expand it in terms of

M AIC%MN&:@CQH M (—1)#S M X"

the many known “natural” bases for the space of symmetric functions and ScE SeE e Kg

ask for a formula or a combinatorial or algebraic interpretation of the coef- . s

ficients. The first (and easiest) basis we consider is the monomial symmetric =D x M (—1)7%
K S<F,

functions m,. It is more convenient to deal instead with the augmented

monomial symmetric functions #, [8], defined by where in the bottom line « ranges over all colorings « : ¥ — P, and where

E, is the set of all edges e of G such that the two vertices of e have the
same color. Hence the sum on S is 0 unless E, is empty, in which case the

sum .mm 1. Thus the bottom line becomes > x*, summed over proper
. colorings x, and the proof follows. ]

wy=rlrtomy,

where A has r; parts equal to i {denoted A= {1"2™...>). Define a stable
partition © of G to be a partition of the set ¥(G) such that each block of
7 is totally disconnected (i.e., each block is a stable (or independent) set of
vertices). The type of a partition n of a d-element set V, denoted type(n),
is the partition 4 of d whose parts 4, are the sizes of the blocks of 7. The
following result is essentially just a restatement of the definition of X;.

ﬂﬁoRB. 2.5 is a direct generalization of Theorem 1.1(a) (Whitney’s
theorem), since p5,(17) = n°. We next give an analogous generalization
Sa. Theorem 1.1(b). An analogous result for the umbral chromatic polyno-
mial of Ray et al. appears in [22, Theorem 4.3; 21, Theorem 3]

2.4. PROPOSITION. Let a, be the number of stable partitions of G of 2.6. THEOREM.  We have

t A Th 0
ype en »M\Q” M \&Acu ﬁv .E&ﬁw?&.
Xo= ). 2, (3) o

gt NNMQM <<.o could deduce this result directly from Theorem 2.5, but
a Obius inversion argument analogous to the origi 00

ginal proof of

Hwooaoa.s L1(b) [33] (see also [24, Sect. 9; 30, Exer. 3.44; 34, p 12817) is
instructive. Let 6 & L, and define B

~ Proof. The coefficient of a monomial x¥'x% ... in X(x) is equal to the
number of ways to choose a stable partition 7 of G of type 4= {17272 ...,
and then color some block of size A, with the color i for each i. Once we
choose m we have r ! r,!--- ways to choose the coloring, and the proof

follows. § V X, =X, (x)=Y x*, @
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summed over all colorings x : V' — P such that (i) if u and v are in the same
block of ¢ then x(u)=«(v), and (ii} if « and v are in different Ewowm and
there is an edge with vertices u and v, then x(u)# x(v). Given any
k : V' — P, there is a unique o € L such that « is one of the maps appearing
in the sum (5). It follows that for any ne L, we have

@Jﬁmﬁav” M »M\Q.

oz

By Mobius inversion,

Xo= ), Piype(o) M, 0).

C=T
But X3= X, and the ?oowq follows. [

Let @ denote the usual involution on symmetric ?wwaoa [18, p. 14]
satisfying in particular w(p,)=¢, p, where ¢, = AI.CQT ), Here A —dand
/(1) denotes the length (number of parts) of 4. Given a Q-basis u, for the
space A, of symmetric functions with rational oo&moﬂoﬁ.m (any .oaoao.a
field could be used in place of ), we say that a me.pEQEo function f is
u-positive if in the expansion f=3 d,u,, the ooQ.,onb\.ﬁm d, mﬁo.m: non-
negative. We also say that a graph G is u-positive if X is u-positive.

!

2.7. COROLLARY. For any graph G, the symmetric function wXg is

p-positive.

Proof. Since for A |-d we have ¢;=(—1)"'™), there follows &0 =
(—1)Y~ . Hence from (1) and Theorem 2.6 we have

SV\Q” M _.E\AOu ﬁ“v_ »Q&Gn?ﬂvv

nelg

and the proof follows. J§

The graphs with the simplest chromatic ﬁoa\bo.nnm_m are the forests
(graphs without cycles). If G is a forest with d vertices and ¢ oﬁmwwomu Sow
Ly is isomorphic to the boolean algebra B, and ys(n)=n° @ —1)4
Moreover, u(0, ©) = (— 1)~ " for all n e L. However, Qﬁ symmetric func-
tion X is not so trivial, and it seems difficult to give a m:b@_o. @H;Bc_.m .moH
X even when G is a forest. (Even the case when G is a wm.ﬁw is E.ﬁmﬂom;:bm
and is treated in Proposition 5.3.) For forests we have an Eﬁoa.o.maum m.o_m-
tionship between counting connected partitions and mﬁm@_.@.cmﬁnsosm. given
by the next result. Note that for a forest, a connected partition is on._Eq&_oE
to a subset of the edges. The lattice L, of contractions of G is just a
boolean algebra of rank g.

¥
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2.8. COROLLARY. Let G be a forest. Then knowing for all X |- d the num-
ber a, of stable partitions of G of type A is equivalent to knowing for all
A \=d the number b, of connected partitions of type A.

Proof. By Proposition 2.4 we have X, =2 a;;. On the other hand,

for a forest G we have u(0, n) = Euypeny f0T all me L. Hence Theorem 2.6
becomes

M\QHM&@\TS. (6)
Ji

Since both {,} and {p,} are bases for Ag, the proof follows. [

Corollary 2.8 need not be true if G is not a forest. For instance, let G and
H be the graphs of Fig. 1. G and H have the same number of stable
partitions of each type A since X, ¢=Xpg. However, G has two connected
partitions of type (3, 2), while H has three such paritions.

Next we give an analogue of Theorem 1.3 (the Broken Circuit Theorem).

We retain the notation B, of Theorem 1.3 as well as the notation A(S) of
Theorem 2.5. \

2.9. THEOREM. We have

Xe= M AlC_m{\:rﬁ.

SeBg

Proof. Let me Lg, say of rank k. Let G, be the spanning subgraph of
G consisting of all edges uv of G for which the vertices u and v are in the
same block of n. Thus L, is isomorphic to the interval [0, 7] of L. By
Theorem 1.3, we have that (—1)*u(0, ) is equal to the number of k-ele-
ment subsets S of edges of G, which contain no broken circuit of G (or
equivalently of G, with the edge labeling obtained by restricting that of
G). These subsets S are precisely the subsets of edges of G which contain
1o broken circuit and whose connected components have vertex sets equal
to the blocks of 7. The proof follows from Theorem 2.6. ]

2.10. COROLLARY. Let o be any linear ordering of the edges of G, and let
VE-d. Then the number of subsets S of edges of G which contain no broken
circuit (with respect to the ordering a) and for which J(S)=v is independent

of .

Proof. By Theorem 2.9 this number is just (— 1)'*" times the coefficient
of p,in X;. §
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The differential operators 6/0p; play a useful role in the theory of sym-
metric functions [18, Ex. 3, pp.43-45]. Here 0/0p; acts on a &\BEwSo
function expressed as a polynomial in the p,’s. The case m.\&: is nm@msﬂw:%
interesting, since this is the same operator as “skewing by s,,” ie,
(0/0py) s, =5/, where s, denotes a Schur function and s, a skew w,owca

function.

2.11. CorOLLARY. We have

0

— Xg= Xe_ s

o G th G-—H

where H runs over all j-vertex induced connected subgraphs . QN G,

=, (0, 1)=[n] xu(n), and G — H denotes G with H (and all incident
H 3

edges) deleted.
Proof- By Theorem 2.6 we have

0 ~
@\%\Q = M .:\AO.\. ﬂnv Nw&ﬁo?&“

7 H,o
where n=0cu {H w, is a connected partition of G with #H = A.Hr.zm
ceLs_ ) Now [0,n]~ L, x [0, ¢]. By the product property of Mobius
functions [24, Sect. 3, Prop. 5; 30, Prop,3.8.2] there follows

|\M\QHth M .:an o.v.uaeiqv

@%.\ H celg g

HM baXe_n B
H

When #H=1 we have u,=1, and when # H=2 we have ugz= —1
Hence we get the following corollary to Corollary 2.11.

2.12. CorOLLARY. (a) We have

%N@Hawvumm_:
where X _, denotes G with vertex v (and all incident edges) removed.
(b) We have
bw\qﬂ - M NQlS%
mhm ecE

where G — V(e) denotes G with the two vertices of e (and all incident edges
removed.
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3. Acycric ORIENTATIONS

In this section we generalize Theorem 1.2. Our results will involve the
expansion of X in terms of the elementary symmetric functions e 1 We
will require some results from the theory of quasi-symmetric functions and
P-partitions, which we now review.

Following Gessel [13], define a power series F(x)=F(x,, x,,..) (say
with rational coefficients) to be quasi-symmetric if

[xftxg. e xF] F(x)= [x5x3. X% F(x)
whenever i, <i,< ... <i, and J1<Ja< -+ <jp. (Here [x*] F(x) denotes
the coefficient of the monomial x* in F(x).) Clearly a symmetric function
is quasi-symmetric. It is casily seen that the set 2, of homogeneous quasi-
symmetric functions of degree d is a vector space over () of dimension 29!
(the number of sequences a4, a,, .., a;. of positive integers with sum d).

Given a subset S of [d— i]1:={1,2,.,d— 1}, define the fundamental
quasi-symmetric function Q s(x) = Qg 4(x) by ,

Os(x)= M Xig Xy 0 Xy
i< - <y

L<ij1ifjes

‘

For instance, Qra—1q is the elementary symmetric function eq, and Q is
the complete symmetric function hg It is easy to see that the set
{0s:S<[d—17} is a Q-basis for 9,. .

Let P={vy, .., v,} be a d-element poset. Define

\M\NAXV ”M .XRASV .. ..vmic&u
K

summed over all strict order-preserving maps « : P— P, ie., if u<p in P,
then r(u) <x(v). Clearly X p is a quasi-symmetric function, and the theory
of P-partitions [27; 30, Sect. 4.5] allows us to expand X, in terms of
the basis {Qg:Sc[d—1]}. Namely, fix an order-reversing bijection
w:P—[d]. (Thus  is a linear extension of the dual P* of P.) Given a
linear extension «:P - [d ], we can identify « with the permutation
(@@~ 1(1)), w(x='(2)), .., o(e=(d))) ==(ay, .., a;) of [d]. Define the
descent set D(a) of a by

Die)={j:a;>a; ,}.
Let £(P, w) denote the set of all linear extensions of P (regarded as per-

mutations of [d] via w). The following result is a consequence of [27,
Thm. 6.2; 30, Lemma 4.5.1; 13, Eq. (1)].
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IS 2

3 4

Fi1g. 2. A labelled poset (P, ).

3.1. THEOREM. With notation as above we have

Xp= M Q p(ay-

ae L(P, w)

3.2. ExampLE. Let (P, w) be given by Fig. 2. Then (P, w)= {3412,
3421, 4312, 4321, 4231}. The descent sets of these permutations are {2},

{2,3}, {1,2}, {1,2,3}, {1,3}. Hence
Xp=0+023+01,+0Q123+01s.

We can now give our main result on acyclic orientations. Following
[18], we let /(4) denote the length (number of parts) of the partition A.

3.3. THEOREM. Suppose

NQ“ M Q&Q&. A‘Nv
A-d

is the expansion of X in terms of elementary symmetric functions e,. Let
sink(G, j) be the number of acyclic orientations of G with j sinks. Then

sink(G, j)= Y. ¢;.
id
A)=j
Proof. Let o be an acyclic orientation of G and k a proper coloring. We
say that x is o-compatible if «(u) < k(v) whenever (v, u) is an edge of o (ie,
the edge wv of G is directed from v to u). Every proper coloring is com-
patible with exactly one acyclic orientation o, viz., if uv is an edge of G with
x(u) < x(v), then let (v, u) be an edge of o. (This observation was the basis
for one of the two proofs of Theorem 1.2(a) given in [28].) Thus if K,
denotes the set of o-compatible proper colorings of G, and if K, denotes
the set of all proper colorings of G, then we have a disjoint union
Ks=U,K,. Hence X;=3 X, where X, =3, _, x* Let 0 denote the
transitive closure of o. Since o is acyclic, b is a poset. By the definition of
Xp for a poset P and of X, we have X, =X, so

\w\QHM\w\m. @®)
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We nOW come to the crucial step in the proof. Let  be an indeterminate
and define a linear transformation ©:2;,— Q] as follows: “

tt—1)} m%HT..:L..TNi.;&fC,
0, otherwise.

QAQ,&HW

Claim. For any d-element poset P, we ha i
T A ve ¢(Xp)=1", wh
number of minimal elements of P. oy wherem s the

Proof .c\ Q@S. Let w:P—~[d] be an order-reversing bijection as
above. Since  is order-reversing, the only way to obtain a linear extension
o= AQ.T..J az) with descent set {i+1,i+2 . d— 1} is as follows. Let v be
the minimal element of P with the largest label o(v). Choose any N minimal
elements u,, ..., u;, of P other than v, list them in increasing order of their
labels, then list v, and finally list the remaining elements of P in decreasin
order of their labels. Since there are (™Y choices for Upy oy Uy, WE oca:.m

H

p(X)=Y As.l Hv i1y

i=0 ‘

="
This proves the claim.
Note that if o is an acyclic orientation of G, then the number of sinks of

0is the number of minimal 5 .
yields ‘nimal elements of 8. Hence applying ¢ to Eq. (8)

¢(X) =) sink(G, j)2 9)

We now want to compute ¢(e,) for A |- d. The easiest way to proceed is to
let P, be the poset which is a disjoint union of chains of cardinalities
Ats Ay, ... Clearly Xp,=e;, 50 by the claim we have ple;)=1'P. Applyin

¢ to Eq. (7) and comparing with (9) yields . e

Y eat' P =Y sink(G, j)¢.
A J

Taking the coefficient of # on both sides completes the proof. §

2203 Emﬁ Theorem 1.2(a) is an casy consequence of Theorem 3.3.
amely, since e,(1") = (Z)2)---, we have from (7) that

g () o
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Set n= —1 and use the formula A\\.JH (—1)Y forall j=0to get yo(—1)=
(=1)?3 ¢;. By Theorem 3.3, ¥ ¢, is just the number of acyclic orientations
of G, which yields Theorem 1.2(a).

We don’t get Theorem 1.2(b) directly from Theorem 3.3, but rather the

somewhat weaker result
sink(G, 1) = (—1)*~ " d[n] ys(n).
is divisible by n® Hence from (10) and

For if /(A)>1 then (2)(1)-
Theorem 3.3 we get

[n] 26(m) = e o] @

=(—1 &IHg

(—1yi1 <
sink(G, 1)
— |H &\H‘vu
(-1) y

as desired.

Although 3, sink(G, j) and sink(G, 1) are computable from yg(n), one
cannot in general obtain sink(G, j) from y4(n), or even from the more
informative Tutte polynomial [4]. For instance, the two trees with four
vertices (the path P, and claw K;;) have the same Tutte polynomial (as do
any two trees with the same number of vertices), but sink(P,, 3)=0 and
sink(Ky5, 3)=1.

In view of Theorem 3.3 it is natural to ask whether the coefficients
c, themselves in the expansion Xz;=> c,e, have any combinatorial
significance. Unfortunately, in general we need not have ¢, >0 (in other
words, G need not be e-positive), so a combinatorial interpretation cannot
be too simple. Of the eleven nonisomorphic (simple) graphs G with four
vertices, exactly one fails to be e-positive. This is the claw K5, for which

Xy, =eq+5e3 —2ey+ ey

On the other hand, there are some special classes of graphs for which more
can be said about the coefficients c¢,. See Corollary 3.6 and Section 5 for
further details.

Although we can have ¢, <0, there is a refinement of Theorem 3.3 which
shows that some additional sums of certain ¢, are nonnegative. Call a par-
tition p = (uy, Ky, ..) of some integer r < d allowable if there exists a stable
partition of type u of some subset W of V. (Hence # W =r.) We partially
order all allowable partitions of r by dominance (called the natural order
in [18]), ie, u<v if py+p,+ - +u;<vy+v,+ -+ v, for all i. An
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Fig. 3. A graph with two maximal allowable partitions.

mzoﬁmzo partition u [-r is maximal if it is maximal with respect t
mewsmﬂowﬂmmuwzmﬁ M: allowable partitions of . For instance, let Q@vo EM
of Fig. 3. en both (4,1,1) and 3,3 im i
smallest graph which possesses anvgmn oA:@ BWmMHE_WMMWMMM:NMMoMM
' 9&.@ r==60). As in _HH.mH_ we write u' = (u1, ub, ...) to denote the conjugate
@mEQOd to p. In particular, u} =1/ (). e
Given an acyclic orientation o of G, define its sink sequenc
wm?.v = (81, 85, .y ;) as follows: s, is the number of sinks of o cﬁﬁ% Emmm
5 mem.mR removed (together with all incident edges), then @. is the n :
ber of sinks of the resulting acyclic digraph. When va@mo K} mwbwm are ME )
removed, then s, is the number of new sinks, etc., until at Mw@ jth ste "
reach a HoSE\. disconnected graph with S; vertices. Note that Srmbw mmo
sequence mm.?v 1s sorted into decreasing order, we get an allowable partiti N
of d If Pis a poset (e.g, the transitive closure 5 of o), then w@Bm _Ms
Smmﬁoa as an acyclic digraph (with an edge vy if @MAQ in P) ‘w\r N
ss(P) is defined, and in particular we have ss(0)=ss(d). We y state
our generalization of Theorem 3.3 .< T o state

34. THEOREM. Let B=(Hhy, ., ;) be a maximal bartition of r <d, with
w>0. Let Xo=3c, e, as in (7). Given 0<j<d—r, let sink(G, p, j) mm th
number of acyclic orientations o of G whose sink sequence wma.v%a fo .
$8(0) = (g, wr 1y, J, ) (We can have j=0 only when r=d.) Then "

mH.GWAQu tu,\.v”Mﬁ.\f AHHV
i
summed over all partitions Fd such that

[ r_ ’ .
LT Ry A= Uy ey A=y, l+1=].

Proof. The proof is analo
. gous to that of Theorem 3.3. Defj
woSoEo.%EmE 9.2, Q[r] as follows: e @

Hr—1), 8= gy, thoy oy gy g+ i+ 1, m+i+2, ., d—1)
0, otherwise.

0,(05) = ﬁ
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CLAM. Let P be a d-element poset. If ss(P)= (U, s, - H: §u+w Nwwew
. +<4A\\: ;
=" If ss(P)= (v, V,,..) where v+ ; o
NQ\MMW\NVAN.AN \%mxA QW:@\MVHO. (We do not care about the case mmﬁuvw
(Vi) Vay.) where vi+ <o+ +v;>ug+ -+ +p,; for some iand vi+ - +v;=
fy+ -+, for all i)

Proof of Claim. Let w:P —[d] be an order-reversing dcﬁwmmw ww HM
the proof of Theorem 3.3. Assume m.mQuVH.At:.j Has 15 ...V.IAQ -
order-reversing, the only way HO.MUHNE M Emmw @Mmﬁom%_wﬂ W Mu EM , :mm ws

ith descent set {iy, ..., 4y, Hs+i e d— . st 1
Mﬁommw:m order %. their labels Mro e EM:MHM_ M“MMMHM%M Mm WWMMU .:”_ %
i i i e U, Nex , etc., L
EM HMMMMSW%MMMHM mvﬁwmm,%mww_.w_,ﬁ. - \.W u; elements of P. Let v be the minimal
MoBoE of the remaining 4Uom2 Q with the Eamomﬁ _m@o_.ewi. MMW%M HMMW
i minimal elements v, ..., u; of Q other Emb v, list EQ.& in wboﬁbﬁm Mw. e
of their labels, then list v, and finally list the remaining o§ omww Hs of O In
decreasing order of their labels. Since there are at most M w ) Shoices fox
Uy, .., U;, We obtain GnTM\wVAHvN,: Mxmoﬁ% as \Hb M_o wuaoo 0

is proves the claim for ss(P)= ({1, tas - s P, .0.).
Hr%omw assume ss{(P)= (v, v,,..) where vit oo +§AEM aom%% MMM
some i. If a=(a,,a,,..) is a linear extension of P wit ot

= +i+1,.,d—1}, then the &oBos.a wm P a m
MHIMMH..V;.M:\N .5 + form an order ideal .Om P which Hmr w.scb%wﬁ M
i um:aowa:m and hence ooEmm:m no (i+ :-&oEoH:H c Eb.o ot 1
ss(P)= (v, v,, ...), then any order ideal of P which ooH_w mEma gt
element chain has at most v+ -+ +v,<pu;+ --- +.§M MBMH_H&?
cannot exist, so ¢,(Xp)=0. This oo.BEQOm the ?o.Om o .ﬁ N alr .o Iy

Now note that since p is maximal, no acyclic oEo:“ o ot
can satisfy ss(o)=(v{,v,, ..) where (a) v;+ -+ +m§V.ﬁ . tuEEm
some ie[/], and (b) v,+ --- .*..S.WE.T R o 1 oW\wIN:_. o.a o
either ss(o)=(uy, .., 45, M, ..), in which case eth WWoIBo “N.m o
ss(0)= (v, v,, ..) where v;+ -- Vi< + - +F.Eo~ ,
which case ¢,(X;)=0. Hence applying ¢, to (8) yields

¢ (Xg) =Y sink(G, p, j) . (12)

We now want to compute ¢ ,(e;) for 4 |-d .m:m apply ¢ m to Q v.mww ﬂw@wﬂ.
angularity property of the expansion of e, in 83\5 of t o. E P ] . mmﬂ m.oEm
e oy S\W W ?.W RM.M.MMMWM \N&mﬂm; Eoﬂ we would
wmﬁmﬁmw@s mp@%ﬂ_w_@ M fs given by (3). This contradicts maximality ow
u. Hence we may assume that either A'=(uy, .., 4y, ...) or A= (v, V5, o
with some v, + --- +v,<p;+ - + ;.
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Let P, be as in the proof of Theorem 3.3. By the assumption on A and
what we have just proved about ¢ «(P), we have

Nsu :Cf“@?..f:::ﬁ v
w,n
ulP3) mou otherwise.

Applying ¢, to Eq. (7) and comparing with (12) yields
M ¢, "= M mmHLAAQU H, ,\v NQ.u
J
where

the first sum ranges over all Ad and m such that

A=ty oy iy, m, -.). Taking the coefficient of # on both sides completes
the proof. J

It should be remarked that the maximal partitions y I 7 which appear in
Theorem 3.4 can easily be read off from the expansions (3) or (7) of X, G
Namely, u |- is allowable if and only if some A - d has My, fy, ... among
its parts and a, 0. Of course from the allowable 4 we can compute which
are maximal. By triangularity, the set of maximal elements (in dominance
order) among all partitions y— (Vis e Vi) 7 for which there is a
A=, s vy, ~) Wwith ¢, #0 coincides with the set of maximal
allowable partitions of r. Hence we can also read off the maximal partitions
directly from (7).

Foozmﬂ.nommomﬂroﬁoﬁwh mwOémmgmﬁSWo?HmiﬂmEo». In par-
ticular we have the following resuit. .

3.5. COROLLARY. Given the graph G, let u be a maximal
10 G) partition of d. Then >0 In fact,
w=<1"2" > and a, is given by (3).

(with respect
RHS:N_:.QE Wwhere

Proof. In Theorem 3.4 let J=0.Then Eq. (11) reduces to sink(G, u, 0) =
Cws 80 ¢, >0. We don’t really need Theorem 3.4 here, since the tri-

angularity of the basis {ex} with respect to {m,}, together with (3),
immediately gives Cw=rilrylea, §

For certain graphs we can use Theorem 3.4 to show that all ¢ 220

3.6. COROLLARY. Suppose that the vertices of G can be partitioned into

wo disjoint cliques. (Equivalently, the complement of G is bipartite.) Then
¢, =0 for all ).

Proof.  The allowable partitions of G all have the form {192%>, where
4+2b=d. Thus if (2° > is allowable, then it is maximal. If >0 then
choose = (2*) and J=1 in Theorem 3.4; if =0 then choose u= (2%

607/111/1-13
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and j=0. The only partition A |- d appearing in (11) is then 4 = (1“2°}, so
¢, =0 as desired. J

With notation and hypotheses as above, we in fact have that if
A=<{1%2%> is allowable, then

o sink (G, (2°), 1), a>0
A7 Lsink(G, €29),0),  a=0.

A closely related result appears in [32, Remark 4.4]. This result is equiv-
alent to a completely different interpretation of ¢, in terms of nonattacking
rooks which shows that ¢; >0. We will have more to say about the paper

[327] in Section 5.

4. RECIPROCITY AND SUPERFICATION

In [28, Thm. 1.2] Theorem 1.2(a) of this paper is extended to the follow-
ing interpretation of y;(—n) for any ne P.

4.1. PROPOSITION. Let neP. Let js{n) be the number of pairs (o, k),
where o is an acyclic orientation of G and x : V — [n] is a coloring satisfying
k(u) <x(v) if (v, u) is an edge of 0. Then jgz(n)=(—1)*y1e(—n).

We wish to give an analogue of Proposition 4.1 for the symmetric
function X;. The result will come as no surprise to experts on symmetric
functions and combinatorial reciprocity theorems.

4.2. THEOREM. Define

MQA.XVH M R\.Rq
(0,%)
summed over all pairs (0, k) where o is an acyclic orientation of G and
x: VP is a coloring satisfying x(u)<w(v) if (v, u) is an edge of o. Then
X.=wX;, where w is the standard involution on symmetric functions (as in
Corollary 2.6).

Proof. Define a linear transformation o’:2,— 9, (where 2, denotes
the space of quasi-symmetric functions of degree d) by w'(Qs) = Q5. where
S=[d—1]—S. Thus ' is an involution. Given a d-element poset P, let
X, be as in Theorem 3.1, and define X, =3, x*, summed over all order-
preserving functions x:P—P, ie, if s<r in P then x(s)<«(s). The
reciprocity theorem for P-partitions [27, Thm. 10.1; 30, Thm. 4.5.7] implies
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that @' X, = X,. In particular, if P i isjoi i
. , =P, is a disjoint union of chaj i
.En proof oﬁ. Theorem 3.3, then Xp=e,and X,=1,, so w'e,=h m%wwmm M%
Is an cxtension of w, so we henceforth denote it also as w. a
Now apply w to Eq. (8). We get

0X,=X,= Y x*,
xe kK,

where

le

={K:V->P|«u) <x(v) if (v, u) is an edge ofo}.
Hence wX, =X, as desired. |

A supersymmetric function is a formal power series /= J(x, ) in the two

memwwma&ﬂmﬂom x= mxt X,, ...v.mcm Y=(y1, ¥5,...) which is symmetric in
8 and in the p/s, and which satisfies the “cancellation property”

JO e =706 2, o

Let o, QM:MHQ the involution @ acting only on the y variables, so x X

are regarded as constants. If f(x) is a s i i en define the
gard . ymmetric function, t

superfication f(x/y) of S by ©then define the

Jxfy) =, f(x, y),

e, replace the variables X X2, . bY X, Xy, .., ! and
@,. It is well-known (see, e.g, [19], where EMM memwgoﬁlmwmwww%hw
.\Cn | ») are our S(x/—y)) that superfication is a (degree-preservin )
_m.oBo%EMB from the ring of symmetric functions (over Q, say) to mmo
ring of bisymmetric functions (over Q). Note that \Oﬂ\ouvn flx) and
\\Mo\kvu@@kv. In particular (by Theorem 42), X4(x/0)=x, (x) and
¢O/x)=X .m?&. Egoo. we can ask whether there is some Eﬁo:ﬁmﬂmmo: of
Nﬂx\i which mo:ﬁm:Nmm Theorem 4.2. We state our result using the
ﬂomoo“ﬂﬁﬁlcﬁ zwu wum....w and P= {1, N.u «}. Let <« be a fixed linear ordering of
e = @QBEG..:M Hoﬂmwaﬂmwmw omwaowﬁos of w\ o(x/y) given below is invariant
| n ey e colors in Mﬂcw MM_.A.V.HME P, we may as well assume that

4.3. THEOREM. We have

\M\QC«\&V - M RWaL:vHWaLGV . u\wx\:du\mrimv L (13)

b
0,%

Www@m&ﬁe%m R.NN\ pairs .Acu k) where o is qn acyclic orientation of G and
V' =>PUP is a coloring of G satisfying: (a) If (v, u) is an edge of o then
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K(u) <+ k(v), and (b) if (v, u) is an edge of o, k(u)e __u.v and k(v)e P, then
x(u) < k(v). (Let us call such a pair (v, k) an okay pair.)
i i tion. Define the “superfica-
Proof. Let S<[d—1] as in the previous sec . . .
tion” ?&MEH respect to the ordering <) SQ of the quasisymmetric function
Qs by
SQs= M 22y Zig

iy igeP U P
I <<k oev <k Bg
jeSand i, jjp1e P =§<ijiy

j¢Sand iy, jjy1eP=i<iiy

where

Xy ieP
o= WF i=jeP.

Extend this map to the space 2, by linearity. We claim that if fe2,is a
symmetric function, then

Sf=f(x/y). (14)

To prove the claim, we may assume that f is a Schur function ,M\, , mmbom

the Schur functions {s,:A}-d} form a basis for the space \m_@_ao ﬁw@

homogeneous symmetric functions of Qo‘mao d. Awooao.m. [18, WM_MV_NSW Aowﬂmj
initi f this important basis.) If 7 is a standard Young ;

MM MMMMMHMO:MW p- mm@ 25, Def. 2.5.17 then the descent set D(t) of 7 is defined

by
D(t)={i:i+1 is in a lower row of t than i}.

Here we are using “English notation” for SYT’s, e.g.,

359

N B
o ~3 o

is an SYT of shape (5, 2, 2) and descent set {3, 5, 7}. It is known (implicit
in [27, Sect. 21] and more explicit in [13]) that

Q»HM Qb?t (15)

where 1 ranges over all SYT of shape A.
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It is also known [29, Theorem 5.17 that
SiX/p) = ey (16)

where o ranges over all ways of filling the shape 4 with entries from Py P
such that (a) every row and column is weakly increasing with respect to
<, (b) if ieP then ; appears at most once in every column, and (c) if 7 P
then 7 appears at most once in every row; and where m; denotes the num-
ber of ie P and #; the number of 7e P appearing in o. Let us call ¢ a super-
tableau (with respect to <), Write o for the (i, j)-entry of o, i.e, the entry
in the 7 th row from the top and the j th column from the left, and similarly
7;. We say that a supertableau ¢ is compatible with an SYT 7 if the follow-
ing three conditions are satisfied: (i) if Ty<Tg then o,<x g, (ii) if
0;=0,€P and i<k, then Y5> T and (iii) if 6,=0,,e P and i<k, then
Ty <Tx. The following facts are straightforward to verify, analogous to [27,
Lemma 6.17 or [30, Lemma 4.5.3].

* Every supertableaux ¢ is compatible with a unique SYT 7.

* Let K, be the set of all supertableaux compatible with the SYT .
Let

%@Ak_\v\v” M HmSRm:n...u\WC\mmw...u
cek;

where m, and m; have the same meaning as in ( 16). Then R.(x/y)=S0 Doy

It now follows from applying S to (15) that
Ss; = M @Qb?v

=2 R(x/y)

=s:(x/y),

as claimed. :

Let (v, x) be an okay pair (as defined in Theorem 4.3). We say that x
I8 compatible with 2 linear extension = (@i, ..., a,) e L (5, w) if (a)
Kl 1(7)) <x kK@ '(i+1)) for 1< i<d—1, (b) if k(w~1(i)) e P,
Ko~ '(i+1))eP, and 4;>a;, 1, then r(w (i) <« “(w '(i+1)), and
) if x(w (i) ep, Ko ' i+1))eP, and a;<a;,;, then
(o~ (i)) <x x(w (i + 1)). Once again it is straightforward to check that
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for each okay pair (o, x) there is a unique linear extension o € £ (3, w) with
which  is compatible. Moreover,

S a0 60,
K

where k ranges over all colorings ooB@mmEo ,S.E o Enbmo mMM%HMMw mMmH
all acyclic orientations o and all ae Z (b, w) yields UW. nw.?: ha wﬁm
agrees with the right-hand side of (13). But by ,
SX.=Xs(x/y), and the proof follows. §

5. SpECIAL GRAPHS

The main question to concern us in this section is the .mozmwwmﬂm” /MM:MM
iti i finite poset then let inc eno
aphs G are e-positive? If P is a . . : :
WOME@N-BUEQ graph; ie., uv is an edge of Foﬁuv m% .mmaﬂc mMM SEMMMW
i b denote the poset which is a disjoint un .
et chain and in. We say that P is (a+b)-free if P
-element chain and a b-element chain. We say ; [P
Mowzmim no induced subposet isomorphic to a+b. The following conjec

ture is equivalent to [32, Conj. 5.5].

5.1. CoNIECTURE. If P is (3 + 1)-free, then inc(P) is e-positive.

As mentioned in [32, pp. 277-278], this conjecture has been verified for
all posets P with #P<7. For instance, mww.m.o,\ob-o_oawwﬁ %Homnwma MMM
f them inc(P) is e-positive. Recently Stem :
(3 +1)-free, and for all o em | . e
i i that Conjecture 5.1 ho
has verfied (private communication) ( eht,
- ht-element posets P (ou
nt posets. There are 2469 (3 + 1)-free eig : ts P (out
Mﬁ”@ OWH%@@ eight-element posets), and moH. all 2469 inc(P) is e cmm::\mm
Although Conjecture 5.1 remains mysterious, J €Mmm8a_ﬁ wawm@oﬁcw :
d is closely related to , .71
ntly proved by Gasharov [11] an : ] :
MJ@MW éﬂmﬂﬂ result concerns the expansion OM X in terms of mmwwmuwwwm
tions. It is well-known that each e, is s-positive Ao.m.m .3\ mmﬁwmouam : wvm ane
. =8p -positive symmetric
the fact that e;=s.5,), so an e-posi
w-woaaé. If G is the claw K5 then Nmﬂ,f_lmﬁ._.m@: + mﬁ:r so Xg
is not always s-positive. The result of Gasharov is the following.

5.2. THEOREM. Let G be the incomparability graph of a (34 1)-free
poset. Then X is s-positive.

A special class of (3+ 1)-free posets are of particular interest. These %MM
posets which are both (3 + 1)-free and (2 + 2)-free. Such posets are ca

o . :
semiorders, and their incomparability graphs are w&oéb as S&&QMNM .
graphs or u:E.N interval graphs. They have the following characterization:
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FIG. 4. An e-positive tree,

Choose a collection € of intervals [i, j]= {i,i+1, .., J} of [d]. (Without

loss of generality we may assume that no interval in 4 contains another.)
Let G have vertex set V= [d] and edge set

E= {uv : u, v belong to some Ie®}.

In other words, G is an edge-union of cliques whose vertex sets are inter-
vals. Then G is an indifference graph, and every indifference graph is
isomorphic to such a G. A good reference for this subject is [10].

One reason for our interest in indifference graphs stems from their con-
nection with immanants of Jacobi-Trudi matrices, as explained in [32,
Sect. 4]. One can deduce easily from a result of Haiman [17, Thm. 1.4]
that indifference graphs are s-positive (a special case of Theorem 5.2).
Haiman’s proof uses the Kazhdan-Lusztig conjectures on composition
series of Verma modules (proved by Beilinson -Bernstein and Brylinski-
Kashiwara), but the proof of Theorem 5.2 by Gasharov is much more
elementary. Let us mention that Haiman also has a conjecture [17,
Conj. 2.17 on the Hecke algebra H,(q) of the symmetric group %, which is
easily seen to imply Conjecture 2.1 for indifference graphs.

Are there “nice” graphs G more general that those of Conjecture 5.1 for
which X is e-positive? A complete characterization of such graphs appears
hopeless; X, can be e-positive only “by accident.” For instance, of all trees
with at most six vertices which are not paths (for the situation with paths,
see Proposition 5.3), exactly one is e-positive, viz.,, the five-vertex tree of
Fig. 4. Tt seems just an “accident” that this tree is e-positive. On the other
hand, one class of graphs not covered by Conjecture 5.1 which seem to be
e-positive are the circular analogues of indifference graphs, ie., graphs with
vertex set V=27/d7 and edge set E=E, U ... U E;, where each E;is a
clique on a subset of ¥ of the form {a+1,a+2, s @+b}. Such graphs
need not be indifference graphs, e.g,, odd cycles. One might ask whether the
hypothesis that G is an incomparability graph in Conjecture 5.1 is really
necessary. In other words, since inc(3+1)=K,,, we can ask whether any
graph not containing an induced K5 is e-positive, Unfortunately the
dnswer is negative; the graph G of Fig. 5 satisfies

\%\Q“ HNNQIT H%NMH + HNN&N]@qu +®®&HH -+ QNwNHu
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Fic. 5. A non-e-positive clawfree graph.

yet G contains no induced K ;. On the other hand, G is contractible to K ;.
We don’t know of a graph which is not contractible to K,; (even regarding
multiple edges of a contraction as a single edge) which is not e-positive.
However, there do exist indifference graphs which can be contracted to K5
(treating multiple edges as single edges). One such example, due to
J. Kahn, is given in Fig. 6. Thus the hypothesis of non-contractibility to K,
is too weak to be relevant to Conjecture 5.1. ]

The simplest (connected) indifference graph is the path P, and the sim-
plest circular indifference graph which is not an ordinary indifference graph
is the cycle C,. For these graphs G we can compute the expansion of X
in e, explicitly and thereby verify that they are e-positive. The result for
paths seems first to have been proved by Carlitz et al. [7, p. 242]. A com-
binatorial proof was given by Dollhopf et al. [9].

5.3. PROPOSITION. We have

M.Vom.NN.
\N‘.N&H ~\N .. :
L e =TS i e 1)

Hence P, is e-positive.

First Proof (sketch). We give two different proofs. The first proof is the
most complicated but uses the most general techniques. Let P, have vertex
set V={vy,..,v,} with edges v,v;,;, 1<i<d—1. Fix neP, and let
X,=3, x*, summed over all proper colorings x : ¥ — [n] of P, such that
x(vy) =1 Let

Fi(try=Y X%t

dz1

FiG. 6 An incomparability graph of a (3 + 1)-free poset contractible to K.

of the same series are just a coincidence.
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It is clear that

FO=x+ ¥ F@)x,
I<j<n
J#EI

I<ign (18)

M\o omSu solve this m%mﬁ.ﬂb of n linear equations in the » unknowns F/(¢) by
ramer’s rule. We omit the derivation of the solution, but at any rate it is
easy to check that the unique solution is given by

m.\.ADHk\. MNWo e, (x, ..;gm\; s X, )1
H ,MNW~ ANI Hv NN,A.X.: vy .XEVN:

where £, denotes that the variable x; is missing, Hence

aMo Xp, (X1, x)t9=1+ M Fi(1)
‘\ J=1

— Zizo e;(xy, ..., x,)t
=3 (—1) e;(xy, 0, x )t

Letting #n — oo completes the proof. J

Second Proof. Let  d. The number » m of connected partitions: of P,

of type Z is just the number of distinct permutations of the parts of A |

Hence if 1= (17127 ..., then b, =( W ) .
we get from (6) that »=(,\75..)- Since P, is a forest (even a tree),

fum 3 o, Y,

Ad Fis¥a, .

Hence

M\M\W&.Nm” !
d=0 L—pi+py—ps+ -

By a known identity in the theor i ;
. ; y of symmetric funct
mmvolution w to [32, Prop. 2.27), we get (17). ctions (cg, apply the

omjmﬁwo @%s\oa series appearing in (17) (or the omm,osnmzu\ equivalent image
er un oH. w) has appeared before in several contexts [12; 31 Prop. 12
en g =1; 32, Prop. 2.2]. We do not know whether all these mw@omamzoomv

The “circular analogue” of Proposition 5.3 is given by the next result
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5.4. PROPOSITION. We have

Sisolili—1) et
&l = '
M Yoot IHIMUN.WH (i—1)et

dz2

Hence C, is e-positive.

Proof. 1In the first proof of Proposition 5.3, the denominator

D(ty=1—=) (i—1)e;t

i1
of each F/(¢) (in the limit n— o) is the determinant of the oo&moﬁbﬂ
matrix of the homogeneous part of (18). By a well-known result concerning
periodic initial conditions [30, Cor. 4.7.37, we get

. iD'(D)
Y X, t= D)

d=1
Since X, =0 (because C; is a loop), the proof follows. [

The proof technique of the first proof of Proposition 5.3 can in principle
be carried over to some other graphs. For instance, let P, be the graph
with vertex set V,= {v,, .., v,} and edges v,v;if [j—i| =1 or 2. The m.nm.%w
P, is an indifference graph and so by Conjecture 5.1 should be e-positive.
If for i # j we let

Fi(t)=Y AM xav 14,
d=2 x®
where k ranges over proper colorings x: V,— [n] with x(v,_,)=i and

k(v,) = j, then we get analogously to (18) that

Fi(ty=xx;+ Y, F¥(1)x,.
ki
Py

Solving by Cramer’s rule and letting n — oo yields, up to degree eight, that
2 Fi= 3 \M\SNKHMV
i#*j dz=2
where
D=1-—2e31>—6e,t* —24e5t° — (6des + Ges; —e43) 1°
— (174e5 4 30¢e4, + 6e5, — 6e43) 1’
— (426e5 + 120e,, + 30eq, — 24es; + 3e )5+ - -.
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Unfortunately the coefficients of 1 — are not all nonnegative, so there is
no obvious reason why N/D should be e-positive. (We have not given the
expansion of N since it is sensitive to how we treat the cases 4 <2, and
therefore may not be too meaningful.) Tt remains open whether P,, is
e-positive. For reference we record (computed with the aid of John
Stembridge’s SF package for Maple):

\M\?N =€
\w\mﬁ =2e,
*Mﬁ =6e;

Xp,=16e,+ 2e,,
Xpg, =40es5+ 12¢,, + 2e,,
Xpg=96es+44es; + 16e,, + be.,
Xp,,=224e;+ 136e,, + 66¢s, + 52e4; + des,, + 24, + 233,
Xpyy =512e5 + 384e7, + 208e,, + 78¢5, + 96e,, + 30es;,
+ 18es31 + 30e,3; + 2e43,.

Note that although the symmetric function X, 5, SEEMS quite mysterious,
the chromatic polynomial Xr,, 18 €asy to compute, viz.,

Xpp(n)=n(n—1)(n— 2)4-2,

In general, chromatic polynomials of indifference graphs are easy to com-
pute and have only integer zeros, since indifference graphs are chordal
(= supersolvable).

We mentioned after Corollary 3.6 that for complements of bipartite
graphs, the coefficients ¢ » have an interpretation in terms of nonattacking
rooks. We now show that ¢4 has a similar interpretation for any incom-
parability graph G. This result is really about the chromatic polynomial y ;(n)
and not the symmetric function Xg(x) since (—1)79-1 d[n] yq(n) = Ca),

 but it seems worthwhile to include it here. Note that (] xe(n)=p (0, 1),

S0 our result may be regarded as a formula for the “Mobius number”
1,0, 1) of an incomparability graph. We use the notation per(A4) for the
permanent of the m x m matrix 4 = (a;), defined by

@@HA\AV = M Qﬁéﬁv e Qi.%?:v.
we Sy

If 4is a 0— 1 matrix, then per(4) is the number of ways to place m non-
attacking rooks on the board B = {(&.)):a;#0}.
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=(a;)? _, be
5.5. PROPOSITION.  Let P={vy;..,v,} be a poset. Let A=/(ay){, _,

the d x d matrix defined by
0, ifv;<v;
g 1, otherwise.

j be A
Let v, be a minimal element and v, a maximal &mS.mS.c\ P. Let Mm&:E:
with Mos\ s and column r removed. (Note that the entries in row s an

r are all 1s.) Suppose that X, ;=2 c,e,. Then
cy=d-per(4,).

Proof. Write G =inc(P). Let g; be the number of stable partitions of G
oof. = ,

with 7 blocks, so

xc(n) nM gi(n);

where (n),=n(n—1)---(n—i+1). Hence
Clay= (=1 1d[n] xe(n)
=(=1)" Yy (=17 @—1)! g,

A stable partition of G with i blocks %m the same as a me;:_uMoM wOOmoM Mbmm
chains Cy, .., C,. For each such chain u, <u,< --- M:Mwﬁw_ o2 Zooks on
the squares (u,, u, ;) of the com@ TD.X [d1 goomn mba ovorsely s
attacking rooks on the board B= {(j, k) =0}, ma Somversely any

lacement of d- i nonattacking rooks on w|o.oﬁnm@os mH Qﬁl ¥ boasd
W into i chains. Let B be the complement of B in the QM vvmnﬂ 1) board
K obtained by removing row h%wﬂwmowwcdzzm Mwwmwoﬂmwbumxﬁoowum o Sok

en - :

&HroH N_MMMMMOMMSMNWOMM ONQNA 18 (i—1)!. Hence by a mﬂmbamma H:Mﬂmmwﬂw
Exclusion argument (e.g., [23, Sect. 7.2; 30, HrB N.w.ﬂw Hw%w WMWI oo
ways to place d— 1 nonattacking rooks on B is just 3,

and the proof follows. [
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