
A NOTE ON THE SYMMETRIC POWERS OF THE STANDARD

REPRESENTATION OF S

n

David Savitt

1

Department of Mathematis, Harvard University

Cambridge, MA 02138, USA

dsavitt�math.harvard.edu

Rihard P. Stanley

2

Department of Mathematis, Massahusetts Institute of Tehnology

Cambridge, MA 02139, USA

rstan�math.mit.edu

Submitted: January 7, 2000; Aepted: February 12, 2000

Abstrat

In this paper, we prove that the dimension of the spae spanned by the haraters

of the symmetri powers of the standard n-dimensional representation of S

n

is as-

ymptoti to n

2

=2. This is proved by using generating funtions to obtain formulas for

upper and lower bounds, both asymptoti to n

2

=2, for this dimension. In partiular,

for n � 7, these haraters do not span the full spae of lass funtions on S

n

.

Notation

Let P (n) denote the number of (unordered) partitions of n into positive integers,

and let � denote the Euler totient funtion. Let V be the standard n-dimensional

representation of S

n

, so that V = C e

1

� � � � � C e

n

with �(e

i

) = e

�i

for � 2 S

n

. Let

S

N

V denote the N

th

symmetri power of V , and let �

N

: S

n

! Z denote its harater.

Finally, let D(n) denote the dimension of the spae of lass funtions on S

n

spanned

by all the �

N

, N � 0.

1. Preliminaries

Our aim in this paper is to investigate the numbers D(n). It is a fundamental

problem of invariant theory to deompose the harater of the symmetri powers of

an irreduible representation of a �nite group (or more generally a redutive group).

A speial ase with a nie theory is the reetion representation of a �nite Coxeter

group. This is essentially what we are looking at. (The de�ning representation of S

n

onsists of the diret sum of the reetion representation and the trivial representa-

tion. This trivial summand has no signi�ant e�et on the theory.) In this ontext
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it seems natural to ask: what is the dimension of the spae spanned by the sym-

metri powers? Moreover, deomposing the symmetri powers of the harater of an

irreduible representation of S

n

is an example of the operation of inner plethysm [1,

Exer. 7.74℄, so we are also obtaining some new information related to this operation.

We begin with:

Lemma 1.1. Let � = (�

1

; : : : ; �

k

) be a partition of n (whih we denote by � ` n),

and suppose � 2 S

n

is a �-yle. Then �

N

(�) is equal to the number of solutions

(x

1

; : : : ; x

k

) in nonnegative integers to the equation �

1

x

1

+ � � �+ �

k

x

k

= N .

Proof. Suppose without loss of generality that � = (1 2 � � � �

1

)(�

1

+ 1 � � � �

1

+

�

2

) � � � (�

1

+ � � �+ �

k�1

+ 1 � � � n). Consider a basis vetor e




1

1


 � � � 
 e




n

n

of S

N

V ,

so that 

1

+ � � � + 

n

= N with eah 

i

� 0. This vetor is �xed by � if and only if



1

= � � � = 

�

1

, 

�

1

+1

= � � � = 

�

1

+�

2

and so on. Sine �

N

(�) equals the number of

basis vetors �xed by �, the lemma follows.

It seems diÆult to work diretly with the �

N

's; fortunately, it is not too hard to

restate the problem in more onrete terms. Given a partition � = (�

1

; : : : ; �

k

) of n,

de�ne

f

�

(q) =

1

(1� q

�

1

) � � � (1� q

�

k

)

:(1)

Next, de�ne F

n

� C [[q℄℄ to be the omplex vetor spae spanned by all of these

f

�

(q)'s. We have:

Proposition 1.2. dimF

n

= D(n).

Proof. Consider the table of the haraters �

N

; we are interested in the dimension

of the row-span of this table. Sine the dimension of the row-span of a matrix is

equal to the dimension of its olumn-span, we an equally well study the dimension

of the spae spanned by the olumns of the table. By the preeeding lemma, the

N

th

entry of the olumn orresponding to the �-yles is equal to the number of

nonnegative integer solutions to the equation �

1

x

1

+ � � �+ �

k

x

k

= N . Consequently,

one easily veri�es that f

�

(q) is the generating funtion for the entries of the olumn

orresponding to the �-yles. The dimension of the olumn-span of our table is

therefore equal to dimF

n

, and the proposition is proved.

2. Upper Bounds on D(n)

Our basi strategy for omputing upper bounds for dimF

n

is to put all the gener-

ating funtions f

�

(q) over a ommon denominator; then the dimension of their span

is bounded above by 1 plus the degree of their numerators. For example, one an see

without muh diÆulty that (1 � q)(1 � q

2

) � � � (1 � q

n

) is the least ommon multi-

ple of the denominators of the f

�

(q)'s. Putting all of the f

�

(q)'s over this ommon
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denominator, their numerators then have degree n(n + 1)=2� n, whih proves

D(n) �

n(n� 1)

2

+ 1:(2)

By modifying this strategy arefully, it is possible to �nd a somewhat better bound.

Observe that the denominator of eah of our f

�

's is (up to sign hange) a produt

of ylotomi polynomials. In fat, the power of the j

th

ylotomi polynomial �

j

(q)

dividing the denominator of f

�

(q) is preisely equal to the number of �

i

's whih are

divisible by j. It follows that �

j

(q) divides the denominator of f

�

(q) at most

j

n

j

k

times, and the partitions � for whih this upper bound is ahieved are preisely the

P

�

n� j

j

n

j

k�

partitions of n whih ontain

j

n

j

k

opies of j. Let S

j

be the olletion

of f

�

's orresponding to these P

�

n� j

j

n

j

k�

partitions. One sees immediately that

the dimension of the spae spanned by the funtions in S

j

is just D

�

n� j

j

n

j

k�

:

in fat, the funtions in this spae are exatly 1=(1 � q

j

)

b

n

j



times the funtions in

F

n�j

b

n

j



.

Now the power of �

j

(q) in the least ommon multiple of the denominators of all

of the f

�

(q)'s exluding those in S

j

is only

j

n

j

k

� 1, so the degree of this ommon

denominator is only n(n + 1)=2 � �(j). Therefore, as in the �rst paragraph of this

setion, the dimension of the spae spanned by all of the f

�

's exept those in S

j

is

at most n(n� 1)=2 + 1� �(j); sine the dimension spanned by the funtions in S

j

is

D

�

n� j

j

n

j

k�

, we have proved the upper bound

D(n) �

n(n� 1)

2

+ 1� �(j) +D

�

n� j

�

n

j

��

:

If it happens that D

�

n� j

j

n

j

k�

< �(j), then this upper bound is an improvement

on our original upper bound. If we repeat this proess, this time simultaneously

exluding the sets S

j

for all of the j's whih gave us an improved upper bound in the

above argument, we �nd that we have proved:

Proposition 2.1.

D(n) �

n(n� 1)

2

+ 1�

n

X

j=1

max

�

0; �(j)�D

�

n� j

�

n

j

���

:

Finally, we obtain an upper bound for D(n) whih does not depend on other values

of D(�):

Corollary 2.2. Reursively de�ne U(0) = 1 and

U(n) =

n(n� 1)

2

+ 1�

n

X

j=1

max

�

0; �(j)� U

�

n� j

�

n

j

���

:

Then D(n) � U(n).
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Proof. We proeed by indution on n. Equality ertainly holds for n = 0. For larger

n, the indutive hypothesis shows that D

�

n� j

j

n

j

k�

� U

�

n� j

j

n

j

k�

when j > 0,

and so

D(n) �

n(n� 1)

2

+ 1�

n

X

j=1

max

�

0; �(j)�D

�

n� j

�

n

j

���

�

n(n� 1)

2

+ 1�

n

X

j=1

max

�

0; �(j)� U

�

n� j

�

n

j

���

= U(n):

Below is a table of values of D(n) and U(n) for n � 23, alulated in Maple, with

P (n) and our �rst estimate

n(n�1)

2

+ 1 provided for ontrast. Note that in the range

1 � n � 23, we have D(n) = U(n) exept for n = 19; 20, when U(n) �D(n) = 1. Is

it true, for instane, that

�D(n) +

n(n� 1)

2

+ 1�

n

X

j=1

max

�

0; �(j)�D

�

n� j

�

n

j

���

is bounded as n!1?

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D(n) 1 2 3 5 7 11 13 19 23 29 35 45 51 62

U(n) 1 2 3 5 7 11 13 19 23 29 35 45 51 62

n(n� 1)=2 + 1 1 2 4 7 11 16 22 29 37 46 56 67 79 92

P (n) 1 2 3 5 7 11 15 22 30 42 56 77 101 135

n 15 16 17 18 19 20 21 22 23

D(n) 69 79 90 106 118 134 146 161 176

U(n) 69 79 90 106 119 135 146 161 176

n(n� 1)=2 + 1 106 121 137 154 172 191 211 232 254

P (n) 176 231 297 385 490 627 792 1002 1255

Table 1. Values of D(n), U(n), n(n� 1)=2 + 1, P (n) for small n

Example 1. The �rst dimension where D(n) < P (n) is n = 7, and it is easy then

to show that D(n) < P (n) for all n � 7. The di�erene P (7)�D(7) = 2 arises from

the following two relations:

4

(1� x

2

)

2

(1� x)

3

=

3

(1� x

3

)(1� x)

4

+

1

(1� x

3

)(1� x

2

)

2

and

3

(1� x

3

)(1� x

2

)(1� x)

2

=

2

(1� x

4

)(1� x)

3

+

1

(1� x

4

)(1� x

3

)

:
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The �rst relation, for example, says that if � is a linear ombination of �

N

's, then

4 � �((2; 2)-yle) = 3 � �(3-yle) + �((3; 2; 2)-yle):

Alternately, it tells us that for any N � 0, four times the number of nonnegative

integral solutions to 2x

1

+2x

2

+ x

3

+ x

4

+ x

5

= N is equal to three times the number

of suh solutions to 3x

1

+ x

2

+ x

3

+ x

4

+ x

5

= N plus the number of suh solutions

to 3x

1

+ 2x

2

+ 2x

3

= N .

3. Lower Bounds on D(n)

Let � = (�

1

; : : : ; �

k

) ` n. The rational funtion f

�

(q) of equation (1) an be written

as

f

�

(q) = p

�

(1; q; q

2

; : : : );

where p

�

denotes a power sum symmetri funtion. (See [1, Ch. 7℄ for the neessary

bakground on symmetri funtions.) Sine the p

�

for � ` n form a basis for the

vetor spae (say over C ) �

n

of all homogeneous symmetri funtions of degree n [1,

Cor. 7.7.2℄, it follows that if fu

�

g

�`n

is any basis for �

n

then

D(n) = dim span

C

fu

�

(1; q; q

2

; : : : ) : � ` ng:

In partiular, let u

�

= e

�

, the elementary symmetri funtion indexed by �. De�ne

d(�) =

X

i

�

�

i

2

�

:

Aording to [1, Prop. 7.8.3℄, we have

e

�

(1; q; q

2

; : : : ) =

q

d(�)

Q

i

(1� q)(1� q

2

) � � � (1� q

�

i

)

:

Sine power series of di�erent degrees (where the degree of a power series is the expo-

nent of its �rst nonzero term) are linearly independent, we obtain from Proposition 1.2

the following result.

Proposition 3.1. Let E(n) denote the number of distint integers d(�), where �

ranges over all partitions of n. Then D(n) � E(n).

Note. We ould also use the basis s

�

of Shur funtions instead of e

�

, sine by [1,

Cor. 7.21.3℄ the degree of the power series s

�

(1; q; q

2

; : : : ) is d(�

0

), where �

0

denotes

the onjugate partition to �.

De�ne G(n) + 1 to be the least positive integer that annot be written in the

form

P

i

�

�

i

2

�

, where � ` n. Thus all integers 1; 2; : : : ; G(n) an be so represented, so

D(n) � E(n) � G(n). We an obtain a relatively tratable lower bound for G(n), as

follows. For a positive integer m, write (uniquely)

m =

�

k

1

2

�

+

�

k

2

2

�

+ � � �+

�

k

r

2

�

;(3)
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where k

1

� k

2

� � � � � k

r

� 2 and k

1

; k

2

; : : : are hosen suessively as large as

possible so that

m�

�

k

1

2

�

�

�

k

2

2

�

� � � � �

�

k

i

2

�

� 0

for all 1 � i � r. For instane, 26 =

�

7

2

�

+

�

3

2

�

+

�

2

2

�

+

�

2

2

�

. De�ne �(m) = k

1

+

k

2

+ � � �+ k

r

. Suppose that �(m) � n for all m � N . Then if m � N we an write

m =

�

k

1

2

�

+ � � � +

�

k

r

2

�

so that k

1

+ � � � + k

r

� n. Hene if � =

�

k

1

; : : : ; k

r

; 1

n�

P

k

i

�

(where 1

s

denotes s parts equal to 1), then � is a partition of n for whih

P

i

�

�

i

2

�

= m.

It follows that if �(m) � n for all m � N then G(n) � N . Hene if we de�ne H(n)

to be the largest integer N for whih �(m) � n whenever m � N , then we have

established the string of inequalities

D(n) � E(n) � G(n) � H(n):(4)

Here is a table of values of these numbers for 1 � n � 23. Note that D(n) appears to

be lose to E(n+ 1). We don't have any theoretial explanation of this observation.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D(n) 1 2 3 5 7 11 13 19 23 29 35 45 51 62

E(n) 1 2 3 5 7 9 13 18 21 27 34 39 46 54

G(n) 0 1 1 3 4 4 7 13 13 18 25 32 32 32

H(n) 0 1 1 3 4 4 7 11 13 18 19 19 25 32

n 15 16 17 18 19 20 21 22 23

D(n) 69 79 90 106 118 134 146 161 176

E(n) 61 72 83 92 106 118 130 145 162

G(n) 40 49 52 62 73 85 102 112 127

H(n) 40 43 52 62 73 85 89 102 116

Table 2. Values of D(n), E(n), G(n), H(n) for small n

Proposition 3.2. We have

�(m) �

p

2m+ 3m

1=4

(5)

for all m � 405.

Proof. The proof is by indution on m. It an be heked with a omputer that

equation (5) is true for 405 � m � 50000. Now assume that M > 50000 and that (5)

holds for 405 � m < M . Let p = p

M

be the unique positive integer satisfying

�

p

2

�

�M <

�

p+ 1

2

�

:

Thus p is just the integer k

1

of equation (3). Expliitly we have

p

M

=

�

1 +

p

8M + 1

2

�

:
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By the de�nition of �(M) we have

�(M) = p

M

+ �

�

M �

�

p

M

2

��

:

It an be heked that the maximum value of �(m) for m < 405 is �(404) = 42. Set

q

M

= (1 +

p

8M + 1)=2. Sine M �

�

p

M

2

�

� p

M

� q

M

, by the indution hypothesis

we have

�(M) � q

M

+max(42;

p

2q

M

+ 3q

1=4

M

):

It is routine to hek that when M > 50000 the right hand side is less than

p

2M +

3M

1=4

, and the proof follows.

Proposition 3.3. There exists a onstant  > 0 suh that

H(n) �

n

2

2

� n

3=2

for all n � 1.

Proof. From the de�nition of H(n) and Proposition 3.2 (and the fat that the right-

hand side of equation (5) is inreasing), along with the inquality �(m) � 42 =

d

p

2 � 405 + 3 � 405

1=4

e for m � 404, it follows that

H

�

d

p

2m+ 3m

1=4

e

�

� m

for m > 404. For n suÆiently large, we an evidently hoose m suh that n =

d

p

2m + 3m

1=4

e, so H(n) � m. Sine

p

2m + 3m

1=4

+ 1 > n, an appliation of the

quadrati formula (again for n suÆiently large) shows

m

1=4

�

�3 +

q

9 + 4

p

2(n� 1)

2

p

2

;

from whih the result follows without diÆulty.

Sine we have established both upper bounds (equation (2)) and lower bounds

(equation (4) and Proposition 3.3) for D(n) asymptoti to n

2

=2, we obtain the fol-

lowing orollary.

Corollary 3.4. There holds the asymptoti formula D(n) �

1

2

n

2

.
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