SOME ASPECTS OF (r, k)-PARKING FUNCTIONS

RICHARD P. STANLEY AND YINGHUI WANG

Abstract

An (r, k)-parking function of length n may be defined as a sequence $\left(a_{1}, \ldots, a_{n}\right)$ of positive integers whose increasing rearrangement $b_{1} \leq \cdots \leq b_{n}$ satisfies $b_{i} \leq k+(i-1) r$. The case $r=k=1$ corresponds to ordinary parking functions. We develop numerous properties of (r, k)-parking functions. In particular, if $F_{n}^{(r, k)}$ denotes the Frobenius characteristic of the action of the symmetric group \mathfrak{S}_{n} on the set of all (r, k)-parking functions of length n, then we find a combinatorial interpretation of the coefficients of the power series $\left(\sum_{n \geq 0} F_{n}^{(r, 1)} t^{n}\right)^{k}$ for any $k \in \mathbb{Z}$. For instance, when $k>0$ this power series is just $\sum_{n \geq 0} F_{n}^{(r, k)} t^{n}$. We also give a q-analogue of this result. For fixed r, we can use the symmetric functions $F_{n}^{(r, 1)}$ to define a multiplicative basis for the ring Λ of symmetric functions. We investigate some of the properties of this basis.

1. Introduction

Parking functions were first defined by Konheim and Weiss as follows. We have n cars C_{1}, \ldots, C_{n} and n parking spaces $1,2, \ldots, n$. Each car C_{i} has a preferred space a_{i}. The cars go one at a time in order to their preferred space. If it is empty they park there; otherwise they park at the next available space (in increasing order). If all the cars are able to park, then the sequence $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ is called a parking function of length $\ell(\alpha)=n$. For instance, $(3,1,4,3)$ is not a parking function since the last car will go to space 3 , but spaces 3 and 4 are already occupied. It is easy to see that $\left(a_{1}, \ldots, a_{n}\right) \in[n]^{n}$ (where $[n]=\{1,2, \ldots, n\}$) is a parking function if and only if its increasing rearrangement $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ satisfies $b_{i} \leq i$.

Let PF_{n} denote the set of all parking functions of length n. A fundamental result of Konheim and Weiss [2] (earlier proved in an equivalent form by Steck [7]-see Yan [8, §1.4] for a discussion) states that $\# \mathrm{PF}_{n}=(n+1)^{n-1}$. An elegant proof of this result was given by Pollak (reported in [3]), which we now sketch since it will be generalized later. Suppose that we have the same n cars, but now there are $n+1$ spaces $1,2, \ldots, n+1$. The spaces are arranged on a circle. The cars follow the same algorithm as before, but once a car reaches space $n+1$ and is unable to park, it can continue around the circle to spaces $1,2, \ldots$ until it can finally park. Of course all the cars can park this way, so at the end there will be one empty space. Note that their preferences $\left(a_{1}, \ldots, a_{n}\right) \in[n+1]^{n}$ will be a parking function if and only if the empty space is $n+1$. If the empty space is e and the preferences are changed to $\left(a_{1}+i, \ldots, a_{n}+i\right)$ for some i, where $a_{j}+i$ is taken modulo $n+1$ so that $a_{j}+i \in[n+1]$, then the empty space becomes $e+i$. Hence given $\left(a_{1}, \ldots, a_{n}\right) \in[n+1]^{n}$, exactly one of the vectors $\left(a_{1}+i, \ldots, a_{n}+i\right)$ will be a parking function. It follows that $\# \mathrm{PF}_{n}=\frac{1}{n+1}(n+1)^{n}=(n+1)^{n-1}$.

Date: March 14, 2023.
The first author was partially supported by NSF grant DMS-1068625.

We will use notation and terminology on symmetric functions from [6, Chap. 7]. The symmetric group \mathfrak{S}_{n} acts on PF_{n} by permuting coordinates. Let $F_{n}:=$ ch PF_{n} denote the Frobenius characteristic of this action of \mathfrak{S}_{n}, as defined in [6, §7.18]. Hence F_{n} is a homogeneous symmetric function of degree n, called the parking function symmetric function. If $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ is a sequence of positive integers with $m_{i} i$'s (so $\sum m_{i}=n$), then the Frobenius characteristic of the action of \mathfrak{S}_{n} on the set of permutations of the terms of α is the complete symmetric function $h_{m_{1}} h_{m_{2}} \cdots$ (with $h_{0}=1$). Hence to compute F_{n}, take all vectors $\left(b_{1}, \ldots, b_{n}\right) \in \mathrm{PF}_{n}$ with $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ (the number of such vectors is the Catalan number C_{n}) and add the corresponding h_{λ} for each. For instance, when $n=3$ the weakly increasing parking functions are $111,112,113,122,123$, so $F_{3}=h_{3}+3 h_{2} h_{1}+h_{1}^{3}$.

The symmetric function F_{n} has many remarkable properties, summarized (in a dual form, and with equation (1.2) below not included) in [6, Exer. 7.48(f)].

Proposition 1.1. We have

$$
\begin{align*}
F_{n} & =\sum_{\lambda \vdash n}(n+1)^{\ell(\lambda)-1} z_{\lambda}^{-1} p_{\lambda} \\
& =\frac{1}{n+1} \sum_{\lambda \vdash n} s_{\lambda}\left(1^{n+1}\right) s_{\lambda} \\
& =\frac{1}{n+1} \sum_{\lambda \vdash n}\left[\prod_{i}\binom{\lambda_{i}+n}{\lambda_{i}}\right] m_{\lambda} \\
& =\sum_{\lambda \vdash n} \frac{n(n-1) \cdots(n-\ell(\lambda)+2)}{d_{1}(\lambda)!\cdots d_{n}(\lambda)!} h_{\lambda} \tag{1.1}\\
& =\sum_{\lambda \vdash n} \varepsilon_{\lambda} \frac{(n+2)(n+3) \cdots(n+\ell(\lambda))}{d_{1}(\lambda)!\cdots d_{n}(\lambda)!} e_{\lambda} \tag{1.2}\\
\omega F_{n} & =\frac{1}{n+1}\left[\prod_{i}\binom{n+1}{\lambda_{i}}\right] m_{\lambda},
\end{align*}
$$

where $d_{i}(\lambda)$ denotes the number of parts of λ equal to i and $\varepsilon_{\lambda}=(-1)^{n-\ell(\lambda)}$. Moreover,

$$
\begin{equation*}
F_{n}=\frac{1}{n+1}\left[t^{n}\right] H(t)^{n+1} \tag{1.3}
\end{equation*}
$$

where $\left[t^{n}\right] f(t)$ denotes the coefficient of t^{n} in the power series $f(t)$, and

$$
H(t)=\sum_{n \geq 0} h_{n} t^{n}=\frac{1}{\left(1-x_{1} t\right)\left(1-x_{2} t\right) \cdots}
$$

Note in particular that the coefficient of h_{λ} in equation (1.3) is the number of weakly increasing parking functions of length n whose entries occur with multiplicities $\lambda_{1}, \lambda_{2}, \ldots$.

A further important property of F_{n}, an immediate consequence of equation (1.3) and the Lagrange inversion formula, is the following. Let

$$
\begin{equation*}
E(t)=\sum_{n \geq 0} e_{n} t^{n}=\prod_{i}\left(1+x_{i} t\right) \tag{1.4}
\end{equation*}
$$

and let $G(t)^{\langle-1\rangle}$ denote the compositional inverse of the power series $G(t)$ (which will exist as a formal power series if $G(t)=a_{1} t+a_{2} t^{2}+\cdots$, where $\left.a_{1} \neq 0\right)$. Then

$$
\begin{equation*}
\sum_{n \geq 1} F_{n} t^{n}=(t E(-t))^{\langle-1\rangle} . \tag{1.5}
\end{equation*}
$$

There are several known generalizations of parking functions. In particular, if $\boldsymbol{u}=$ $\left(u_{1}, \ldots, u_{n}\right)$ is a weakly increasing sequence of positive integers, then a \boldsymbol{u}-parking function is a sequence $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{P}^{n}$ (where $\mathbb{P}=\{1,2, \ldots\}$) such that its increasing rearrangement $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ satisfies $b_{i} \leq u_{i}$. Thus an ordinary parking function corresponds to $\boldsymbol{u}=(1,2, \ldots, n)$. For the general theory of \boldsymbol{u}-parking functions, see the survey [8, §13.4]. We will be interested here in the special case $\boldsymbol{u}=(k, r+k, 2 r+k, \ldots,(n-1) r+k)$, where $r, k \geq 1$. We call such a \boldsymbol{u}-parking function an (r, k)-parking function. With this terminology, an ordinary parking function is a (1,1)-parking function. We call an ($r, 1$)-parking function simply an r-parking function.

Note. Our terminology is not universally used. For instance, if $\left(a_{1}, \ldots, a_{n}\right)$ is what we call an (r, r)-parking function, then Bergeron [1] would call $\left(a_{1}-1, \ldots, a_{n}-1\right)$ an r-parking function.

Pollak's proof that $\# \mathrm{PF}_{n}=(n+1)^{n-1}$ extends easily to (r, k)-parking functions. Namely, we now have $r n$ cars $C_{1}, \ldots, C_{r n}$ and $r n+k-1$ spaces $1,2, \ldots, r n+k-1$. We consider preferences $\alpha=\left(a_{1}, \ldots, a_{n}\right), 1 \leq a_{i} \leq r n+k-1$, where cars $C_{r(i-1)+1}, \ldots, C_{r i}$ all prefer a_{i}. The cars use the same parking algorithm as before. It is not hard to check that all the cars can park if and only if α is an (r, k)-parking function. Now arrange $r n+k$ spaces on a circle, allow the preferences $1 \leq a_{i} \leq r n+k$, and park as in Pollak's proof. Then α is an (r, k)-parking function if and only if the space $r n+k$ is empty. Reasoning as in Pollak's proof gives the following result, which in an equivalent form is due to Steck [7].
Theorem 1.2. Let $\mathrm{PF}_{n}^{(r, k)}$ denote the set of (r, k)-parking functions of length n. Then

$$
\# \mathrm{PF}_{n}^{(r, k)}=k(r n+k)^{n-1} .
$$

The results in Proposition 1.1 can be extended to (r, k)-parking functions (Theorem 2.1). Most of them appear in Bergeron [1, Prop. 1] for the case $k=r$. (Bergeron and his collaborators have gone on to generalize their results in a series of papers on rectangular parking functions.) One of our key results (Theorem 3.1) connects r-parking functions to (r, k)parking functions as follows.

Let $\mathrm{PF}_{n}^{(r, k)}$ denote the set of all (r, k)-parking functions of length n, and let $F_{n}^{(r, k)}$ denote the Frobenius characteristic ch $\mathrm{PF}_{n}^{(r)}$ of the action of \mathfrak{S}_{n} on $\mathrm{PF}_{n}^{(r, k)}$ by permuting coordinates. Define

$$
\begin{aligned}
\mathcal{P}^{(r, k)}(t) & =\sum_{n \geq 0} F_{n}^{(r, k)} t^{n} \\
\mathcal{P}^{(r)}(t) & =\mathcal{P}^{(r, 1)}(t)
\end{aligned}
$$

Then (Theorem 3.1)

$$
\begin{equation*}
\mathcal{P}^{(r)}(t)^{k}=\mathcal{P}^{(r, k)}(t) . \tag{1.6}
\end{equation*}
$$

Equation (1.6) suggests looking at $\mathcal{P}^{(r)}(t)^{k}$ for negative integers k. We obtain parking function interpretations of the coefficients of such power series in Section 4. As some motivation
for what to expect, consider two power series $A(t), B(t)$, with $B(0)=0$, that are related by

$$
A(t)=\frac{1}{1-B(t)}=1+B(t)+B(t)^{2}+\cdots
$$

Thus

$$
\begin{equation*}
B(t)=1-\frac{1}{A(t)}, \tag{1.7}
\end{equation*}
$$

and often $B(t)$ will be a generating function for certain "prime" objects, while $A(t)$ will be a generating function for all objects, i.e., products of primes. See for instance [5, Prop. 4.7.11]. We will see examples of this relationship with our generating functions for parking functions.

For instance, if we set

$$
\begin{equation*}
\mathcal{P}^{(r, k)}(t)^{-1}=1-\sum_{n \geq 1} G_{n}^{(r, k)} t^{n}, \tag{1.8}
\end{equation*}
$$

then $G_{n}^{(1,1)}$ is the Frobenius characteristic of the action of \mathfrak{S}_{n} on prime parking functions of length n, i.e., parking functions that remain parking functions when some term equal to 1 is deleted (a concept due to Gessel [6, Exer. 5.49(f)]). An increasing parking function $b_{1} b_{2} \cdots b_{n}$ can be uniquely factored $\beta_{1} \cdots \beta_{k}$, such that (1) if b_{j} is the first term of β_{i} then $b_{j}=j$, and (2) if we subtract from each term of β_{i} one less than its first element (so it now begins with a 1), then we obtain a prime parking function.

As a direct generalization of the previous example, $G_{n}^{(r, 1)}$ is the Frobenius characteristic of the action of \mathfrak{S}_{n} on sequences $a_{1} a_{2} \cdots a_{n}$ such that some $a_{i}=1$, and if remove this term then we obtain an (r, r)-parking function. More generally, if $1 \leq k \leq r$ then $G_{n}^{(r, k)}$ is the Frobenius characteristic of the action of \mathfrak{S}_{n} on sequences $a_{1} a_{2} \cdots a_{n}$ such that we can remove some term less than $k+1$ and obtain an (r, r) parking function (Theorem 4.3). For instance, when $r=2$ and $n=3$ the increasing sequences with this property are 111, 112, 113, 114, 122, 123, 124, 222, 223, 224. Hence $G_{3}^{(2,2)}=2 h_{1}^{3}+6 h_{2} h_{1}+2 h_{3}$. The situation for $\mathcal{P}^{(r, k)}(t)^{-j}$ when $j>r$ is more complicated (Theorem 4.1).

2. EXPANSIONS OF $F_{n}^{(r, k)}$

In this section we consider the expansion of $F_{n}^{(r, k)}$ into the six classical bases for symmetric functions. These expresssions are defined even when k is an indeterminate, so we can use any of them to define $F_{n}^{(r, k)}$ in this situation. For later combinatorial applications we will only consider the case when k is an integer. We use notation from [6, Ch. 7] regarding symmetric functions. We also use multinomial coefficient notation such as

$$
\binom{k}{d_{1}, \ldots, d_{n}, k-\sum d_{i}}=\frac{k(k-1) \cdots\left(k-\sum d_{i}+1\right)}{d_{1}!\cdots d_{n}!},
$$

where d_{1}, \ldots, d_{n} are nonnegative integers and k may be an indeterminate. As usual we abbreviate $\binom{k}{d, k-d}$ as $\binom{k}{d}$.

Theorem 2.1. Recall that $d_{i}(\lambda)$ denotes the number of parts of λ equal to i. Then $F_{0}^{(r, k)}=1$, and for $n \geq 1$ we have

$$
\begin{align*}
F_{n}^{(r, k)} & =\frac{k}{r n+k} \sum_{\lambda \vdash n}\binom{r n+k}{d_{1}(\lambda), \ldots, d_{n}(\lambda), r n+k-\ell(\lambda)} h_{\lambda} \tag{2.1}\\
& =\frac{k}{r n+k} \sum_{\lambda \vdash n} \varepsilon_{\lambda}\binom{r n+k+\ell(\lambda)-1}{d_{1}(\lambda), \ldots, d_{n}(\lambda), r n+k-1} e_{\lambda} \tag{2.2}\\
& =\frac{k}{r n+k} \sum_{\lambda \vdash n}\left[\prod_{i}\binom{\lambda_{i}+r n+k-1}{\lambda_{i}}\right] m_{\lambda} \\
& =\frac{k}{r n+k} \sum_{\lambda \vdash n} s_{\lambda}\left(1^{r n+k}\right) s_{\lambda} \\
& =k \sum_{\lambda \vdash n} z_{\lambda}^{-1}(r n+k)^{\ell(\lambda)-1} p_{\lambda} \tag{2.3}\\
\omega F_{n}^{(r, k)} & =\frac{k}{r n+k} \sum_{\lambda \vdash n}\left[\prod_{i}\binom{r n+k}{\lambda_{i}}\right] m_{\lambda},
\end{align*}
$$

Moreover,

$$
\begin{equation*}
F_{n}^{(r, k)}=\frac{k}{r n+k}\left[t^{n}\right] H(t)^{r n+k} \tag{2.4}
\end{equation*}
$$

Proof. Define two elements α and β of $[r n+k]^{n}$ to be equivalent if their difference is a multiple of $(1,1, \ldots, 1) \bmod r n+k$. This defines an equivalence relation on $[r n+k]^{n}$, and each equivalence class contains $r n+k$ elements. It follows from the proof of Theorem 1.2 that each equivalence class contains exactly $k(r, k)$-parking functions. Moreover, all the elements α in each equivalence class have the same multiset of part multiplicities, i.e., the multiset $\left\{d_{1}, \ldots, d_{r n+k}\right\}$, where d_{i} is the number of i 's in α.

For $n \geq 1$ let $D_{n}^{(r, k)}$ denote the Frobenius characteristic of the action of \mathfrak{S}_{n} on $[r n+k]^{n}$ by permuting coordinates. It follows that

$$
F_{n}^{(r, k)}=\frac{k}{r n+k} D_{n}^{(r, k)} .
$$

Hence if we set $q=1, k=n$, and $n=r n+k$ in Exercise 7.75(a) of [6] then we get

$$
D_{n}^{(r, k)}=\sum_{\lambda \vdash n} s_{\lambda}\left(1^{r n+k}\right) s_{\lambda} .
$$

(Exercise 7.75 deals with \mathfrak{S}_{k} acting on submultisets M of $\left\{1^{n}, \ldots, k^{n}\right\}$. Replace M with the vector $\left(d_{1}, \ldots, d_{k}\right\}$, where d_{i} is the multiplicity of i in M, to get our formulation.) Therefore

$$
F_{n}^{(r, k)}=\frac{k}{r n+k} \sum_{\lambda \vdash n} s_{\lambda}\left(1^{r n+k}\right) s_{\lambda} .
$$

The remainder of the proof is routine symmetric function manipulation.
A further important property of $F_{n}^{(r, k)}$ in the case $k=r$, an immediate consequence of equation (2.4) and the Lagrange inversion formula [6, Thm. 5.4.2], is the following.

Let $E(t)$ be given by equation (1.4). Then

$$
\begin{equation*}
\sum_{n \geq 0} F_{n}^{(r, r)} t^{n+1}=\left(t E(-t)^{r}\right)^{\langle-1\rangle} \tag{2.5}
\end{equation*}
$$

3. A RELATION BETWEEN r-Parking functions and (r, k)-Parking Functions

In this section we give a combinatorial proof of the following result.
Theorem 3.1. Let $k, r \in \mathbb{P}$. Then $\mathcal{P}^{(r)}(t)^{k}=\mathcal{P}^{(r, k)}(t)$.
Proof. We need to give a bijection $\psi:\left(\mathrm{PF}_{n}^{(r, 1)}\right)^{k} \rightarrow \mathrm{PF}_{n}^{(r, k)}$ such that if $\psi\left(\alpha_{1}, \ldots, \alpha_{k}\right)=\beta$, then $\ell\left(\alpha_{1}\right)+\cdots+\ell\left(\alpha_{k}\right)=\ell(\beta)$. Note that we consider the empty sequence \emptyset to be an (r, j)-parking function for any r and j.

Given $\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in\left(\mathrm{PF}_{n}^{(r, 1)}\right)^{k}$, define α_{i}^{\prime} to be the sequence obtained by adding $r\left(\ell\left(\alpha_{1}\right)+\right.$ $\left.\cdots+\ell\left(\alpha_{i-1}\right)\right)+i-1$ to every term of α_{i}. For instance, if $r=2$ and

$$
\left(\alpha_{1}, \ldots, \alpha_{5}\right)=((1,2), \emptyset, \emptyset,(1),(1,3,4)),
$$

then $\alpha_{1}^{\prime}=(1,2), \alpha_{2}^{\prime}=\alpha_{3}^{\prime}=\emptyset, \alpha_{4}^{\prime}=(8)$, and $\alpha_{5}^{\prime}=(11,13,14)$.
It is easily seen that ψ is the desired bijection. In particular, the inverse ψ^{-1} has the following description. Given $\beta=\left(b_{1}, \ldots, b_{n}\right) \in \mathrm{PF}_{n}^{(r, k)}$, let $c_{i}=b_{i}-r i+r-1$. (The term $r-1$ could be replaced by any constant independent from i; we made the choice so $c_{1}=0$.) Let $c_{j_{1}}<\cdots<c_{j_{r}}$ be the left-to-right maxima of the sequence c_{1}, \ldots, c_{n}, so $j_{1}=1$. Factor β (regarded as a word $b_{1} \cdots b_{n}$) as $\beta_{1} \cdots \beta_{r}$, where β_{i} begins with $b_{j_{i}}$. Subtract a constant t_{i} from each term of β_{i} so that we obtain a sequence (or word) β_{i}^{\prime} beginning with a 1 . Insert $c_{j_{i+1}}-c_{j_{i}}-1$ empty words \emptyset between β_{i}^{\prime} and β_{i+1}^{\prime}, and place empty words at the end so that there are k words in all. These words $\alpha_{1}, \ldots, \alpha_{k}$ then satisfy $\psi^{-1}(\beta)=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$.

Example 3.2. Suppose that $r=2, k=7$, and

$$
\beta=(1,2,2,10,12,14,15,19,22)
$$

Then $\left(c_{1}, \ldots, c_{9}\right)=(0,-1,-3,3,3,3,3,4,5)$. The left-to-right maxima are $c_{1}=0, c_{4}=3$, $c_{8}=4, c_{9}=5$. Thus $\beta_{1}=(1,2,2), \beta_{2}=(10,12,14,15), \beta_{3}=(19)$, and $\beta_{4}=(22)$. Hence $\beta_{1}^{\prime}=(1,2,2), \beta_{2}^{\prime}=(1,3,5,6), \beta_{3}^{\prime}=\beta_{4}^{\prime}=(1)$. Between β_{1}^{\prime} and β_{2}^{\prime} insert $c_{4}-c_{1}-1=2$ copies of \emptyset. Similarly since $c_{8}-c_{4}-1=c_{9}-c_{8}-1=0$ we insert no further copies of \emptyset between remaining $\beta_{i}^{\prime \prime}$ s. We now have the six words $\beta_{1}^{\prime}, \emptyset, \emptyset, \beta_{2}^{\prime}, \beta_{3}^{\prime}, \beta_{4}^{\prime}$, Since $k=7$ we insert one \emptyset at the end, finally obtaining

$$
\psi^{-1}(\beta)=((1,2,2), \emptyset, \emptyset,(1,3,5,6),(1),(1), \emptyset)
$$

Theorem 3.1 has a natural q-analogue. We simply state the relevant result since the bijection in the proof of Theorem 3.1 is compatible with our q-analogue, so the proof carries over. More specifically, using the notation of equation (3.1) below it is easy to check that if $\beta \in \operatorname{PF}_{n}^{(r, k)}$ and $\psi^{-1}(\beta)=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, then

$$
s^{(r, k)}(\beta)=\sum_{j=1}^{k}\left(s^{(r, 1)}\left(\alpha_{j}\right)+(k-j) \ell\left(\alpha_{j}\right)\right) .
$$

Given an (r, k)-parking function $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ of length n, note that the largest possible value of $\sum a_{i}$ is $k+(k+r)+\cdots+(k+(n-1) r)=k n+\binom{n}{2} r$. Define

$$
\begin{equation*}
s^{(r, k)}(\alpha)=k n+\binom{n}{2} r-\sum_{i=1}^{n} a_{i} . \tag{3.1}
\end{equation*}
$$

When $k=r$ this is a well-known statistic on parking functions, sometimes used in the variant form $\sum a_{i}$. See for instance $[4][8, \S \S 1.2 .2,1.3 .3]$. Note that the action of \mathfrak{S}_{n} on (r, k)-parking functions α of length n is compatible with this statistic, i.e., if $w \in \mathfrak{S}_{n}$ then $s^{(r, k)}(w \cdot \alpha)=w \cdot s^{(r, k)}(\alpha)$.

Given a sequence $\beta=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{P}^{n}$, let U_{β} denote the Frobenius characteristic of the action by permuting coordinates of \mathfrak{S}_{n} on all permutations of the terms of β. Hence if m_{i} is the number of i 's in β then $U_{\beta}=h_{m_{1}} h_{m_{2}} \cdots$. Given $r, k, n \geq 1$, define

$$
F_{n}^{(r, k)}(q)=\sum_{\beta} q^{s^{(r, k)}(\beta)} U_{\beta}
$$

where β runs over all increasing (r, k)-parking functions of length n. Write

$$
\begin{aligned}
\mathcal{P}^{(r, k)}(q, t) & =\sum_{n \geq 0} F_{n}^{(r, k)}(q) t^{n} \\
\mathcal{P}^{(r)}(q, t) & =\mathcal{P}^{(r, 1)}(q, t)
\end{aligned}
$$

Thus $\mathcal{P}^{(r, k)}(1, t)=\mathcal{P}^{(r, k)}(t)$.
Theorem 3.3. We have

$$
\mathcal{P}^{(r, k)}(q, t)=\prod_{i=0}^{k-1} \mathcal{P}^{(r)}\left(q, q^{i} t\right)
$$

Equation (1.7) gives a relationship between a generating function $A(t)$ for all objects and $B(t)$ for prime objects. There is another basic relationship of this nature between exponential generating funcions $A(t)$ for all objects and $B(t)$ for "connected" objects, namely, the exponential formula $A(t)=\exp B(t)$ or $B(t)=\log A(t)$. See [6, §5.1]. Thus we can ask whether there is a combinatorial interpretation of the coefficients of $\log \mathcal{P}^{(r, k)}(t)$. Recall that $D_{n}^{(r, k)}$ denotes the Frobenius characteristic of the action of \mathfrak{S}_{n} on $[r n+k]^{n}$ by permuting coordinates, as in the proof of Theorem 2.1. The case $k=r$ is handled by the following result.

Proposition 3.4. We have

$$
\log \mathcal{P}^{(r, r)}(t)=\sum_{n \geq 1} D_{n}^{(r, r)} \frac{t^{n}}{n}
$$

Proof. The proof is a simple consequence of the following variant of the Lagrange inversion formula appearing in [6, Exer. 5.56]: for any power series $F(t)=a_{1} t+a_{2} t^{2}+\cdots \in \mathbb{C}[[t]]$ with $a_{1} \neq 0$ we have

$$
\begin{equation*}
n\left[t^{n}\right] \log \frac{F^{\langle-1\rangle}(t)}{t}=\left[t^{n}\right]\left(\frac{t}{F(t)}\right)^{n} \tag{3.2}
\end{equation*}
$$

Choose $F(t)=t E(-t)^{r}$, where $E(t)$ is given by equation (1.4). Now

$$
\frac{1}{E(-t)}=H(t)=\sum_{n \geq 0} h_{n} t^{n}
$$

Hence by equation (2.5), we see that equation (3.2) becomes

$$
n\left[t^{n}\right] \log \mathcal{P}^{(r, r)}(t)=\left[t^{n}\right] H(t)^{n r}
$$

It is clear that $\left[t^{n}\right] H(t)^{n r}=D_{n}^{(r, r)}$, so the proof follows.

4. A Dual to (r, k)-Parking functions

Equation (1.6) suggests looking at $\mathcal{P}^{(r)}(t)^{k}$ for negative integers k. We obtain an object "dual" (in the sense of combinatorial reciprocity) to (r, k)-parking functions.
We define $F_{n}^{(r, k)}$ for $k \leq 0$ by (2.1) (therefore all the equations in Theorem 2.1 hold for $k \leq 0)$. It follows from the definition of $\mathcal{P}^{(r, k)}(t)$ and equation (1.6) that

$$
\mathcal{P}^{(r)}(t)^{k}=\mathcal{P}^{(r, k)}(t)=\sum_{n \geq 0} F_{n}^{(r, k)} t^{n}
$$

holds for all $k>0$. Thus it also holds for all $k \leq 0$. Comparing the coefficients of t^{n} with those in equation (1.8), namely,

$$
\mathcal{P}^{(r)}(t)^{-k}=1-\sum_{n \geq 1} G_{n}^{(r, k)} t^{n}, \quad \text { for all } k \geq 0
$$

and combining with (2.1), we see that

$$
\begin{equation*}
G_{n}^{(r, k)}=-F_{n}^{(r,-k)}=\frac{k}{r n-k} \sum_{\lambda \vdash n}\binom{r n-k}{d_{1}(\lambda), \ldots, d_{n}(\lambda)} h_{\lambda}, \quad \text { for all } k \geq 0, n \geq 1 . \tag{4.1}
\end{equation*}
$$

We then have the following combinatorial interpretation of $G_{n}^{(r, k)}$.
Theorem 4.1. If $r n-k>0$, then $G_{n}^{(r, k)}$ is the Frobenius characteristic of the action of \mathfrak{S}_{n} on the set S of n-tuples whose increasing rearrangements have the following form:

$$
\begin{equation*}
(\underbrace{w, \ldots, w}_{q(w) w \text { 's }}, b_{q(w)+1}, b_{q(w)+2}, \ldots, b_{n}) \tag{4.2}
\end{equation*}
$$

where $w \in[k]$ and $q(w)$ is the smallest integer such that $w \leq q(w) r$, and

$$
\begin{equation*}
b_{j} \leq \min \{(j-1) r, w-1+r n-k\} \quad \text { for } \quad j=q(w)+1, q(w)+2, \ldots, n \tag{4.3}
\end{equation*}
$$

Note that $w \leq \min \{(j-1) r, w-1+r n-k\}$ for all $j \geq q(w)+1$; therefore (4.3) is equivalent to

$$
\begin{equation*}
b_{j} \leq \min \{(j-1) r, w-1+r n-k\} \quad \text { whenever } \quad b_{j}>w \tag{4.4}
\end{equation*}
$$

In other words, a weakly increasing integer sequence b is in S if and only it satisfies the following properties.
I. $b_{1}=w$ for some $w \in[k]$, and $b_{n}-b_{1}<r n-k$.
II. $b_{q(w)}=w$.
III. $b_{j} \leq(j-1) r$ for all $j \in[n]$ whenever $b_{j}>w$.

Example 4.2. Let $r=1, k=2$, and $n=5$. The coefficient of t^{5} in $-\mathcal{P}^{(1)}(t)^{-2}$ is

$$
2 h_{3} h_{1}^{2}+2 h_{2}^{2} h_{1}+4 h_{3} h_{2}+4 h_{4} h_{1}+2 h_{5}
$$

This symmetric function is the Frobenius characteristic of the action of \mathfrak{S}_{5} on all sequences $\left(a_{1}, \ldots, a_{5}\right) \in \mathbb{P}^{5}$ whose increasing rearrangement $b_{1} \geq \cdots \geq b_{5}$ satisfies either of the conditions (1) $b_{1}=1, b_{2} \leq 1$ (so in fact $b_{2}=1$), $b_{3} \leq 2, b_{4} \leq 3, b_{5} \leq 3$, or (2) $b_{1}=b_{2}=2, b_{3} \leq 2$ (so in fact $b_{3}=2$), $b_{4} \leq 3, b_{5} \leq 4$. We get the fourteen increasing sequences (orbit representatives) 11111, 11112, 11113, 11122, 11123, 11133, 11222, 11233, 11223, 22222, 22223, 22224, 22233, 22234.
A special case. When $k \in\{1, \ldots, r\}$, for all $w \in[k]$ we have $q(w)=1$ and $(n-1) r \leq$ $r n-k \leq w-1+r n-k$. Therefore (4.4) becomes $b_{j} \leq(j-1) r$ for all $j>1$, so b having the form (4.2) is equivalent to $b_{1} \in[k]$ and $\left(b_{2}, b_{3}, \ldots, b_{n}\right)$ is a weakly increasing (r, r)-parking functions of length $n-1$. Thus Theorem 4.1 becomes the following result.
Theorem 4.3. If $k \in\{1, \ldots, r\}$, then $G_{n}^{(r, k)}$ is the Frobenius characteristic of the action of \mathfrak{S}_{n} on the distinct n-tuples we get by adjoining $1,2, \ldots$, or k to (r, r)-parking functions of length $n-1$; or equivalently, the n-tuples whose increasing rearrangements start with $1,2, \ldots$, or k and followed by weakly increasing (r, r)-parking functions of length $n-1$.

Theorem 4.1 is a consequence of the following result, which will be proved right below Proposition 4.6.
Proposition 4.4. Suppose that $r n-k>0$. Given $a=\left(a_{1}, \ldots, a_{n}\right) \in[r n-k]^{n}$, let $p \in$ $[r n-k]$ be the smallest positive integer i such that the increasing rearrangements of a and $(a+p) \bmod r n-k$ coincide, where $a+i:=\left(a_{1}+i, \ldots, a_{n}+i\right)$ and $a_{j}+i \bmod r n-k$ is the $a_{j}+i$ taken modulo $r n-k$ so that $a_{j}+i \in[r n-k]$; equivalently, $p=\# R_{a}$, where R_{a} is the set of increasing rearrangements of vectors $a+i \bmod r n-k(i \in \mathbb{Z})$.

Then the number of increasing vectors $b \in S$ such that the increasing rearrangement of $(b \bmod r n-k)$ is in R_{a} is $\frac{p k}{r n-k}$.

Theorem 4.1 follows as each $b \in S$ corresponds to a unique set R_{a} (the vector a may not be unique).

Remark 4.5. The reason why we need the vector $b \bmod r n-k$ is that we may have $b \in$ $S \backslash[r n-k]^{n}$ and $b \bmod r n-k \in S$. For instance, when $r=2, n=4, k=3, r n-k=5$, we have $(6,2,2,4) \in S \backslash[r n-k]^{n}$ and $(1,2,2,4) \in S$.
A special case. When $k \in\{1, \ldots, r\}$, it follows from (4.3) that $b_{n} \leq(n-1) r \leq r n-k$ for all $b \in S$; therefore $b \bmod r n-k=b$. In other words, we only need to consider b instead of $b \bmod r n-k$. Thus, combined with Theorem 4.1, Proposition 4.4 becomes as follows.
Proposition 4.6. If $k \in\{1, \ldots, r\}$, then for any given $\left(a_{1}, \ldots, a_{n}\right) \in[r n-k]^{n}$, there are exactly $k i$'s $(\bmod r n-k)$ such that the vector $\left(a_{1}+i, \ldots, a_{n}+i\right) \bmod r n-k$ is an (r, r) parking function of length $n-1$ adjoined by $1,2, \ldots$, or k, where $a_{j}+i \bmod r n-k$ is the $a_{j}+i$ taken modulo $r n-k$ so that $a_{j}+i \in[r n-k]$.
Proof of Proposition 4.4. The case $k=0$ is trivial. Assume that $k \geq 1$. It suffices to prove the proposition for a weakly increasing sequence $a=\left(a_{1}, \ldots, a_{n}\right)$ with $a_{1}=1$. For convenience, let $N:=r n-k>0$ and denote the increasing rearrangement of a sequence x by x_{\uparrow}.

We have two cases: $p<N$ and $p=N$.
Case 1. $p<N$.
Then a has the form:

$$
\begin{equation*}
(\underbrace{1, \ldots, 1}_{d 1 \text { 's }}, \underbrace{1+p, \ldots, 1+p}_{d(1+p) \text { 's }}, \underbrace{1+2 p, \ldots, 1+2 p}_{d(1+2 p)^{\prime} \mathrm{s}}, \ldots, \underbrace{1+(\ell-1) p, \ldots, 1+(\ell-1) p}_{d(1+(\ell-1) p) \text { 's }}) \tag{4.5}
\end{equation*}
$$

where $d, \ell \in \mathbb{P}$ with $\ell>1$ such that $\ell d=n$ and $\ell p=N$. Thus $k=r n-N=(r d-p) \ell$.
The following fact can be verified immediately from the definition of S and R_{a}.
Lemma 4.7. If $b \in S$, then $b+i \in S$ for all $i \in\left\{0,-1, \ldots,-b_{1}+1\right\}$. Further, if $(b \bmod N)_{\uparrow} \in$ R_{a}, then $(b+i \bmod N)_{\uparrow} \in R_{a}$.

In particular, when $i=-b_{1}+1$, the smallest coordinate of $b+i$ is 1 . According to (4.4), we have $b+i \in[N]^{n}$, and therefore $b+i \bmod N=b+i$. If $(b \bmod N)_{\uparrow} \in R_{a}$, then $(b+i)_{\uparrow}=(b+i \bmod N)_{\uparrow} \in R_{a}$.

We also need the following lemma.
Lemma 4.8. We have $a+i \in S$ if and only if $i \in\{0,1, \ldots, r d-p-1\}$.
On the strength of Lemmas 4.7 and 4.8 and the fact that $R_{a}=\{a+i: 0 \leq i \leq p-1\}$, the number of vectors $b \in S$ such that $(b \bmod r n-k)_{\uparrow} \in R_{a}$ is $r d-p=\frac{p k}{N}$, as desired.
Proof of Lemma 4.8. If $a+i \in S$ with the form (4.2), then applying (4.3) to $a+i$ and $d+1$ yields $1+p+i \leq r d$, and therefore $i \leq r d-p-1$.

On the other hand, for any $i \in\{0,1, \ldots, r d-p-1\}$, we have $a+i \in S$. In fact, the vector
$a+i=(\underbrace{w, \ldots, w}_{d w^{\prime} \mathrm{s}}, \underbrace{w+p, \ldots, w+p}_{d(w+p) \text { 's }}, \underbrace{w+2 p, \ldots, w+2 p}_{d(w+2 p)^{\prime} \mathrm{s}}, \ldots, \underbrace{w+(\ell-1) p, \ldots, w+(\ell-1) p}_{d(w+(\ell-1) p) \text { 's }})$,
where $w=1+i \leq r d-p \leq(r d-p) \ell=k$. Property I then follows from $(a+i)_{n}-(a+i)_{1}=$ $(\ell-1) p<\ell p=N$. Property II holds since $q(\cdot)$ is weakly increasing and $q(w) \leq q(r d)=d$. Finally, Property III is satisfied because $(a+i)_{j d+1}=\cdots=(a+i)_{(j+1) d}=w+j p \leq j(w+p) \leq$ $j(r d-p+p)=(j d) r$ for all $j \in[\ell-1]$.

Case 2. $p=N$.
Namely, the vectors $(a+i \bmod N)_{\uparrow}, i \in[N]$ are distinct. We will determine explicitly the $\frac{p k}{r n-k}=k$ vectors in S desired in Proposition 4.4.

For convenience, we denote $x_{j}=a_{j+1}(\leq N), j=0, \ldots, n-1$, and consider the weakly increasing sequence $x=\left(x_{0}, \ldots, x_{n-1}\right)$ with $x_{0}=1$. Then $x \in S$ if and only if $x_{j} \leq r j$ for all $j \in[n-1]$. In general, a weakly increasing integer sequence y is in S if and only if
$\mathbf{I}^{\prime} . y_{0}=w$ for some $w \in[k]$, and $y_{n-1}-y_{0}<N$.
II' $. y_{q(w)-1}=w$.
III'. $y_{j} \leq j r$ for all $j \in[n-1]$ whenever $y_{j}>w$.
In the rest of the proof, all variables are integers, and for a vector y, we denote by y_{j} its $(j+1)$-th coordinate.

Let $\Delta_{j}:=r j-x_{j}, j=0,1, \ldots, n-1$. Then $\Delta_{0}=-1$, and $x \in S$ if and only if $\Delta_{j} \geq 0$ for all $j \in[n-1]$.

Lemma 4.9. There exists $i \in \mathbb{Z}$ such that the vector $(x+i \bmod N)_{\uparrow} \in S$, with the smallest coordinate equal to 1. More precisely, if $x \in S$, then we can take $i=0$; otherwise, take $i=1-x_{j}$, where j is the largest number in $[n-1]$ such that $\Delta_{j}=\min _{j^{\prime} \in[n-1]} \Delta_{j^{\prime}}$.
Proof. Assume that $x \notin S$, then $\Delta_{j} \leq-1$ and $j \in[n-1]$ for the j taken in the lemma. Taking $i=1-x_{j}$, we get

$$
\begin{aligned}
& x+i \bmod N \\
= & \left(2-x_{j}+N, x_{1}-x_{j}+1+N, \ldots, x_{j-1}-x_{j}+1+N, 1, x_{j+1}-x_{j}+1, \ldots, x_{n-1}-x_{j}+1\right),
\end{aligned}
$$

and thus

$$
\begin{aligned}
& \alpha:=(x+i \bmod N)_{\uparrow} \\
= & (1, \underbrace{x_{j+1}-x_{j}+1}_{\alpha_{1}}, \ldots, \underbrace{x_{n-1}-x_{j}+1}_{\alpha_{n-1-j}}, \underbrace{2-x_{j}+N}_{\alpha_{n-j}}, \underbrace{x_{1}-x_{j}+1+N}_{\alpha_{n-j+1}}, \ldots, \underbrace{x_{j-1}-x_{j}+1+N}_{\alpha_{n-1}}) .
\end{aligned}
$$

It follows from the definition of j that $x_{j} \geq r j+1$, and for $j^{\prime}>j$ we have $\Delta_{j^{\prime}} \geq \Delta_{j}+1$, and therefore $x_{j^{\prime}}-x_{j} \leq r\left(j^{\prime}-j\right)-1$; for $j^{\prime}<j$ we have $\Delta_{j^{\prime}} \geq \Delta_{j}$, and therefore $x_{j^{\prime}}-x_{j} \leq r\left(j^{\prime}-j\right)$. Thus

$$
\begin{aligned}
& \alpha_{u}=x_{j+u}-x_{j}+1 \leq r(j+u-j)-1+1=r u, \quad u \in[n-1-j], \\
& \alpha_{n-j}=2-x_{j}+r n-k \leq 2-r j-1+r n-1=r(n-j), \\
& \alpha_{n-j+u}=x_{u}+1-x_{j}+r n-k \leq r(u-j+n), \quad u \in[j-1] .
\end{aligned}
$$

Hence $\alpha \in S$.
On the strength of Lemma 4.9, we can assume that $x \in S$ with $x_{0}=1$. The following result determines the k vectors in S desired in Proposition 4.4.
Lemma 4.10. Let $0=j_{0}<j_{1}<j_{2}<\cdots$ be the elements of the subset
$J^{*}:=\left\{j \in J: \Delta_{j^{\prime}}>\Delta_{j}\right.$, for all $\left.n-1 \geq j^{\prime}>j\right\} \subseteq J:=\{0\} \cup\left\{j \in[n-1]: x_{j}>x_{j-1}\right\}$
and m be the nonnegative integer determined by

$$
-1=\Delta_{j_{0}}<\Delta_{j_{1}}<\cdots<\Delta_{j_{m}} \leq k-2<\Delta_{j_{m+1}}<\cdots
$$

(if j_{m+1} does not exist, then set j_{m+1} and $\Delta_{j_{m+1}}$ to be infinity). In particular, j_{1} is the largest number in $[n-1]$ such that $\Delta_{j_{1}}=\min _{j \in[n-1]} \Delta_{j} \geq 0$.

Then y is a weakly increasing sequence in S such that $(y \bmod N)_{\uparrow} \in R_{x}$ if and only if
(1) $y=x+i$ with $0 \leq i \leq \Delta_{j_{1}} \wedge(k-1)$, where \wedge represents the minimum function; or
(2) $y=\left(x+i_{1} \bmod N\right)_{\uparrow}+i_{2}$ with
(i) $i_{1}=1-x_{j_{v}}$ for some $v \in[m]$, and
(ii) $0 \leq i_{2}=y_{0}-1 \leq \Delta_{j_{v+1}} \wedge(k-1)-\Delta_{j_{v}}-1<k-1$.

Further, the k vectors given in (1) and (2) are distinct.
Remark 4.11. Note that (1) is the special case of (2) with $i_{1}=0=v$ and $i_{2}=i$.
Proof. As a consequence of $p=N$, the vectors $\left(x+i_{1} \bmod N\right)_{\uparrow}$ with i_{1} given in $(1)\left(i_{1}=i\right)$ and (2), whose smallest coordinates are all 1 , are distinct. Thus the k vectors given in (1) and (2) are distinct.
(1) If $y=x+i \in S$, then by definition we have $1 \leq(x+i)_{0} \leq k$ and $(x+i)_{j_{1}} \leq r j_{1}$. Thus $0 \leq i \leq \Delta_{j_{1}} \wedge(k-1)$.

Conversely, for any $y=x+i$ with $0 \leq i \leq \Delta_{j_{1}} \wedge(k-1)$, we have $(y \bmod N)_{\uparrow} \in R_{x}$, $y_{n-1}-y_{0}=x_{n-1}-x_{0}<N$, and $1 \leq w:=y_{0}=(x+i)_{0} \leq\left(1+\Delta_{j_{1}}\right) \wedge k \leq k$, and Property I^{\prime} follows.

For Property II', notice that for any $j \in[n-1]$ such that $x_{j} \geq 2$, since $r j-x_{j}=\Delta_{j} \geq \Delta_{j_{1}}$, we have $j \geq\left(2+\Delta_{j_{1}}\right) / r>w / r$, and therefore $j \geq q(w)$. Hence $y_{q(w)-1}=w$.

Finally for Property III', for all $j \in[n-1]$, since $\Delta_{j_{1}} \leq \Delta_{j}$, we get $x_{j}-x_{j_{1}} \leq r\left(j-j_{1}\right)$, and therefore $y_{j}=(x+i)_{j}=x_{j}+i \leq r\left(j-j_{1}\right)+\Delta_{j_{1}}=r j$.
(2) If y is a weakly increasing sequence in S such that $(y \bmod N)_{\uparrow} \in R_{x}$ but y does not have the form described in (1), then by Lemma 4.7 we get $\alpha:=y-i_{2} \in S, \alpha_{0}=1$ and $\alpha \in R_{x}$, where $i_{2}=y_{0}-1 \geq 0$.

Since $\alpha \neq x$, we have $\alpha=\left(x+i_{1} \bmod N\right)_{\uparrow}$ for some $i_{1} \in\{-1,-2, \ldots, 1-N\}$. Recall that $\alpha_{0}=1$, and thus $i_{1}=1-x_{j}$ for some $j \in[n-1]$. If there is more than one j such that $i_{1}=1-x_{j}$, we choose the smallest one, i.e., the $j \in J$. Then
$x+i_{1} \bmod N$
$=\left(2-x_{j}+N, x_{1}-x_{j}+1+N, \ldots, x_{j-1}-x_{j}+1+N, 1, x_{j+1}-x_{j}+1, \ldots, x_{n-1}-x_{j}+1\right)$,
and

$$
\begin{aligned}
& \alpha:=\left(x+i_{1} \bmod N\right)_{\uparrow} \\
= & (1, \underbrace{x_{j+1}-x_{j}+1}_{\alpha_{1}}, \ldots, \underbrace{x_{n-1}-x_{j}+1}_{\alpha_{n-1-j}}, \underbrace{2-x_{j}+N}_{\alpha_{n-j}}, \underbrace{x_{1}-x_{j}+1+N}_{\alpha_{n-j+1}}, \ldots, \underbrace{x_{j-1}-x_{j}+1+N}_{\alpha_{n-1}}) .
\end{aligned}
$$

Recall that $\alpha \in S$ if and only if

$$
\begin{equation*}
\alpha_{u} \leq r u, \quad \text { for all } u \in[n-1] \tag{4.6}
\end{equation*}
$$

Applying to $u=1, \ldots, n-1-j$ leads to

$$
x_{j^{\prime}}-x_{j}+1 \leq r\left(j^{\prime}-j\right) \text {, i.e., } \Delta_{j}<\Delta_{j^{\prime}}, \quad \text { for all } j^{\prime}<j \leq n-1 ;
$$

applying to $u=n-j$ leads to

$$
2-x_{j}+r n-k \leq r(n-j), \text { i.e., } \Delta_{j} \leq k-2 .
$$

Therefore $j=j_{v}$ for some $v \in[m]$.
Conversely, from the above argument we see that if $i_{1}=1-x_{j}$ with $j=j_{v}$ for some $v \in[m]$, then we have $\alpha_{u} \leq r u$ for all $u \in[n-j]$. Further, we have

$$
\alpha_{n-j+u}=x_{u}-x_{j}+1+N \leq r u+\Delta_{j}-r j+1+r n-k<r(n-j+u)
$$

for all $u \in[j-1]$. Hence $\alpha \in S$.
It remains to show that $\alpha+i_{2} \in S$ if only if i_{2} satisfies the inequality in (ii).
If $\alpha+i_{2} \in S$, then applying (4.6) to $\alpha^{\prime}:=\alpha+i_{2}$ and $u=j_{v+1}-j_{v}$ (if exists) leads to

$$
x_{j_{v+1}}-x_{j_{v}}+1+i_{2} \leq r\left(j_{v+1}-j_{v}\right), \text { i.e., } i_{2} \leq \Delta_{j_{v+1}}-\Delta_{j_{v}}-1 ;
$$

applying (4.6) to $\alpha^{\prime}:=\alpha+i_{2}$ and $u=n-j_{v}$ leads to

$$
2-x_{j_{v}}+r n-k+i_{2} \leq r\left(n-j_{v}\right), \text { i.e., } i_{2} \leq k-2-\Delta_{j_{v}} .
$$

Recall that $i_{2}=y_{0}-1 \geq 0$, and thus i_{2} satisfies the inequality in (ii).

Conversely, if i_{2} satisfies the inequality in (ii), then $\alpha^{\prime} \in S$. In fact, we have $1 \leq w:=$ $1+i_{2} \leq k$ and $\alpha_{n-1}^{\prime}-\alpha_{0}^{\prime}=\alpha_{n-1}-\alpha_{0}<N$, and Property I^{\prime} then follows.

For Property II^{\prime}, by the definition of j_{v+1}, we have $\Delta_{u} \geq \Delta_{j_{v+1}}$ for any $j_{v}<u \in J$, and hence for any $j_{v}<u \leq n-1$ such that $x_{u}>x_{j_{v}}$. Thus $r u-x_{u} \geq \Delta_{j_{v+1}}$. It follows that

$$
r u \geq \Delta_{j_{v+1}}+x_{u}>\Delta_{j_{v+1}}+x_{j_{v}}=\Delta_{j_{v+1}}+r j_{v}-\Delta_{j_{v}}
$$

and

$$
u-j_{v}>\left(\Delta_{j_{v+1}}-\Delta_{j_{v}}\right) / r \geq w / r, \text { i.e., } u \geq q(w)+j_{v} .
$$

Hence $\alpha_{q(w)-1}^{\prime}=x_{q(w)-1+j_{v}}-x_{j_{v}}+w=w$.
Finally for Property III', from the above argument we see that $\alpha_{u}^{\prime} \leq r u$ for $u=j_{v+1}-$ $j_{v}, n-j_{v}$. Further, we have

$$
\alpha_{n-j_{v}+u}^{\prime}=x_{u}-x_{j_{v}}+1+N+i_{2} \leq r u-x_{j_{v}}+1+r n-k+k-2-\Delta_{j_{v}}<r\left(n-j_{v}+u\right)
$$

for all $u \in\left[j_{v}-1\right]$. For $j_{v}+1 \leq u \leq n-1$ such that $x_{u}>x_{j_{v}}$ and $u \in J$, we have $\Delta_{u} \geq \Delta_{j_{v+1}}$ by the definition of j_{v+1}, and therefore

$$
\alpha_{u-j_{v}}^{\prime}=x_{u}-x_{j_{v}}+w \leq\left(r u-\Delta_{j_{v+1}}\right)-x_{j_{v}}+\left(\Delta_{j_{v+1}}-\Delta_{j_{v}}\right)=r\left(u-j_{v}\right) .
$$

Hence $\alpha^{\prime} \in S$, as desired.

Note. We have been unable to find a satisfactory q-analogue of Theorem 4.1, generalizing Theorem 3.3.

5. The r-PaRking function basis

Equation (1.6) and other considerations suggest looking at products of the symmetric functions $F_{n}^{(r)}$ for various values of n. Thus for any partition λ define

$$
F_{\lambda}^{(r)}=F_{\lambda_{1}}^{(r)} F_{\lambda_{2}}^{(r)} \cdots,
$$

where $F_{0}=1$.
Recall that Λ denotes the ring of all symmetric functions that can be written as an integer linear combination of the monomial symmetric functions m_{λ} (or equivalently, s_{λ}, h_{λ}, or e_{λ}).

Proposition 5.1. Fix $r \geq 1$. Then the symmetric functions $F_{\lambda}^{(r)}$, where λ ranges over all partitions of all $n \geq 0$, form an integral basis for the ring Λ.

Proof. We need to show that for each n, the set $\left\{F_{\lambda}^{(r)}: \lambda \vdash n\right\}$ is an integral basis for the (additive) group Λ^{n} of all homogeneous symmetric functions of degree n contained in Λ. Let $\lambda^{1}, \lambda^{2}, \ldots$ be any ordering of the partitions of n that is compatible with refinement, that is, if λ^{i} is a refinement of λ^{j} then $i \leq j$. Now $F_{n}^{(r)}=h_{n}+\cdots \in \Lambda^{n}$. Hence $F_{\lambda}^{(r)}=h_{\lambda}+$ terms involving h_{μ} where μ refines λ. Hence the transition matrix for expressing the $F_{\lambda}^{(r)}$,s in terms of the h_{λ} 's is lower triangular with 1's on the main diagonal. Since the h_{λ} 's form an integral basis, the same is true of the $F_{\lambda}^{(r)}$,s.

Now that for each $r \geq 1$ we have this "parking function basis" $\left\{F_{\lambda}^{(r)}\right\}$, we can ask about its expansion in terms of other bases and vice versa. If we restrict ourselves to the six "standard" bases (where the power sums p_{λ} are a basis over \mathbb{Q} but not \mathbb{Z}), we thus have
twelve transition matrices to consider. We can also ask about various scalar products such as $\left\langle F_{\lambda}^{(r)}, F_{\mu}^{(r)}\right\rangle$. Moreover, we could also consider the basis $\left\{\tilde{F}_{\lambda}^{(r)}\right\}$ dual to $\left\{F_{\lambda}^{(r)}\right\}$, i.e.,

$$
\left\langle F_{\lambda}^{(r)}, \tilde{F}_{\mu}^{(r)}\right\rangle=\delta_{\lambda \mu} .
$$

However, these dual bases will not yield any new coefficients since the dual basis to a standard basis is also a standard basis (up to a normalizing factor in the case of p_{λ}). We have not systematically investigated these problems. Some miscellaneous results are below.

We first consider scalar products $\left\langle F_{\mu}^{(r, k)}, F_{\lambda}^{(r, k)}\right\rangle$. We can give an explicit formula when $\mu=(n)$. In fact, we can give a more general result where $F_{\lambda}^{(r, k)}$ is replaced with a "mixed" product.

Theorem 5.2. Let $\lambda \vdash n$, and let r, r_{1}, r_{2}, \ldots be positive integers. Let k, k_{1}, k_{2}, \ldots be integers or even indeterminates. Then

$$
\left\langle F_{n}^{(r, k)}, \prod_{i} F_{\lambda_{i}}^{r_{i}, k_{i}}\right\rangle=\frac{k}{r n+k} \prod_{i \geq 1} \frac{k_{i}}{r_{i} \lambda_{i}+k_{i}}\binom{(r n+k)\left(r_{i} \lambda_{i}+k_{i}\right)+\lambda_{i}-1}{\lambda_{i}} .
$$

First proof. If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ then write $\left[t^{\lambda}\right]$ for the operator that takes the coefficient of $t_{1}^{\lambda_{1}} t_{2}^{\lambda_{2}} \cdots$. By equation (2.4) we have

$$
\left\langle F_{n}^{(r, k)}, \prod_{i} F_{\lambda_{i}}^{r_{i}, k_{i}}\right\rangle=\frac{k}{r n+k} \prod \frac{k_{i}}{\lambda_{i}+k_{i}}\left[t^{\lambda}\right]\left\langle H(1)^{r n+k}, H\left(t_{1}\right)^{r_{1} \lambda_{1}+k_{1}} H\left(t_{2}\right)^{r_{2} \lambda_{2}+k_{2}} \cdots\right\rangle .
$$

Writing $H(u)^{b}=\Pi\left(1-x_{i} u\right)^{b}$, taking logarithms, expanding in terms of the power sums p_{k}, and then exponentiating, we get the well-known result

$$
H(u)^{b}=\sum_{\mu} z_{\mu}^{-1} b^{\ell(\mu)} p_{\mu} u^{|\mu|},
$$

where μ ranges over all partitions of all integers $j \geq 0$. (For the case $b=1$, see $[6,(7.22)]$.)
Since $\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}$, we get

$$
\begin{align*}
\left\langle F_{n}^{(r, k)}, \prod_{i} F_{\lambda_{i}}^{\left(r_{i}, k_{i}\right)}\right\rangle= & \frac{k}{r n+k} \prod_{i}\left(\frac{k_{i}}{r_{i} \lambda_{i}+k_{i}} .\right. \\
& {\left[t^{\lambda}\right]\left\langle\sum_{u \vdash n} z_{\mu}^{-1}(r n+k)^{\ell(\mu)} p_{\mu}, \prod_{i \geq 1}\left(\sum_{\nu \vdash \lambda_{i}} z_{\nu}^{-1}\left(r_{i} \lambda_{i}+k_{i}\right)^{\ell(\nu)} t_{i}^{|\nu|} p_{\nu}\right\rangle\right) } \\
(5.1) & \frac{k}{r n+k} \prod_{i} \frac{k_{i}}{r_{i} \lambda_{i}+k_{i}} \cdot \prod_{i \geq 1}\left(\sum_{\nu \vdash \lambda_{i}} z_{\nu}^{-1}(r n+x)^{\ell(\nu)}\left(r_{i} \lambda_{i}+k_{i}\right)^{\ell(\nu)}\right) . \tag{5.1}
\end{align*}
$$

Now in general (equivalent for instance to [5, Prop. 1.3.7]),

$$
\sum_{\nu \vdash m} z_{\nu}^{-1} u^{\ell(\nu)}=\binom{u+m-1}{m} .
$$

Hence the proof follows immediately from equation (5.1).

Second proof. From equation (2.4) we see that

$$
\begin{gathered}
\left\langle F_{n}^{(r, k)}, \prod_{i} F_{\lambda_{i}}^{r_{i}, k_{i}}\right\rangle=\frac{k}{r n+k}\left(\prod_{i \geq 1} \frac{k_{i}}{r_{i} \lambda_{i}+k_{i}}\right) \\
\cdot\left\langle\sum_{a_{1}+\cdots+a_{r n+k}=n} h_{a_{1}} \cdots h_{a_{r n+k}}, \prod_{i}\left(\sum_{b_{i, 1}+\cdots+b_{i, r_{i} n+k_{i}}=\lambda_{i}} h_{b_{i, 1}} \cdots h_{b_{i, r_{i} n+k_{i}}}\right)\right\rangle
\end{gathered}
$$

where $a_{i}, b_{i, j} \geq 0$. Let

$$
Z=\frac{k}{r n+k} \prod_{i \geq 1} \frac{k_{i}}{r_{i} \lambda_{i}+k_{i}}
$$

Now $\left\langle h_{\lambda}, h_{\mu}\right\rangle$ is equal to the number of matrices $\left(a_{i j}\right)_{i, j \geq 1}$ of nonnegative integers with row sum vector λ and column sum vector $\mu[6,(7.31)]$. Hence $\frac{1}{Z}\left\langle F_{n}^{(r, k)}, \prod_{i} F_{\lambda_{i}}^{r_{i}, k_{i}}\right\rangle$ is equal to the total number of $(r n+j) \times\left(\sum_{i}\left(r_{i}+n+k_{i}\right)\right)$ matrices of nonnegative integers whose entries sum to n, such that the first $r_{1} \lambda_{1}+k_{1}$ columns sum to λ_{1}, the next $r_{2} \lambda_{2}+k_{2}$ columns sum to λ_{2}, etc. Since $\sum \lambda_{i}=n$, if the conditions on the columns is satisfied then the entries will automatically sum to n. By elementary and well-known reasoning, the number of ways to write λ_{i} as an ordered sum of $(r n+k)\left(r_{i} n+k_{i}\right)$ nonnegative integers is $\binom{(r n+k)\left(r_{i} \lambda_{i}+k_{i}\right)+\lambda_{i}-1}{\lambda_{i}}$, and the proof follows.

We now consider the expansion of the symmetric functions p_{λ}, h_{λ}, and e_{λ} in terms of the basis $F_{n}^{(r)}$ (for fixed r, which we may even regard as an indeterminate).

Proposition 5.3. For $n \geq 1$ we have

$$
\begin{aligned}
F_{n}^{(r,-r n-1)} & =(-1)^{n}(r n+1) e_{n} \\
F_{n}^{(r,-r n)} & =-r p_{n} \\
F_{n}^{(r,-r n+1)} & =(1-r n) h_{n} .
\end{aligned}
$$

Proof. Putting $k=-r n-1$ in equation (2.3) gives $(-1)^{n}(r n+1) \sum_{\lambda \vdash n} z_{\lambda}^{-1}(-1)^{n-\ell(\lambda)} p_{\lambda}$. It is well-known that this sum is just e_{n}, and the proof of the first equation follows. (We could also substitute $k=-r n-1$ in equation (2.2) and simplify.) The other two equations are similar.

Now by Proposition 5.3 we have (writing $d_{i}=d_{i}(\lambda)$)

$$
\begin{aligned}
(-1)^{n}(r n+1) e_{n} & =F_{n}^{(r,-r n-1)} \\
& =\left[t^{n}\right]\left(\sum_{i \geq 0} F_{i}^{(r)} t^{i}\right)^{-r n-1} \\
& =\left[t^{n}\right] \sum_{j \geq 0}(-1)^{j}\binom{r n+j}{j}\left(\sum_{i \geq 1} F_{i}^{(r)} t^{i}\right)^{j} \\
& =\sum_{a_{1}+\cdots a_{j}=n}(-1)^{j}\binom{r n+j}{j} F_{a_{1}}^{(r)} \cdots F_{a_{j}}^{(r)} \\
& =\sum_{\lambda \vdash n}(-1)^{\ell(\lambda)}\binom{r n+\ell(\lambda)}{d_{1}, d_{2}, \ldots, r n} F_{\lambda}^{(r)},
\end{aligned}
$$

where the penultimate sum is over all 2^{n-1} compositions of n. We have therefore expressed e_{n} as a linear combination of $F_{\lambda}^{(r)}$ s. In exactly the same way we obtain

$$
\begin{aligned}
-r p_{n} & =\sum_{\lambda \vdash n}(-1)^{\ell(\lambda)}\binom{r n+\ell(\lambda)-1}{d_{1}, d_{2}, \ldots, r n-1} F_{\lambda}^{(r)} \\
-(r n-1) h_{n} & =\sum_{\lambda \vdash n}(-1)^{\ell(\lambda)}\binom{r n+\ell(\lambda)-2}{d_{1}, d_{2}, \ldots, r n-2} F_{\lambda}^{(r)} .
\end{aligned}
$$

(For $r=n=1$, the last equation becomes $0=0$, but it is clear that $h_{1}=F_{1}^{(r)}$.) Since $\left\{e_{\mu}\right\},\left\{p_{\mu}\right\},\left\{h_{\mu}\right\}$ and $\left\{F_{\lambda}^{(r)}\right\}$ are multiplicative bases, we have in principle expressed each e_{μ}, p_{μ}, and h_{μ} as a linear combination of $F_{\lambda}^{(r)}$ s. We leave open, however, whether there is some more elegant form of these expansions, e.g., a simple combinatorial interpretation of the coefficients.

Similarly, since Theorem 2.1 in the case $k=1$ gives the expansion of $F_{n}^{(r)}$ in terms of the multiplicative bases p_{μ}, h_{μ}, and e_{μ}, we in principle also have an expansion of $F_{\lambda}^{(r)}$ in terms of these bases, but perhaps a better description is available. We cannot expect a simple product formula for the coefficients in general since for instance the coefficient of $p_{3} p_{6}$ in the power sum expansion of $F_{(3,2,1,1,1,1)}^{(1)}$ is equal to $2 \cdot 7 \cdot 157 / 3$.

References

[1] F. Bergeron, Combinatorics of r-Dyck paths, r-parking functions, and the r-Tamari lattices, arXiv:1202.6269.
[2] A. G. Konheim and B. Weiss, An occupancy discipline and applications, SIAM J. Applied Math. 14 (1966), 1266-1274.
[3] J. Riordan, Ballots and trees, J. Combinatorial Theory 4 (1969), 408-411.
[4] R. P. Stanley, Hyperplane arrangements, parking functions, and tree inversions, in Mathematical Essays in Honor of Gian-Carlo Rota (B. Sagan and R. Stanley, eds.), Birkhäuser, Boston/Basel/Berlin, 1998, pp. 359-375.
[5] R. P. Stanley, Enumerative Combinatorics, vol. 1, second ed., Cambridge University Press, 2012.
[6] R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999.
[7] G. P. Steck, The Smirnov two sample tests as rank tests, Ann. Math. Statist. 40 (1969), 1449-1466.
[8] C. H. Yan, Parking functions, in Handbook of Enumerative Combinatorics (M. Bóna, ed.), CRC Press, Boca Raton, FL, 2015, pp. 835-893.
Email address: rstan@math.mit.edu
Department of Mathematics, University of Miami, Coral Gables, FL 33124
Email address: yinghui@math.columbia.edu, yinghui@alum.mit.edu
Department of Mathematics, Columbia University, New York, New York 10027

