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1 Introdution.

Algebrai ombinatoris is onerned with the interation between ombi-

natoris and suh other branhes of mathematis as ommutative algebra,

algebrai geometry, algebrai topology, and representation theory. Many of

the major open problems of algebrai ombinatoris are related to positivity

questions, i.e., showing that ertain integers are nonnegative. The signif-

iane of positivity to algebrai ombinatoris stems from the fat that a

nonnegative integer an have both a ombinatorial and an algebrai inter-

pretation. The arhetypal algebrai interpretation of a nonnegative integer

is as the dimension of a vetor spae. Thus to show that a ertain integer

m is nonnegative, it suÆes to �nd a vetor spae V

m

of dimension m. Sim-

ilarly to show that m � n, it suÆes to �nd an injetive map V

m

! V

n

or

surjetive map V

n

! V

m

. Of ourse the inequality m � n is equivalent to the

positivity statement n�m � 0, while the injetivity of the map ' : V

m

! V

n

is equivalent to the statement that n � m = dimoker(') (where oker(')

denotes the okernel V

n

='(V

m

) of '). However, it is often more natural to

deal with the inequality m � n rather than with n�m � 0.

We will attempt here an overview of the outstanding open problems in

algebrai ombinatoris related to positivity. Naturally our hoie is subje-

tive, and we do not laim to be omprehensive.
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2 f-vetors

Many geometri objets � are de�ned in terms of simple objets, whih we

all faes, with well-de�ned dimensions. Examples (in inreasing order of

generality) inlude simpliial omplexes, polyhedral omplexes, regular CW

omplexes, and CW omplexes. If � has dimension d � 1 and has f

i

i-

dimensional faes, then the vetor f(�) = (f

0

; f

1

; : : : ; f

d�1

) is alled the f -

vetor of � and is a fundamental ombinatorial invariant of �. (Unless � = ;

one regards the empty set ; as a fae of � of dimension �1, so f

�1

= 1.)

Muh of algebrai ombinatoris is onerned with obtaining a omplete

haraterization, or at least signi�ant information, about the f -vetor of

various lasses of geometri objets. A good summary of this area, together

with a list of open problems, is given by Billera and Bj�orner [9℄. Quite so-

phistiated tools suh as ommutative algebra, exterior algebra, homologial

algebra, and tori varieties an be used to investigate f -vetors. One im-

portant result in the area, known as the g-theorem for simpliial polytopes,

gives a omplete haraterization of the f -vetor of a simpliial polytope P

(i.e., a onvex polytope all of whose proper faes are simplies). This result

was onjetured by MMullen [66℄ in 1971. The suÆieny of MMullen's

onditions was proved by Billera and Lee [13℄[14℄, while the neessity was

proved by Stanley [75℄ using the theory of tori varieties. Later MMullen

[67℄[68℄ gave a new proof of neessity avoiding tori varieties. We will not

state the full result here but will explain a orollary of it known as the Gen-

eralized Lower Bound Theorem (GLBT) for simpliial polytopes. Given any

(d � 1)-dimensional (abstrat or geometri) simpliial omplex � with f -

vetor (f

0

; : : : ; f

d�1

), de�ne the h-vetor h(�) = (h

0

; h

1

; : : : ; h

d

) of � by the

formula

d

X

i=0

f

i�1

(x� 1)

d�i

=

d

X

i=0

h

i

x

d�i

:

If � is the boundary omplex of a simpliial polytope, then the Dehn-

Sommerville equations assert that h

i

= h

d�i

. The GLBT onsists of the

inequalities h

0

� h

1

� � � � � h

bd=2

. The signi�ane of the GLBT is that it

gives the most general linear inequalities satis�ed by f -vetors of simpliial

polytopes.
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It is natural to ask whether the Dehn-Sommerville equations, GLBT, and

g-theorem an be extended to more general objets than simpliial polytopes.

The most general objets that seem feasible for this purpose are the Goren-

stein* omplexes. These are simpliial omplexes � suh that for every fae

F 2 � (inluding F = ;) we have

~

H

i

(link(F );Q)

�

=

�

Q ; if i = dim link(F )

0; otherwise;

where

link(F ) = fG 2 � : F \G = ;; F [G 2 �g;

the link of F in �, and where

~

H denotes redued simpliial homology. It is

not hard to see that the Dehn-Sommerville equations h

i

= h

d�i

ontinue to

hold for Gorenstein* omplexes.

Problem 1. Does the GLBT (or more generally the g-theorem) hold for

Gorenstein* omplexes?

Problem 1 is perhaps the main open problem in the subjet of f -vetors.

Speial ases of Gorenstein* omplexes for whih the GLBT is also open in-

lude triangulations of spheres, PL-spheres, and omplete simpliial fans. It

was shown independently by Kalai [53℄ (using algebrai shifting) and Stan-

ley [84, Cor. 2.4℄ (using Cohen-Maaulay rings) that the GLBT holds for

the boundary � of a (d � 1)-dimensional ball that is a subomplex of the

boundary omplex of a simpliial d-polytope. It does not seem to be known

exatly whih simpliial omplexes our in this way. (The tehniques of

Kalai and Stanley only establish the GLBT, and not the g-theorem, for the

above omplexes �.)

When P is an arbitrary (i.e., not neessarily simpliial) onvex polytope,

then the h-vetor no longer has nie properties. For simpliial polytopes the

number h

i

is the 2ith Betti number of a ertain tori variety X

P

satisfying

Poinar�e duality, whene the Dehn-Sommerville equations h

i

= h

d�i

. For

nonsimpliial polytopes, however, there is little onnetion between the ho-

mology of X

P

and the f -vetor of P. Moreover, X

P

fails to satisfy Poinar�e

duality, and the Dehn-Sommerville equations fail to hold for the h-vetor

of P. This unfortunate state of a�airs an be reti�ed by dealing with
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the (middle perversity) intersetion homology IH

�

(X

P

;R) (or ohomology

IH

�

(X

P

;R)) of X

P

, whih an be de�ned whenever P has rational ver-

ties. We then have IH

2i+1

(X

P

;R) = 0. De�ne h

i

= dim

R

IH

2i

(X

P

;R).

If dimP = d, then the vetor h(P) = (h

0

; h

1

; : : : ; h

d

) is alled the tori

h-vetor (formerly the generalized h-vetor) of P. A purely ombinatorial

de�nition of the tori h-vetor an be given that extends to nonrational poly-

topes [77℄ and even more general objets, the most general being Eulerian

posets [86℄. The tori h-vetor depends only on the ombinatorial type of

P (not on how it is embedded into R

d

) and satis�es the Dehn-Sommerville

equations h

i

= h

d�i

. However, the tori h-vetor does not depend just on the

f -vetor of P, nor an f(P) be reovered from h(P). When P is simpliial,

then the tori h-vetor oinides with the usual h-vetor. When P has ra-

tional verties, the onnetion with tori varieties and intersetion homology

leads to a number of results onerning the tori h-vetor of P, in partiular

the GLBT h

0

� h

1

� � � � � h

bd=2

. For nonrational polytopes it is not known

whether the GLBT and related results ontinue to hold. If P is a (�nite)

poset, then the order omplex of P is the abstrat simpliial omplex �(P )

whose faes are the hains of P . We say that P has a ertain topologial

property suh as Gorenstein* if �(P ) has that property. Then the GLBT

(or even just h

i

� 0) fails in general for Eulerian posets, but it remains open

for Gorenstein* latties (with bottom element

^

0 and top element

^

1 removed).

Problem 2. Let P be an arbitrary onvex polytope, or even a Gorenstein*

poset that is a lattie with

^

0 and

^

1 removed. Does the tori h-vetor (h

0

; h

1

; : : : ; h

d

)

of P satisfy the GLBT h

0

� h

1

� � � � � h

bd=2

, or even just h

i

� 0?

Some related problems dealing with subdivisions of polytopes and other

geometri objets appear in [83, Conjs. 4.11 and 5.4℄.

There are numerous additional onjetures onerning f -vetors. For

instane, the f -vetors of entrally-symmetri simpliial polytopes are poorly

understood (see [82℄ for some results in this area), and not even a onjeture

analogous to the GLBT is known. Suh a onjeture would give the most

general linear inequalities satis�ed by the f -vetors of entrally-symmetri

simpliial d-polytopes. One simple problem for arbitrary entrally-symmetri

polytopes, due to Kalai [52℄, is the following.
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Problem 3. Let (f

0

; f

1

; : : : ; f

d�1

) be the f -vetor of a entrally-symmetri

d-polytope. Is it true that

1 + f

0

+ f

1

+ � � �+ f

d�1

� 3

d

?

One feature that makes this problem diÆult is that there is more than

one polytope that ahieves this bound. We an extend Problem 3 somewhat

as follows.

Problem 3

0

. Let L be �nite lattie of rank d + 1 suh that L � f

^

0;

^

1g

is Gorenstein*. Suppose that L has a lattie automorphism � that is an

involution and that �xes only

^

0 and

^

1. Is it true that #L � 3

d

+ 1?

A missing fae of an abstrat simpliial omplex � is a set S of verties

of � suh that S is not a fae of �, but every proper subset of S is a

fae. A ag omplex is a simpliial omplex for whih every missing fae has

two elements. For instane, order omplexes of posets are ag omplexes,

as are Coxeter omplexes of �nite Coxeter groups. Flag omplexes are the

same as lique omplexes or stable set omplexes of graphs. There is a lot of

interest in obtaining information about f -vetors of ag omplexes. One of

the most interesting open problems is known as the Charney-Davis onjeture

[27℄[87, p. 100℄ and is a disrete analogue of a onjeture of H. Hopf on the

Euler harateristi of a losed Riemannian manifold of nonpositive setional

urvature. (Charney and Davis made their onjeture originally for spherial

ag omplexes, but we have extended it to the Gorenstein* ase.)

Problem 4. Let � be a 2e � 1-dimensional Gorenstein* ag omplex with

h-vetor (h

0

; h

1

; : : : ; h

2e

). Is it true that

(�1)

e

(h

0

� h

1

+ h

2

� � � �+ h

2e

) � 0?

For ertain lasses of simpliial omplexes � whose f -vetor satis�es

ertain linear inequalities, these linear inequalities an be \displayed" by

a suitable deomposition (or partition) of the set of faes of �. For in-

stane, suppose that � is ayli (has vanishing redued homology, say over

Q). It was shown in [79℄ that there exists a partition � of � into two-

element sets fF; F

0

g suh that (a) F � F

0

and jF

0

� F j = 1, and (b) the set
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fF : fF; F

0

g 2 �; F � F

0

g is a subomplex � of �. If follows that

(1 + x)

X

i

f

i�1

(�)x

i

=

X

i

f

i�1

(�)x

i

:

If C(�) denotes the one over �, then learly C(�) is ayli and

(1 + x)

X

i

f

i�1

(�)x

i

=

X

i

f

i�1

(C(�))x

i

:

Hene f -vetors of ayli simpliial omplexes oinide with f -vetors of

ones, whih are relatively easy to haraterize. Thus the existene of the

deomposition � leads to a haraterization of f -vetors of ayli simpliial

omplexes. (Similar deompositions appear in the work of R. Forman [31℄[32℄

on disrete Morse theory.) What other lasses of simpliial omplexes lend

themselves to this tehnique? Duval [28℄ has extended the above argument

to give a \deomposition-theoreti" proof of the haraterization of pairs

(f; �), where f is the f -vetor and � the sequene of Betti numbers of a

simpliial omplex, originally due to Bj�orner and Kalai [16℄[17℄. A di�erent

generalization of the deomposition of ayli omplexes was onjetured by

Stanley [79, Conj, 2.4℄ as follows.

Problem 5. Suppose that � is a (�nite) abstrat simpliial omplex suh that

the link of every fae F of � of dimension at most j (inluding link(;) = �)

is ayli. Can � (regarded as a partially ordered set under set inlusion) be

partitioned into intervals [F; F

0

℄ suh that (a) dimF

0

� dimF = j + 2, and

(b) the bottom elements F of these intervals form a subomplex of �?

A entral role in the ombinatoris of simpliial omplexes is played by

the Cohen-Maaulay omplexes. A simpliial omplex � is said to be Cohen-

Maaulay (say over Q ) if for every F 2 � (inluding as usual F = ;) we

have

~

H

i

(link(F );Q) = 0; if i 6= dim link(F ):

It an be proved algebraially (e.g., [87, Cor. II.3.2℄) that if � is Cohen-

Maaulay with h-vetor (h

0

; : : : ; h

d

), then h

i

� 0. On the other hand, a pure

(i.e., all maximal faes have the same dimension) (d� 1)-dimensional simpli-

ial omplex � is alled partitionable if it an be partitioned into intervals
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[F; F

0

℄ suh that eah F

0

is a faet (maximal fae) of �. It is easy to see that

if � is a partition of � into suh intervals, then

X

[F;F

0

℄2�

x

1+dimF

=

X

i

h

i

x

i

:

Hene h

i

� 0 if � is partitionable, and it is natural to ask if there is a

onnetion between the Cohen-Maaulay property and partitionability. The

simpliial omplex with faets ab; a; b; de; df; ef has the partitioning

� = f[;; ab℄; [; b℄; [a; a℄; [d; de℄; [e; ef ℄; [f; df ℄g

but is not Cohen-Maaulay. However, the onverse question remains a entral

open problem onerning the ombinatoris of simpliial omplexes.

Problem 6. Is every Cohen-Maaulay omplex partitionable?

For further information related to partitionability, see [87, xIII.2℄.

We have mentioned the tori h-vetor as an extension of the h-vetor of a

simpliial polytope. A di�erent extension, whih is muh more natural from

the ombinatorial point of view and whih onveys muh more information,

is the ag f -vetor. It is most onveniently de�ned for graded posets, i.e.,

posets for whih every maximal hain has the same length. Let P be a (�nite)

graded poset of rank n � 1, so every maximal hain of P has n elements.

De�ne the rank funtion � : P ! Z of P by letting k = �(t) be the number

of elements in the longest hain t

1

< t

2

< � � � < t

k

= t. If S is any subset of

f1; 2; : : : ; ng, then de�ne the rank-seleted subposet

P

S

= ft 2 P : �(t) 2 Sg;

and let �

P

(S) be the number of maximal hains of P

S

. The funtion �

P

is

alled the ag f -vetor of P . Thus �

P

ounts the number of hains C in

P aording to the ranks of the elements of C. The \ag-analogue" of the

h-vetor is the ag h-vetor �

P

, de�ned by either of the equivalent onditions

�

P

(S) =

X

T�S

�

P

(T )

�

P

(S) =

X

T�S

(�1)

#(S�T )

�

P

(T ):
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If �(P ) denotes the order omplex of P , then the f -vetor and h-vetor of

�(P ) are related to the ag f -vetor �

P

and ag h-vetor �

P

by

f

i

(�(P )) =

X

S�f1;:::;ng

#S=i+1

�

P

(S)

h

i

(�(P )) =

X

S�f1;:::;ng

#S=i

�

P

(S):

We will mention here one entral open problem in the theory of ag f -

vetors, viz., the problem of determining all linear inequalities satis�ed by

the ag f -vetor of a Gorenstein* poset P . (Note for experts: Aording to

the de�nitions given here, Gorenstein* posets do not have a

^

0 and

^

1. Thus for

instane the fae lattie of a onvex polytope P, with the improper faes ; and

P removed, is a Gorenstein* poset.) The orresponding problem for arbitrary

graded posets was solved by Billera and Hetyei [12℄, while partial results

were obtained for Eulerian posets by Bayer and Hetyei [5℄. Let a and b be

nonommuting variables. Given S � f1; 2; : : : ; ng, de�ne a nonommutative

monomial u

S

= u

1

u

2

� � �u

n

by setting u

i

= a if i 62 S and u

i

= b if i 2 S. If

P is a graded poset of rank n� 1, then de�ne a nonommutative polynomial

	

P

(a; b) =

X

S�f1;:::;ng

�

P

(S)u

S

:

Thus 	

P

(a; b) is a nonommutative generating funtion for the ag h-vetor

�

P

. Moreover, it follows immediately from the de�nitions of �

P

and �

P

that

	

P

(a; a+ b) =

X

S�f1;:::;ng

�

P

(S)u

S

:

In the ase when P is Gorenstein* (or even Eulerian), Bayer and Billera

[4℄ determined the most general linear equalities that an hold among the

numbers �

S

(P ) (or equivalently �

S

(P )). Fine (see [6, Prop. 2℄) disovered

an exeptionally elegant way to state these Bayer-Billera relations. Namely,

there exists a polynomial �

P

(; d) in nonommutative variables  and d suh

that

	

P

(a; b) = �

P

(a+ b; ab + ba):

The polynomial �(; d) is alled the d-index of P . The main open problem

onerning this polynomial is the following.
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Problem 7. If P is a Gorenstein* poset, then are all oeÆients of the d-

index �

P

(; d) nonnegative?

It was onjetured in [85, Conj. 2.1℄ that the answer to Problem 7 is

aÆrmative. Moreover, it was shown in Theorem 2.1 of this referene that this

result, if true, is best possible in the sense that any linear inequality satis�ed

by all ag f -vetors of Gorenstein* posets of rank n � 1 is a onsequene

of the nonnegativity of the oeÆients of the d-index. A speial ase of

Problem 7, whih inludes fae latties of onvex polytopes, was proved in

[85, Thm. 2.2℄.

E. Babson observed (stated inorretly in [87, p. 103℄ without the fator

of 2

�m

) that if P is a Gorenstein* poset of even rank 2m, then the oeÆient

of d

m

in �

P

(; d) is given by

[d

m

℄ �

P

(; d) = (�2)

�m

(h

0

� h

1

+ h

2

� � � �+ h

2m

);

where (h

0

; h

1

; : : : ; h

2m

) is the h-vetor of the order omplex of P . It follows

that the Charney-Davis onjeture (Problem 4) for the speial ase of order

omplexes is a onsequene of an aÆrmative answer to Problem 7.

In general the d-index is a highly intratable objet. It would be of great

interest to �nd a natural algebrai or geometri desription of the d-index.

For some further work related to the d-index, see for instane [10℄[11℄ and

the referenes given there.

The f -vetors of ubial omplexes are muh less well understood than

those of simpliial omplexes. We may regard a (�nite) abstrat ubial om-

plex as a �nite meet-semilattie suh that every interval [

^

0; t℄ is isomorphi

to the fae lattie of a ube (whose dimension depends on t). An analogue

of the h-vetor of a simpliial omplex was de�ned by R. Adin [1℄ for pure

ubial omplexes, i.e., ubial omplexes suh that every maximal fae has

the same dimension. Let L be a pure ubial omplex of rank d (or dimen-

sion d� 1). Adin's ubial h-vetor h(L) = (h

0

(L); h

1

(L); : : : ; h

d

(L)) may be

de�ned as follows. Let s be a vertex (element overing

^

0) of L. The subposet

ft 2 L : t � sg is the fae poset of a simpliial omplex �

s

= link(s).

Let h(�

s

; x) =

P

d�1

i=0

h

i

(�

s

)x

i

, where (h

0

(�

s

); : : : ; h

d�1

(�

s

)) is the usual
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h-vetor of �

s

. We an now de�ne h(L) by the equation

d

X

i=0

h

i

(L)x

i

=

1

1 + x

 

2

d�1

+ x

X

s

h(�

s

; x) + (�2)

d�1

e�(L)x

d+1

!

; (1)

where s ranges over all verties of L and

e�(L) =

X

t2L

(�1)

rank(t)�1

;

the redued Euler harateristi of L. It is not diÆult to see that the right-

hand side of equation (1) is indeed a polynomial in x.

Problem 8. (a) Let L be a pure ubial omplex of rank d. If L is a Cohen-

Maaulay poset, then is h

i

(L) � 0 for all i?

(b) If L is in addition a Gorenstein* poset, then is it true that h

0

(L) �

h

1

(L) � � � � � h

bd=2

(L)? (Adin [1, x3℄ shows that h

i

= h

d�i

.)

Problem 8(a) was raised by Adin and solved by him when L is shellable

[1, x5℄, while Problem 8(b) was raised by Adin in the speial ase that L is

the fae poset of the boundary of a ubial polytope [1, x5, Question 2℄. It

was shown in [3℄ that an aÆrmative answer to Problem 8(b) would be best

possible, i.e., would give the tightest possible set of linear inequalities for the

Adin h-vetor of a ubial Gorenstein* poset (or even a ubial sphere).

3 Representation theory and symmetri fun-

tions.

The theory of symmetri funtions is rife with positivity results and problems,

stemming from the possibility of expanding a symmetri funtion in terms of

a number of possible bases. If the oeÆients in suh an expansion are real

numbers (respetively, polynomials with real oeÆients), then we an ask

whether they are nonnegative (respetively, have nonnegative oeÆients).
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Often these oeÆients will have a representation-theoreti interpretation,

suh as the multipliity of an irreduible representation within some larger

representation. Sometimes the only known proof of positivity will be suh

an interpretation, and the problem will be to �nd a ombinatorial proof.

Oasionally the reverse situation will hold. Finally it may happen that

positivity is only a onjeture, and we an try to �nd either an algebrai

or ombinatorial proof. We will assume for the remainder of this setion a

basi knowledge of the theory of symmetri funtions as developed in [65,

Ch. 1℄ or [89, Ch. 7℄. In partiular, we will be dealing with the following

bases, indexed by partitions � of n (denoted � ` n), for the Q -vetor spae

�

n

Q

of homogeneous symmetri funtions of degree n in the variables x =

(x

1

; x

2

; : : :):

� m

�

: monomial symmetri funtions

� h

�

: omplete symmetri funtions

� e

�

: elementary symmetri funtions

� p

�

: power sum symmetri funtions

� s

�

: Shur funtions.

If fu

�

g is a basis for the spae �

Q

of symmetri funtions, then we say that

f 2 � is u-positive if the expansion of f as a linear ombination of u

�

's has

nonnegative oeÆients. If � is a partition with a single part n, then we

write u

n

for u

�

.

The arhetypal example of a suessful positivity result in the theory of

symmetri funtions is the Littlewood-Rihardson rule [65, xI.9℄[89, xA1.3℄

for multiplying Shur funtions. The Littlewood-Rihardson oeÆient 

�

��

is

de�ned by the expansion

s

�

s

�

=

X

�



�

��

s

�

:

The representation-theoreti interpretations of s

�

as an irreduible hara-

ter of GL(n; C ) or as the (Frobenius) harateristi of an irreduible har-

ater of the symmetri group S

n

make it lear that 

�

��

� 0. The ele-

brated Littlewood-Rihardson rule gives a ombinatorial interpretation of 

�

��

,

thereby giving a ombinatorial proof of nonnegativity.

11



There are some variations of the multipliation of Shur funtions that

are not as well understood. The three most well-known are the following.

� Let f [g℄ denote the plethysm [65, x1.8℄[89, Def. A.2.6℄ (denoted f Æ g

in [65℄) of the symmetri funtions f and g. A simple representation-

theoreti argument shows that the symmetri funtion s

m

[s

n

℄ (or more

generally s

�

[s

�

℄) is s-positive, namely, if S

k

denotes the kth symmetri

power, then the oeÆient hs

m

[s

n

℄; s

�

i of s

�

in s

m

[s

n

℄ (when expanded

in terms of Shur funtions) is equal to the multipliity of the irreduible

harater s

�

of GL(V ) (where V is a omplex vetor spae of suÆiently

large dimension) in S

n

(S

m

V ).

Problem 9. Find a ombinatorial interpretation of the \plethysm oeÆ-

ients" hs

m

[s

n

℄; s

�

i, thereby ombinatorially reproving that they are nonneg-

ative.

A minor but still interesting onjeture related to the plethysm s

m

[s

n

℄

is the Foulkes plethysm onjeture [33, p. 206℄: if n � m then s

n

[s

m

℄�

s

m

[s

n

℄ is s-positive. The strongest results on this onjeture are due to

Brion [23℄.

The Foulkes plethysm onjeture an be generalized as follows. Let X

be an r-element set, and let � = (�

1

; : : : ; �

l

) be a partition of r into l

parts (so �

1

� � � � � �

l

> 0 and

P

�

i

= r). Let �

�

denote the set of

all partitions � = fB

1

; : : : ; B

l

g of X whose blok sizes are �

1

; : : : ; �

l

. A

partition � = fB

0

1

; : : : ; B

0

m

g of X is orthogonal to � (denoted � ? �) if

the blok sizes of � are �

0

1

; : : : ; �

0

m

where (�

0

1

; : : : ; �

0

m

) is the onjugate

partition to �, and if #(B

i

\ B

0

j

) � 1 for all i; j. For any set S, let

QS be the Q -vetor spae with basis S. De�ne a linear transformation

'

�

: Q�

�

! Q�

�

0

by

'

�

(�) =

X

�?�

�; � 2 �

�

:

Conjeture. If � � �

0

in dominane order (i.e., �

1

+ � � � + �

i

�

�

0

1

+ � � �+ �

0

i

for all i), then '

�

is injetive.

12



Using the well-known onnetion between plethysm and the represen-

tation theory of the symmetri group [65, p. 158℄[89, Thm. A2.8℄, the

Foulkes plethysm onjeture follows from the ase where � has m parts

equal to n [18℄. Moreover, it an be shown that the above onjeture is

true when � is the \hook" with one part equal to k and j parts equal

to 1, with k � j + 1.

A further intriguing onjeture onerning the positivity of a plethysm

is due to S. Sundaram [93, Conj. 2.7℄[94, Conj. 2.2℄. She de�nes an

ation of S

n

on a ertain homology group (the top homology of the poset

of all partitions of f1; 2; : : : ; ng with an even number of bloks, with

^

0

removed when n is even). Let R

n

denote the Frobenius harateristi

of this ation. Sundaram shows [93, Thm. 2.1℄ that R

n

is determined

by the plethysti reurrene

X

n�0

(�1)

n

R

2n+1

= (h

1

� R

2

+R

4

� � � �) [h

1

+ h

2

+ � � �℄ ;

and she shows [93, Thm. 2.5℄ that R

2n

is a polynomial in the symmetri

funtions h

1

and h

2

. Sundaram's onjeture is that when R

2n

is written

as a polynomial in h

1

and h

2

, the oeÆients are nonnegative. In other

words, R

2n

is h-positive.

� Let �

�

and �

�

be the irreduible haraters of S

n

indexed by the

partitions � and � of n. The Kroneker produt �

�

�

�

is de�ned by

(�

�

�

�

)(w) = �

�

(w)�

�

(w). Let

�

�

�

�

=

X

�

g

���

�

�

; (2)

the deomposition of �

�

�

�

in terms of irreduible haraters �

�

. If M

�

is an S

n

-module with harater �

�

, then the natural ation of S

n

on

M

�


M

�

has harater �

�

�

�

. It follows that g

���

� 0.

We an de�ne g

���

purely in terms of symmetri funtions by

1

Q

i;j;k

(1� x

i

y

j

z

k

)

=

X

�;�;�

g

���

s

�

(x)s

�

(y)s

�

(z): (3)

13



The produt � on symmetri funtions de�ned by

s

�

� s

�

=

X

�

g

���

s

�

(4)

is alled the internal produt. For further information see [65, pp. 115{

116℄[89, Exer. 7.78{7.87℄.

Problem 10. Find a ombinatorial interpretation of the \Kroneker produt

oeÆients" g

���

, thereby ombinatorially reproving that they are nonnega-

tive.

For Problem 10 we should take equation (3) as the de�nition of g

���

, or

equivalently equation (2) with �

�

de�ned ombinatorially by the Murnaghan-

Nakayama rule [65, Exam. I.7.5℄[89, x7.17℄, so that g

���

is not a priori non-

negative. For some work related to Problem 10, see [96℄ and the referenes

given there.

� Let w be a permutation of P = f1; 2; : : :g that �xes all but �nitely many

elements of P. Let S

w

denote the Shubert polynomial indexed by w

[64℄. The Shubert polynomials S

w

form a Z-basis for the polynomial

ring Z[x

1

; x

2

; : : :℄. If w �xes n + 1; n + 2; : : : (whih we denote as w 2

S

n

) then in fat S

w

2 Z[x

1

; : : : ; x

n

℄. If e

i

denotes the ith elementary

symmetri funtion in the variables x

1

; : : : ; x

n

, then the quotient ring

R

n

= Z[x

1

; : : : ; x

n

℄=(e

1

; : : : ; e

n

) is isomorphi to the ohomology ring

H

�

(X;Z) of the ag variety X = GL(n; C )=B. Under this isomorphism

the images of the Shubert polynomials S

w

for w 2 S

n

form a Z-basis

whih orrespond to the losed Shubert ells in X. It then follows

from basi intersetion theory [34℄ that the intersetion oeÆients 

w

uv

de�ned by

S

u

S

v

=

X

w



w

uv

S

w

are nonnegative.

Problem 11. Find a ombinatorial interpretation of the \Shubert interse-

tion oeÆients" 

w

uv

, thereby ombinatorially reproving that they are non-

negative.
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For some work on Problem 11, see [8℄. A \quantum generalization" of

Problem 11 is due to Fomin and Kirillov [29, Conj. 11℄[30, Conj. 8.1℄.

A further interesting positivity problem whose only known solution uses

representation theory onerns the ation of S

n

on itself by onjugation, i.e.,

w 2 S

n

ats on S

n

by w � u = wuw

�1

. Let G be any �nite group, and let  

G

denote the harater of the ation of G on itself by onjugation. It is well-

known (e.g., [89, Exer. 7.71℄) that the multipliity of an irreduible harater

� of G in  

G

is given by

h 

G

; �i =

X

K

�(K);

where K ranges over all onjugay lasses of G, and where �(K) denotes

�(w) for any w 2 K. Hene the \row sums"

P

K

�(K) of the harater table

of G are nonnegative.

Problem 12. Give a ombinatorial interpretation of the row sums of the

harater table of S

n

, thereby ombinatorially reproving that they are non-

negative.

For further information on this problem, see [89, Exer. 7.71℄. For the

olumn sums of the harater table of S

n

, see [65, Exam. 11, p. 120℄[89,

Exer. 7.69(b)℄.

Let us turn to some positivity problems involving symmetri funtions

for whih no proof is known. Undoubtedly the most important suh prob-

lem onerns the (q; t)-Kostka polynomials K

��

(q; t). The de�nition of these

polynomials is at �rst sight rather obsure and will be omitted here. For

readers familiar with the Madonald symmetri funtions P

�

(X; q; t) and

plethysti notation, they an be de�ned by

J

�

(x; q; t) =

X

�

K

��

(q; t)s

�

[X(1� t)℄;

where J

�

is a ertain normalization of P

�

known as the integral form. For

further details see [65, Ch. VI℄. A priori the above de�nition of K

��

(q; t) only

shows that they are rational funtions of q and t. It was not until reently that

several separate proofs [39℄[56℄[57℄[59℄[70℄ were given that K

��

(q; t) 2 Z[q; t℄.
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Problem 13. Show that the (q; t)-Kostka polynomial K

��

(q; t) has nonneg-

ative oeÆients.

It follows readily from the de�nition of K

��

(q; t) that K

��

(1; 1) = f

�

, the

number of standard Young tableaux of shape � (see [65, Ch. VI, (8.16)℄).

Hene the oeÆients of K

��

(q; t) should ount the number of standard

Young tableaux of shape � with some property, but not even a onjeture

is known about what this property might be. When q = 0, we have that

K

��

(0; t) is the \ordinary" Kostka polynomial introdued by Foulkes (see

[65, Ch. VI, (8.12)℄). Here the oeÆients have a ombinatorial meaning

disovered by Lasoux and Sh�utzenberger [61℄[65, p. 242℄.

One reason why Problem 13 is so intriguing is that it has led to surpris-

ing properties of the Madonald symmetri funtions and to deep onnetions

with representation theory and algebrai geometry. For some remarkable pos-

itivity onjetures related to Problem 13, see [7℄[37℄[38℄[39℄. Garsia-Haiman

[36℄ have a simple onjetured representation-theoretial interpretation of the

oeÆients of K

��

(q; t) as the dimensions of ertain vetor spaes. Haiman

[49℄ has given many equivalent forms of this onjeture and has shown (based

on a suggestion of C. Proesi) that it is intimately onneted with the Hilbert

sheme of points in the plane and with the variety of ommuting matries.

A speial ase of Problem 13 is of partiular interest. Let � denote the

internal produt of symmetri funtions, as de�ned in equation (4). It is

known (see [89, Exer. 7.86℄) that

s

�

� s

�

(1; q; q

2

; : : :) =

T

��

(q)

H

�

(q)

;

where T

��

(q) 2 Z[q℄, T

��

(1) = f

�

, and H

�

(q) =

Q

u2�

�

1� q

h(u)

�

. Here u

ranges over all squares of (the diagram of) � and h(u) is the hook length of �

at u. It was onjetured by R. Brylinski and R. Stanley (see [76, Conj. 8.3℄)

that T

��

(q) has nonnegative oeÆients. It is shown in [65, Exam. VI.8.3,

pp. 362{363℄ that

T

��

(q) = K

��

(q; q):

Hene the onjeture of Brylinski-Stanley follows from a positive answer to

Problem 13. For some algebrai aspets of the Brylinski-Stanley onjeture,

see [24℄[25℄.
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The Madonald symmetri funtions P

�

(x; q; t) may be regarded as a

generalization of the Hall-Littlewood symmetri funtions P

�

(x; 0; t) [65, p.

324℄. A di�erent kind of generalization of the Hall-Littlewood symmetri

funtions is a�orded by the \ribbon polynomials" H

(k)

�=�

(x; q) of Lasoux,

Leler, and Thibon [60℄. They are de�ned when �=� is a skew shape that

admits a tiling by k-ribbons (or k-border strips) by

H

(k)

�=�

(x; q) =

X

T

q

s(T )

x

T

;

summed over all ribbon tableaux T (also alled border strip tableaux), as

de�ned e.g. in [89, p. 346℄, of shape �=� with all ribbons (border strips) of

size k. Here s(T ) denotes the spin of T , de�ned by

s(T ) =

X

R

h(R)� 1

2

;

summed over all ribbons R appearing in T , where h(R) is the height (number

of rows) of R. When � = ; then � has a k-quotient (as de�ned e.g. in [89, p.

517℄) (�

0

; : : : ; �

k�1

). The oeÆients of H

(k)

�

(q) are then q-analogues of the

Littlewood-Rihardson oeÆients obtained from the produt s

�

0

� � � s

�

k�1 .

Lasoux et al. give a number of fasinating theorems and onjetures about

H

(k)

�=�

(x; q) and related polynomials. These theorems and (subsequently) on-

jetures have for the most part been proved using deep results from rep-

resentation theory (in partiular, quantum aÆne algebras). In partiular,

H

(k)

�

(x; q) is a symmetri funtion [60, Thm. VI.1℄. It would nevertheless

be desirable to have a ombinatorial proof of this fundamental result. It is

also shown in [60℄ that the oeÆients of H

(k)

�

(q) (suitable normalized) are

ertain paraboli Kazhdan-Lusztig polynomials of aÆne type A. One of the

onjetures of Lasoux et al. (Conjeture VI.3) asserts that when H

(k)

�

(x; q)

is expanded in terms of Shur funtions, the oeÆients are polynomials in

q with nonnegative integer oeÆients. In [62, p. 2℄, Leler and Thibon

mention that this onjeture would follow from some results in representa-

tion theory that experts think are probable (an analogue of the positivity

of the oeÆients of Kahzdan-Lusztig polynomials for aÆne Weyl groups).

Positivity is proven ombinatorially in the ase k = 2 by Carr�e and Leler

[26℄.
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Problem 14. (a) Give a ombinatorial proof that the polynomials H

(k)

�

(x; q)

are symmetri funtions.

(b) When H

(k)

�

(x; q) is expanded in terms of Shur funtions, are the

oeÆients polynomials in q with nonnegative integer oeÆients?

No disussion of positivity problems would be omplete without mention

of the Kazhdan-Lusztig polynomials P

u;v

(q) assoiated with a Coxeter group

W and a pair u � v of elements in the Bruhat order of W . For a short expo-

sition of the basi properties of these polynomials, see [51, Ch. 7℄. When W

is a �nite or aÆne Weyl group then a deep result of Kazhdan and Lusztig [55℄

shows that the oeÆients of P

u;v

(q) are dimensions of ertain intersetion

homology spaes and are therefore nonnegative. (A further lass of Coxeter

groups for whih P

u;v

(q) has nonnegative oeÆients was onsidered by Had-

dad [45℄.) For the remaining �nite Coxeter groups (types H

3

, H

4

, and I

p

) it

has been heked that P

u;v

(q) always has nonnegative oeÆients. Kazhdan

and Lusztig [54, p. 166℄ onjetured an aÆrmative answer to the following

problem.

Problem 15. Are the oeÆients of P

u;v

(q) nonnegative for any Coxeter

group W and any u � v in the Bruhat order of W?

It was shown by M. Dyer (unpublished) and H. Tagawa [95℄ that the oef-

�ient of q in P

u;v

(q) is nonnegative. Even though the answer to Problem 15

is known to be positive for �nite and aÆne Weyl groups, we an still ask for

a ombinatorial proof avoiding intersetion homology theory. This problem

is espeially interesting for the symmetri group S

n

sine it is the Weyl group

with the simplest and most tratable ombinatorial properties.

Problem 16. Give a ombinatorial interpretation of the oeÆients of P

u;v

(q)

when W is a �nite or aÆne Weyl group, espeially W = S

n

, thereby ombi-

natorially reproving that they are nonnegative.

For some work related to Problem 16, see [20℄[22℄ and the referenes

given there. There is a formal similarity between the previous problem and
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Problem 2, stemming from the onnetion of both problems with intersetion

homology. For further details, see [83, Part II℄.

A host of open problems deal with the onnetion between symmetri

funtions and immanants. Let A = (a

ij

)

n

i;j=1

be an n�n matrix (with entries

in some ommutative ring R), and let f : S

n

! R. De�ne the f -immanant

of A by

Imm

f

(A) =

X

w2S

n

f(w)a

1;w(1)

a

2;w(2)

� � �a

n;w(n)

:

Hene if f(w) = sgn(w) then Imm

f

(A) = detA, while if f(w) = 1 then

Imm

f

(A) = perA, the permanent of A. Immanants were probably �rst

onsidered by Shur [71℄ when f is an irreduible harater of S

n

, although the

term \immanant" was oined by D. E. Littlewood. A paper of Goulden and

Jakson [43℄ initiated a urry of ativity related to ombinatorial properties

of immanants and has led to many onjetures. We do not have the spae to

disuss all these onjetures here but will give a few typial ones.

If f is a funtion on S

n

(usually assumed to be a lass funtion), then we

de�ne the harateristi h f of f [65, p. 113℄[89, x7.18℄ by

h f =

1

n!

X

w2S

n

f(w)p

�(w)

;

where p

�(w)

is the power sum symmetri funtion indexed by the yle type

�(w) of w. If f = �

�

, the irreduible harater of S

n

indexed by the parti-

tion � of n, then h�

�

= s

�

(a Shur funtion). We abbreviate Imm

�

� by

Imm

�

. Let �

�

denote the unique lass funtion on S

n

for whih h�

�

= m

�

(a

monomial symmetri funtion). De�ne a real matrix A to be totally nonneg-

ative (sometimes alled totally positive) if every minor of A is nonnegative.

Stembridge [91℄ showed that if A is a totally nonnegative n� n matrix and

� ` n, then Imm

�

(A) � 0. (A di�erent proof was later given by Kostant

[58℄.) Stembridge onjetured the even stronger result that the answer to the

following problem is aÆrmative.

Problem 17. If A is a totally nonnegative n� n matrix and � ` n, then is

Imm

�

�
(A) � 0?

Problem 17 has the following equivalent formulation (see [89, Exer. 7.92℄).
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Problem 17

0

. Let A = (a

ij

) be a totally nonnegative n � n real matrix.

De�ne a symmetri funtion

F

A

=

X

w2S

n

a

1;w(1)

a

2;w(2)

� � �a

n;w(n)

p

�(w)

:

Is F

A

h-positive, where fh

�

g is the basis of omplete symmetri funtions?

Now let � and � be partitions where � � �, with `(�) � n. Here `(�)

denotes the length (number of nonzero parts) of �. De�ne the Jaobi-Trudi

matrix

H

�=�

=

�

h

�

i

��

j

+j�i

�

n

i;j=1

:

The Jaobi-Trudi identity [65, Ch. I, (3.4)℄[89, x7.16℄ states that detH

�=�

=

s

�=�

, a skew Shur funtion. Goulden and Jakson [43℄ were the �rst to

onsider other immanants of H

�=�

. They onjetured that Imm

�

(H

�=�

) is m-

positive (where fm

�

g is the basis of monomial symmetri funtions), whih

was proved by Greene [44℄. Stembridge [92℄ made a series of onjetured

strengthenings of this result. His Conjeture 4.2(a) asserts that Imm

�

(H

�=�

)

is s-positive. A remarkable proof was given by Haiman [48℄ based on the

theory of Kazhdan-Lusztig polynomials. Stembridge's strongest onjeture

(Conjeture 4.1) asserts that the answer to the following problem is aÆrma-

tive.

Problem 18. If `(�) � n, � � �, and � ` n, then is Imm

�

�(H

�=�

) s-postive?

Haiman has given in his paper mentioned above some intriguing onje-

tures relating the virtual haraters �

�

to the Kazhdan-Lusztig basis C

0

w

of

the Heke algebra H

n

(q) (of type A

n�1

). We assume knowledge of Kazhdan-

Lusztig theory in order to state Haiman's onjeture. Sine the irreduible

haraters of H

n

(q) orrespond to irreduible haraters of S

n

, it follows that

the monomial (virtual) haraters �

�

of S

n

have unique analogues for H

n

(q).

Haiman then onjetures an aÆrmative answer to the following question.

Problem 19. For every monomial harater �

�

of H

n

(q) and every Kazhdan-

Lusztig basis element C

0

w

, is it true that �

�

(q

`(w)=2

C

0

w

) is a polynomial with

nonnegative integer oeÆients, and moreover that these oeÆients are uni-

modal and symmetri about q

`(w)=2

?
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Haiman also gives in his paper some interesting re�nements of the above

problem.

4 Real zeros and total positivity.

There are a number of open problems in algebrai ombinatoris onerning

whether ertain polynomials have (only) real zeros. The onnetion between

real zeros and positivity is given by the theory of total positivity, in partiular

the following fundamental result of Aissen, Shoenberg, and Whitney [2℄. (A

famous onjetured generalization due to Shoenberg was proved indepen-

dently by Edrei and Thoma, and more reently Olshanskii and Okounkov.

See [89, Exer. 7.91℄ for further disussion and referenes.)

Theorem 1. Let a

0

; a

1

; : : : ; a

n

2 R. Set a

i

= 0 if i < 0 or i > n. Then

every zero of the polynomial P (x) = a

0

+ a

1

x + � � � + a

n

x

n

is a nonpositive

real number if and only if the in�nite Toeplitz matrix A = (a

j�i

)

i;j�0

is totally

nonnegative.

Note. The above theorem gives in�nitely many onditions that have

to be heked in order for P (x) to have only real zeros. Even for quadrati

polynomials it does not suÆe to hek some �nite subset of the minors of A.

Nevertheless this theorem is a useful tool in showing that ertain polynomials

have only real zeros. Sometimes, for instane, it is possible to interpret the

neessary determinants ombinatorially by using the Gessel-Viennot non-

interseting lattie path method [42℄[81, x2.7℄. See for instane Theorem 3

below. Gantmaher [35, Cor. on p. 203 of Vol. 2℄ was the �rst to expliitly

state a set of n � 1 inequalities among the oeÆients of a real polynomial

P (x) of degree n that are neessary and suÆient for every zero of P (x) to

be real. However, Gantmaher's onditions have not (yet) been applied to

any ombinatorially de�ned polynomials.

The above theorem has an interesting formulation in terms of symmetri

funtions. This result was �rst expliitly stated in [88, Thm. 2.11℄, but it is

easily seen to be equivalent to the Aissen-Shoenberg-Whitney theorem.
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Theorem 2. Let P (t) 2 R[t℄ with P (0) = 1. Let F

P

(x) =

Q

i

P (x

i

), a sym-

metri formal power series in the variables x

i

. The following three onditions

are equivalent:

(a) Every zero of P (t) is real and negative.

(b) F

P

(x) is s-positive.

() F

P

(x) is e-positive, where fe

�

g is the basis of elementary symmetri

funtions.

The previous theorem opens up the possibility of giving ombinatorial

proofs that ertain polynomials P (t) (normalized so P (0) = 1) have real

zeros. Namely, one an try to �nd a ombinatorial interpretation of the oef-

�ients in the expansion of F

P

(x) in terms of Shur funtions or elementary

symmetri funtions, thereby ombinatorially proving that these oeÆients

are nonnegative. We will mention below (see Theorem 4) a situation for

whih this tehnique is suessful, but in general it seems diÆult to ap-

ply. For instane, it is well-known (e.g., [72℄) that the Eulerian polynomial

A

n

(t) (de�ned below) has real zeros, but a ombinatorial proof along the

lines just mentioned is not known. (We should work with P

n

(t) = A

n

(t)=t,

so P

n

(0) = 1.)

An intriguing onjeture onerning real zeros is known as the Poset Con-

jeture. Let P be a partial ordering of 1; 2; : : : ; n, with the order relation de-

noted

P

�. We say that P is natural if i < j (as integers) whenever i

P

< j. Let

L(P ) denote the set of all permutations a

1

� � �a

n

of 1; : : : ; n suh that i < j

if a

i

P

< a

j

. Suh permutations are in an obvious one-to-one orrespondene

with the linear extensions of P . For a permutation w = a

1

� � �a

n

of 1; : : : ; n,

de�ne the number of desents d(w) of w by

d(w) = #fi : a

i

> a

i+1

; 1 � i � n� 1g:

Set

W (P; x) =

X

w2L(P )

x

d(w)

:
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The polynomial W (P; x) plays an important role in the ombinatoris of P ,

and many speial ases have been onsidered independently. For instane, if

P is an antihain (i.e., no two distint elements are omparable) then L

P

=

S

n

and xW (P; x) is the Eulerian polynomial A

n

(x). For further information,

see e.g. [74℄[81, x4.5℄.

The following problem (stated in a somewhat di�erent form) was onje-

tured to have an aÆrmative answer by J. Neggers [69, p. 114℄ for natural

posets, and was extended to arbitrary posets by Stanley. For some work on

this onjeture, see [19℄[41℄[72℄[97℄. It has been veri�ed by Stembridge for

#P � 8.

Problem 20. Is every zero of W (P; x) real?

When P is natural it an be shown [19, Conj. 3℄ that Problem 20 is

equivalent to the following. Let L be a �nite distributive lattie, i.e., a �nite

lattie L whose lattie operations ^ and _ satisfy the distributive laws

x ^ (y _ z) = (x ^ y) _ (x ^ z); x _ (y ^ z) = (x _ y) ^ (x _ z):

Equivalently , L is isomorphi to a �nite olletion of sets, ordered by inlu-

sion, and losed under the operations of union and intersetion (see e.g. [81,

Thm. 3.4.1℄). For any �nite poset P , let 

k

= 

k

(P ) denote the number of

k-element hains in P (so in partiular 

0

= 1, orresponding to the empty

hain, and 

1

= #P ). Hene the sequene (

1

; 

2

; : : :) is just the f -vetor of

the order omplex of P . De�ne the hain polynomial C(P; t) =

P

k



k

t

k

.

Problem 20

0

. When L is a distributive lattie, is every zero of C(L; t)

real?

The zeros of C(P; t) are of interest for posets other than distributive

latties. For instane, it is not known whether C(L; t) has only real zeros

when L is a modular lattie.

There is a lass of posets P for whih C(P; t) an be shown to have real

zeros using Theorem 2. De�ne a poset P to be (3 + 1)-free if P ontains

no indued subset isomorphi to the disjoint union of a three-element hain
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and a one-element hain. (A subposet Q of P is indued if it is obtained by

hoosing some subset of the elements of P and all relations on these elements

that hold in P . An n-element poset has 2

n

indued subposets.) The following

result appears in [88, Cor. 2.9℄. A proof avoiding symmetri funtions was

later found by M. Skandera [73℄.

Theorem 3. Let P be a (�nite) (3 + 1)-free poset. Then all zeros of C(P; t)

are real.

The proof onsists of applying Theorem 2 to a result of Gasharov [40℄.

Gasharov's result easily implies a ombinatorial interpretation of the oef-

�ients of the Shur funtion expansion of F

C(P )

(x) =

Q

i

C(P; x

i

), thereby

establishing their nonnegativity. Gasharov's result suggests two further open

problems, whih we now disuss. Let G be a graph on the vertex set

V = fv

1

; : : : ; v

n

g, with no loops or multiple edges. A proper oloring of

G is a map � : V ! f1; 2; : : :g suh that �(u) 6= �(v) whenever uv is an

edge of G. Think of �(v

j

) as the \olor" of vertex v

j

. De�ne the hromati

symmetri funtion X

G

(x) = X

G

(x

1

; x

2

; : : :) of G by

X

G

(x) =

X

�

x

a

1

(�)

1

x

a

2

(�)

2

� � � ;

summed over all proper olorings � of G, where a

i

(�) = #�

�1

(i), the number

of verties of G olored i. Clearly X

G

(x) is a homogeneous symmetri fun-

tion of degree n in the variables x

1

; x

2

; : : :. Its basi properties are developed

in [80℄[88℄. If P is a �nite poset, then let in(P ) denote its inomparability

graph, i.e., the verties of in(P ) are the elements of P , and uv is an edge

of in(P ) if and only if u and v are inomparable in P . The theorem of

Gasharov mentioned above is the following.

Theorem 4. If P is a (3 + 1)-free poset and G = in(P ), then X

G

is s-

positive.

The following two problems are both strengthenings of Gasharov's the-

orem. The �rst strengthens the onlusion, while the seond weakens the

hypothesis. The �rst problem is due (in an equivalent form) to Stanley and
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Stembridge [90, Conj. 5.5℄ and is related to Problems 18 and 19, while the

seond is due to Gasharov and is stated in [88, Conj. 1.4℄.

Problem 21. If P is a (3 + 1)-free poset and G = in(P ), then is X

G

e-

positive?

Problem 22. Let G be a �nite lawfree graph, i.e., G has no indued sub-

graph onsisting of one vertex onneted to three other verties (and no fur-

ther edges). Is X

G

s-positive?

A speial lass of (3 + 1)-free posets for whih Problem 21 is still open

is the semiorders or unit interval orders, de�ned e.g. in [89, Exer. 6.30℄. It

is not hard to dedue from [90℄ that an aÆrmative answer to Problem 17

implies that Problem 21 has an aÆrmative answer for semiorders. Even the

following very speial ase of Problem 21 is open (see [80, pp. 190{191℄).

De�ne

F

n

=

X

i

1

;:::;i

n

x

i

1

x

i

2

� � �x

i

n

;

where i

1

; : : : ; i

n

ranges over all sequenes of positive integers of length n for

whih any three onseutive terms are distint. Is F

n

e-positive?

Now let G be a graph and 

k

the number of stable (or independent)

k-element subsets S of verties, i.e., no two verties in S are adjaent in

G. The stable set polynomial of G is de�ned by D(G; t) =

P

k



k

t

k

. In

partiular, if P is a poset then D(in(P ); t) = C(P; t). Just as Theorems 2

and 4 imply Theorem 3, in exatly the same way an aÆrmative answer to

Problem 22 implies an aÆrmative answer to the following problem, whih

was �rst raised by Hamidoune [50, p. 242℄.

Problem 23. Does the stable set polynomial D(G; t) of a lawfree graph G

have only real zeros?

There is one further lass of problems we wish to mention onerning

polynomials with real zeros. These problems onern some polynomials that
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arise in the ombinatorial subjet of rook theory. We will simply state the

most entral of these problems, whih is due to Haglund, Ono, and Wagner

[47℄. For further problems of this nature, see [46℄. Reall from the previous

setion that the permanent of an n� n matrix A = (a

ij

) is de�ned by

perA =

X

w2S

n

a

1;w(1)

a

2;w(2)

� � �a

n;w(n)

:

Let J denote the n� n matrix of all 1's.

Problem 24. Let A be an n�n real matrix for whih every olumn is weakly

inreasing. Does the polynomial per(A+ xJ) have only real zeros?

There are a number of onditions on a sequene a

0

; a

1

; : : : ; a

n

of real

numbers that are weaker than being the oeÆients of a polynomial with

only real zeros, and that appear throughout ombinatoris. The two best

known of these onditions are unimodality and logarithmi onavity (or

log-onavity for short). The sequene a

0

; a

1

; : : : ; a

n

is unimodal if a

1

� a

2

�

� � � � a

j

� a

j+1

� � � � � a

n

for some j, and log-onave if a

2

i

� a

i�1

a

i+1

for 1 � i � n � 1. Isaa Newton showed that if the polynomial

P

a

i

x

i

has only real zeros, then the sequene a

0

; : : : ; a

n

is log-onave. (Even more

strongly, the sequene a

0

=

�

n

0

�

; a

1

=

�

n

1

�

; : : : ; a

n

=

�

n

n

�

is log-onave.) Moreover,

it is easy to see that if a

0

; : : : ; a

n

is a log-onave sequene of positive real

numbers, then it is also unimodal. The subjet of log-onave and unimodal

sequenes arising in algebra, ombinatoris, and geometry is surveyed in [78℄,

with a sequel in [21℄. In partiular, a vast number of sequenes have been

onjetured to be log-onave or unimodal. We will state here only a few of

the most intriguing suh sequenes, to give a avor for this subjet.

Problem 25. Are the sequenes below unimodal or log-onave?

(a) The absolute value of the oeÆients of the hromati polynomial of a

graph, or more generally, the harateristi polynomial of a matroid.

(b) The number of i-edge spanning forests of a graph, or more generally,

the number of i-element independent sets of a matroid.
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() The number of elements of rank i of a geometri lattie.

Our own feeling is that these questions have negative answers, but that

the ounterexamples will be huge and diÆult to onstrut. A similar phe-

nomenon onerns the problem raised by T. S. Motzkin in 1961 and D. Welsh

in 1972 whether the f -vetor (f

0

; f

1

; : : : ; f

d�1

) of a d-dimensional onvex poly-

tope is unimodal. The �rst ounterexamples were obtained by Bj�orner [15℄

and Lee [63℄ (see also [14, x8℄). Subsequently it was shown that the smallest

d for whih there exists a simpliial d-polytope with a nonunimodal f -vetor

is d = 20; the smallest suh example known has f

0

� 4:2 � 10

12

verties

(see [98, p. 272℄). All known examples are far too large to be found by

any kind of searh; they are instead obtained by the use of the g-theorem

for simpliial polytopes or by the use of tehniques for onstruting large

polytopes from smaller ones (see [98, Example 8.41℄). (Only the suÆieny

of the onditions haraterizing f -vetors of simpliial polytopes is needed

here to onstrut examples of f -vetors.) Unfortunately there are no analo-

gous suÆient onditions or onstrution tehniques known for the sequenes

appearing in Problem 25.

Aknowledgment. I am grateful to Louis Billera, Sara Billey, An-
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