A NOTE ON THE SYMMETRIC POWERS OF THE STANDARD REPRESENTATION OF S_{n}

David Savitt ${ }^{1}$
Department of Mathematics, Harvard University
Cambridge, MA 02138, USA
dsavitt@math.harvard.edu
Richard P. Stanley ${ }^{2}$
Department of Mathematics, Massachusetts Institute of Technology
Cambridge, MA 02139, USA
rstan@math.mit.edu

Submitted: January 7, 2000; Accepted: February 12, 2000

Abstract

In this paper, we prove that the dimension of the space spanned by the characters of the symmetric powers of the standard n-dimensional representation of S_{n} is asymptotic to $n^{2} / 2$. This is proved by using generating functions to obtain formulas for upper and lower bounds, both asymptotic to $n^{2} / 2$, for this dimension. In particular, for $n \geq 7$, these characters do not span the full space of class functions on S_{n}.

Notation

Let $P(n)$ denote the number of (unordered) partitions of n into positive integers, and let ϕ denote the Euler totient function. Let V be the standard n-dimensional representation of S_{n}, so that $V=\mathbb{C} e_{1} \oplus \cdots \oplus \mathbb{C} e_{n}$ with $\sigma\left(e_{i}\right)=e_{\sigma i}$ for $\sigma \in S_{n}$. Let $S^{N} V$ denote the $N^{\text {th }}$ symmetric power of V, and let $\chi_{N}: S_{n} \rightarrow \mathbb{Z}$ denote its character. Finally, let $D(n)$ denote the dimension of the space of class functions on S_{n} spanned by all the $\chi_{N}, N \geq 0$.

1. Preliminaries

Our aim in this paper is to investigate the numbers $D(n)$. It is a fundamental problem of invariant theory to decompose the character of the symmetric powers of an irreducible representation of a finite group (or more generally a reductive group). A special case with a nice theory is the reflection representation of a finite Coxeter group. This is essentially what we are looking at. (The defining representation of S_{n} consists of the direct sum of the reflection representation and the trivial representation. This trivial summand has no significant effect on the theory.) In this context

[^0]it seems natural to ask: what is the dimension of the space spanned by the symmetric powers? Moreover, decomposing the symmetric powers of the character of an irreducible representation of S_{n} is an example of the operation of inner plethysm [1, Exer. 7.74], so we are also obtaining some new information related to this operation.

We begin with:
Lemma 1.1. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ be a partition of n (which we denote by $\lambda \vdash n$), and suppose $\sigma \in S_{n}$ is a λ-cycle. Then $\chi_{N}(\sigma)$ is equal to the number of solutions $\left(x_{1}, \ldots, x_{k}\right)$ in nonnegative integers to the equation $\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k}=N$.

Proof. Suppose without loss of generality that $\sigma=\left(\begin{array}{llll}1 & 2 & \cdots & \lambda_{1}\end{array}\right)\left(\lambda_{1}+1 \cdots \lambda_{1}+\right.$ $\left.\lambda_{2}\right) \cdots\left(\lambda_{1}+\cdots+\lambda_{k-1}+1 \cdots n\right)$. Consider a basis vector $e_{1}^{\otimes c_{1}} \otimes \cdots \otimes e_{n}^{\otimes c_{n}}$ of $S^{N} V$, so that $c_{1}+\cdots+c_{n}=N$ with each $c_{i} \geq 0$. This vector is fixed by σ if and only if $c_{1}=\cdots=c_{\lambda_{1}}, c_{\lambda_{1}+1}=\cdots=c_{\lambda_{1}+\lambda_{2}}$ and so on. Since $\chi_{N}(\sigma)$ equals the number of basis vectors fixed by σ, the lemma follows.

It seems difficult to work directly with the χ_{N} 's; fortunately, it is not too hard to restate the problem in more concrete terms. Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ of n, define

$$
\begin{equation*}
f_{\lambda}(q)=\frac{1}{\left(1-q^{\lambda_{1}}\right) \cdots\left(1-q^{\lambda_{k}}\right)} . \tag{1}
\end{equation*}
$$

Next, define $F_{n} \subset \mathbb{C}[[q]]$ to be the complex vector space spanned by all of these $f_{\lambda}(q)$'s. We have:

Proposition 1.2. $\operatorname{dim} F_{n}=D(n)$.
Proof. Consider the table of the characters χ_{N}; we are interested in the dimension of the row-span of this table. Since the dimension of the row-span of a matrix is equal to the dimension of its column-span, we can equally well study the dimension of the space spanned by the columns of the table. By the preceeding lemma, the $N^{\text {th }}$ entry of the column corresponding to the λ-cycles is equal to the number of nonnegative integer solutions to the equation $\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k}=N$. Consequently, one easily verifies that $f_{\lambda}(q)$ is the generating function for the entries of the column corresponding to the λ-cycles. The dimension of the column-span of our table is therefore equal to $\operatorname{dim} F_{n}$, and the proposition is proved.

2. Upper Bounds on $D(n)$

Our basic strategy for computing upper bounds for $\operatorname{dim} F_{n}$ is to put all the generating functions $f_{\lambda}(q)$ over a common denominator; then the dimension of their span is bounded above by 1 plus the degree of their numerators. For example, one can see without much difficulty that $(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)$ is the least common multiple of the denominators of the $f_{\lambda}(q)$'s. Putting all of the $f_{\lambda}(q)$'s over this common
denominator, their numerators then have degree $n(n+1) / 2-n$, which proves

$$
\begin{equation*}
D(n) \leq \frac{n(n-1)}{2}+1 \tag{2}
\end{equation*}
$$

By modifying this strategy carefully, it is possible to find a somewhat better bound. Observe that the denominator of each of our f_{λ} 's is (up to sign change) a product of cyclotomic polynomials. In fact, the power of the $j^{\text {th }}$ cyclotomic polynomial $\Phi_{j}(q)$ dividing the denominator of $f_{\lambda}(q)$ is precisely equal to the number of λ_{i} 's which are divisible by j. It follows that $\Phi_{j}(q)$ divides the denominator of $f_{\lambda}(q)$ at most $\left\lfloor\frac{n}{j}\right\rfloor$ times, and the partitions λ for which this upper bound is achieved are precisely the $P\left(n-j\left\lfloor\frac{n}{j}\right\rfloor\right)$ partitions of n which contain $\left\lfloor\frac{n}{j}\right\rfloor$ copies of j. Let S_{j} be the collection of f_{λ} 's corresponding to these $P\left(n-j\left\lfloor\frac{n}{j}\right\rfloor\right)$ partitions. One sees immediately that the dimension of the space spanned by the functions in S_{j} is just $D\left(n-j\left\lfloor\frac{n}{j}\right\rfloor\right)$: in fact, the functions in this space are exactly $1 /\left(1-q^{j}\right)^{\left\lfloor\frac{n}{j}\right\rfloor}$ times the functions in $F_{n-j\left\lfloor\frac{n}{j}\right\rfloor}$.

Now the power of $\Phi_{j}(q)$ in the least common multiple of the denominators of all of the $f_{\lambda}(q)$'s excluding those in S_{j} is only $\left\lfloor\frac{n}{j}\right\rfloor-1$, so the degree of this common denominator is only $n(n+1) / 2-\phi(j)$. Therefore, as in the first paragraph of this section, the dimension of the space spanned by all of the f_{λ} 's except those in S_{j} is at most $n(n-1) / 2+1-\phi(j)$; since the dimension spanned by the functions in S_{j} is $D\left(n-j\left\lfloor\frac{n}{j}\right\rfloor\right)$, we have proved the upper bound

$$
D(n) \leq \frac{n(n-1)}{2}+1-\phi(j)+D\left(n-j\left\lfloor\frac{n}{j}\right\rfloor\right) .
$$

If it happens that $D\left(n-j\left\lfloor\frac{n}{j}\right\rfloor\right)<\phi(j)$, then this upper bound is an improvement on our original upper bound. If we repeat this process, this time simultaneously excluding the sets S_{j} for all of the j 's which gave us an improved upper bound in the above argument, we find that we have proved:

Proposition 2.1.

$$
D(n) \leq \frac{n(n-1)}{2}+1-\sum_{j=1}^{n} \max \left(0, \phi(j)-D\left(n-j\left\lfloor\frac{n}{j}\right\rfloor\right)\right) .
$$

Finally, we obtain an upper bound for $D(n)$ which does not depend on other values of $D(\cdot)$:
Corollary 2.2. Recursively define $U(0)=1$ and

$$
U(n)=\frac{n(n-1)}{2}+1-\sum_{j=1}^{n} \max \left(0, \phi(j)-U\left(n-j\left\lfloor\frac{n}{j}\right\rfloor\right)\right) .
$$

Then $D(n) \leq U(n)$.

Proof. We proceed by induction on n. Equality certainly holds for $n=0$. For larger n, the inductive hypothesis shows that $D\left(n-j\left\lfloor\frac{n}{j}\right\rfloor\right) \leq U\left(n-j\left\lfloor\frac{n}{j}\right\rfloor\right)$ when $j>0$, and so

$$
\begin{aligned}
D(n) & \leq \frac{n(n-1)}{2}+1-\sum_{j=1}^{n} \max \left(0, \phi(j)-D\left(n-j\left\lfloor\frac{n}{j}\right\rfloor\right)\right) \\
& \leq \frac{n(n-1)}{2}+1-\sum_{j=1}^{n} \max \left(0, \phi(j)-U\left(n-j\left\lfloor\frac{n}{j}\right\rfloor\right)\right) \\
& =U(n) .
\end{aligned}
$$

Below is a table of values of $D(n)$ and $U(n)$ for $n \leq 23$, calculated in Maple, with $P(n)$ and our first estimate $\frac{n(n-1)}{2}+1$ provided for contrast. Note that in the range $1 \leq n \leq 23$, we have $D(n)=U(n)$ except for $n=19,20$, when $U(n)-D(n)=1$. Is it true, for instance, that

$$
-D(n)+\frac{n(n-1)}{2}+1-\sum_{j=1}^{n} \max \left(0, \phi(j)-D\left(n-j\left\lfloor\frac{n}{j}\right\rfloor\right)\right)
$$

is bounded as $n \rightarrow \infty$?

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$D(n)$	1	2	3	5	7	11	13	19	23	29	35	45	51	62
$U(n)$	1	2	3	5	7	11	13	19	23	29	35	45	51	62
$n(n-1) / 2+1$	1	2	4	7	11	16	22	29	37	46	56	67	79	92
$P(n)$	1	2	3	5	7	11	15	22	30	42	56	77	101	135

n	15	16	17	18	19	20	21	22	23
$D(n)$	69	79	90	106	118	134	146	161	176
$U(n)$	69	79	90	106	119	135	146	161	176
$n(n-1) / 2+1$	106	121	137	154	172	191	211	232	254
$P(n)$	176	231	297	385	490	627	792	1002	1255

Table 1. Values of $D(n), U(n), n(n-1) / 2+1, P(n)$ for small n

Example 1. The first dimension where $D(n)<P(n)$ is $n=7$, and it is easy then to show that $D(n)<P(n)$ for all $n \geq 7$. The difference $P(7)-D(7)=2$ arises from the following two relations:

$$
\frac{4}{\left(1-x^{2}\right)^{2}(1-x)^{3}}=\frac{3}{\left(1-x^{3}\right)(1-x)^{4}}+\frac{1}{\left(1-x^{3}\right)\left(1-x^{2}\right)^{2}}
$$

and

$$
\frac{3}{\left(1-x^{3}\right)\left(1-x^{2}\right)(1-x)^{2}}=\frac{2}{\left(1-x^{4}\right)(1-x)^{3}}+\frac{1}{\left(1-x^{4}\right)\left(1-x^{3}\right)} .
$$

The first relation, for example, says that if χ is a linear combination of χ_{N} 's, then

$$
4 \cdot \chi((2,2) \text {-cycle })=3 \cdot \chi(3 \text {-cycle })+\chi((3,2,2) \text {-cycle })
$$

Alternately, it tells us that for any $N \geq 0$, four times the number of nonnegative integral solutions to $2 x_{1}+2 x_{2}+x_{3}+x_{4}+x_{5}=N$ is equal to three times the number of such solutions to $3 x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=N$ plus the number of such solutions to $3 x_{1}+2 x_{2}+2 x_{3}=N$.

3. Lower Bounds on $D(n)$

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$. The rational function $f_{\lambda}(q)$ of equation (1) can be written as

$$
f_{\lambda}(q)=p_{\lambda}\left(1, q, q^{2}, \ldots\right),
$$

where p_{λ} denotes a power sum symmetric function. (See $[1, \mathrm{Ch} .7]$ for the necessary background on symmetric functions.) Since the p_{λ} for $\lambda \vdash n$ form a basis for the vector space (say over \mathbb{C}) Λ^{n} of all homogeneous symmetric functions of degree $n[1$, Cor. 7.7.2], it follows that if $\left\{u_{\lambda}\right\}_{\lambda \vdash n}$ is any basis for Λ^{n} then

$$
D(n)=\operatorname{dim} \operatorname{span}_{\mathbb{C}}\left\{u_{\lambda}\left(1, q, q^{2}, \ldots\right): \lambda \vdash n\right\} .
$$

In particular, let $u_{\lambda}=e_{\lambda}$, the elementary symmetric function indexed by λ. Define

$$
d(\lambda)=\sum_{i}\binom{\lambda_{i}}{2} .
$$

According to [1, Prop. 7.8.3], we have

$$
e_{\lambda}\left(1, q, q^{2}, \ldots\right)=\frac{q^{d(\lambda)}}{\prod_{i}(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{\lambda_{i}}\right)} .
$$

Since power series of different degrees (where the degree of a power series is the exponent of its first nonzero term) are linearly independent, we obtain from Proposition 1.2 the following result.

Proposition 3.1. Let $E(n)$ denote the number of distinct integers $d(\lambda)$, where λ ranges over all partitions of n. Then $D(n) \geq E(n)$.

Note. We could also use the basis s_{λ} of Schur functions instead of e_{λ}, since by $[1$, Cor. 7.21.3] the degree of the power series $s_{\lambda}\left(1, q, q^{2}, \ldots\right)$ is $d\left(\lambda^{\prime}\right)$, where λ^{\prime} denotes the conjugate partition to λ.

Define $G(n)+1$ to be the least positive integer that cannot be written in the form $\sum_{i}\binom{\lambda_{i}}{2}$, where $\lambda \vdash n$. Thus all integers $1,2, \ldots, G(n)$ can be so represented, so $D(n) \geq E(n) \geq G(n)$. We can obtain a relatively tractable lower bound for $G(n)$, as follows. For a positive integer m, write (uniquely)

$$
\begin{equation*}
m=\binom{k_{1}}{2}+\binom{k_{2}}{2}+\cdots+\binom{k_{r}}{2} \tag{3}
\end{equation*}
$$

where $k_{1} \geq k_{2} \geq \cdots \geq k_{r} \geq 2$ and k_{1}, k_{2}, \ldots are chosen successively as large as possible so that

$$
m-\binom{k_{1}}{2}-\binom{k_{2}}{2}-\cdots-\binom{k_{i}}{2} \geq 0
$$

for all $1 \leq i \leq r$. For instance, $26=\binom{7}{2}+\binom{3}{2}+\binom{2}{2}+\binom{2}{2}$. Define $\nu(m)=k_{1}+$ $k_{2}+\cdots+k_{r}$. Suppose that $\nu(m) \leq n$ for all $m \leq N$. Then if $m \leq N$ we can write $m=\binom{k_{1}}{2}+\cdots+\binom{k_{r}}{2}$ so that $k_{1}+\cdots+k_{r} \leq n$. Hence if $\lambda=\left(k_{1}, \ldots, k_{r}, 1^{n-\sum k_{i}}\right)$ (where 1^{s} denotes s parts equal to 1), then λ is a partition of n for which $\sum_{i}\binom{\lambda_{i}}{2}=m$. It follows that if $\nu(m) \leq n$ for all $m \leq N$ then $G(n) \geq N$. Hence if we define $H(n)$ to be the largest integer N for which $\nu(m) \leq n$ whenever $m \leq N$, then we have established the string of inequalities

$$
\begin{equation*}
D(n) \geq E(n) \geq G(n) \geq H(n) \tag{4}
\end{equation*}
$$

Here is a table of values of these numbers for $1 \leq n \leq 23$. Note that $D(n)$ appears to be close to $E(n+1)$. We don't have any theoretical explanation of this observation.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$D(n)$	1	2	3	5	7	11	13	19	23	29	35	45	51	62
$E(n)$	1	2	3	5	7	9	13	18	21	27	34	39	46	54
$G(n)$	0	1	1	3	4	4	7	13	13	18	25	32	32	32
$H(n)$	0	1	1	3	4	4	7	11	13	18	19	19	25	32

n	15	16	17	18	19	20	21	22	23
$D(n)$	69	79	90	106	118	134	146	161	176
$E(n)$	61	72	83	92	106	118	130	145	162
$G(n)$	40	49	52	62	73	85	102	112	127
$H(n)$	40	43	52	62	73	85	89	102	116

Table 2. Values of $D(n), E(n), G(n), H(n)$ for small n

Proposition 3.2. We have

$$
\begin{equation*}
\nu(m) \leq \sqrt{2 m}+3 m^{1 / 4} \tag{5}
\end{equation*}
$$

for all $m \geq 405$.
Proof. The proof is by induction on m. It can be checked with a computer that equation (5) is true for $405 \leq m \leq 50000$. Now assume that $M>50000$ and that (5) holds for $405 \leq m<M$. Let $p=p_{M}$ be the unique positive integer satisfying

$$
\binom{p}{2} \leq M<\binom{p+1}{2}
$$

Thus p is just the integer k_{1} of equation (3). Explicitly we have

$$
p_{M}=\left\lfloor\frac{1+\sqrt{8 M+1}}{2}\right\rfloor .
$$

By the definition of $\nu(M)$ we have

$$
\nu(M)=p_{M}+\nu\left(M-\binom{p_{M}}{2}\right)
$$

It can be checked that the maximum value of $\nu(m)$ for $m<405$ is $\nu(404)=42$. Set $q_{M}=(1+\sqrt{8 M+1}) / 2$. Since $M-\binom{p_{M}}{2} \leq p_{M} \leq q_{M}$, by the induction hypothesis we have

$$
\nu(M) \leq q_{M}+\max \left(42, \sqrt{2 q_{M}}+3 q_{M}^{1 / 4}\right) .
$$

It is routine to check that when $M>50000$ the right hand side is less than $\sqrt{2 M}+$ $3 M^{1 / 4}$, and the proof follows.

Proposition 3.3. There exists a constant $c>0$ such that

$$
H(n) \geq \frac{n^{2}}{2}-c n^{3 / 2}
$$

for all $n \geq 1$.
Proof. From the definition of $H(n)$ and Proposition 3.2 (and the fact that the righthand side of equation (5) is increasing), along with the inquality $\nu(m) \leq 42=$ $\left\lceil\sqrt{2 \cdot 405}+3 \cdot 405^{1 / 4}\right\rceil$ for $m \leq 404$, it follows that

$$
H\left(\left\lceil\sqrt{2 m}+3 m^{1 / 4}\right\rceil\right) \geq m
$$

for $m>404$. For n sufficiently large, we can evidently choose m such that $n=$ $\left\lceil\sqrt{2 m}+3 m^{1 / 4}\right\rceil$, so $H(n) \geq m$. Since $\sqrt{2 m}+3 m^{1 / 4}+1>n$, an application of the quadratic formula (again for n sufficiently large) shows

$$
m^{1 / 4} \geq \frac{-3+\sqrt{9+4 \sqrt{2}(n-1)}}{2 \sqrt{2}}
$$

from which the result follows without difficulty.

Since we have established both upper bounds (equation (2)) and lower bounds (equation (4) and Proposition 3.3) for $D(n)$ asymptotic to $n^{2} / 2$, we obtain the following corollary.

Corollary 3.4. There holds the asymptotic formula $D(n) \sim \frac{1}{2} n^{2}$.

References

[1] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, New York/Cambridge, 1999.

[^0]: ${ }^{1}$ Supported by an NSERC PGS-B fellowship
 ${ }^{2}$ Partially supported by NSF grant DMS-9500714

