
A polytope related to empirial distributions, planetrees, parking funtions, and the assoiahedronRihard P. Stanley1Department of MathematisMassahusetts Institute of TehnologyCambridge, MA 02139e-mail: rstan�math.mit.eduJim Pitman2Department of StatistisUniversity of California367 Evans Hall # 3860Berkeley, CA 94720-3860e-mail: pitman�stat.berkeley.eduversion of 4 June 2001Running title: A polytope related to the assoiahedronAbstratThe volume of the n-dimensional polytope�n(x) := fy 2 Rn : yi � 0 and y1 + � � �+ yi � x1 + � � � + xi for all 1 � i � ngfor arbitrary x := (x1; : : : ; xn) with xi > 0 for all i de�nes a polynomial in variablesxi whih admits a number of interpretations, in terms of empirial distributions,plane partitions, and parking funtions. We interpret the terms of this polynomialas the volumes of hambers in two di�erent polytopal subdivisions of �n(x). The�rst of these subdivisions generalizes to a lass of polytopes alled setions oforder ones. In the seond subdivision, the hambers are indexed in a naturalway by rooted binary trees with n + 1 verties, and the on�guration of thesehambers provides a representation of another polytope with many appliations,the assoiahedron.1Researh supported in part by NSF grants #9743966 and #9988459.2Researh supported in part by NSF grant #9703961.1



Key words and phrases. plane tree, Catalan numbers, Stek determinant, uniformorder statistis, Minkowski sum, Ehrhart polynomial, mixed lattie point enumerator,depth-�rst searh, plane partition, assoiahedronAMS 1991 subjet lassi�ation. Primary: 52B12, Seondary: 06A07, 05C05,62G301 IntrodutionThe foal point of this paper is the n-dimensional polytope�n(x) := fy 2 Rn : yi � 0 and y1 + � � �+ yi � x1 + � � �+ xi for all 1 � i � ngfor arbitrary x := (x1; : : : ; xn) with xi > 0 for all i. The n-dimensional volumeVn(x) := Vol(�n(x))is a homogeneous polynomial of degree n in the variables x1; : : : ; xn, whih we all thevolume polynomial. This polynomial arises naturally in several di�erent settings: inthe alulation of probabilities derived from empirial distribution funtions or the or-der statistis of n independent random variables (see x2), and in the study of parkingfuntions and plane partitions (see x5). See also Markert and Chassaing [15℄ regardingsimilar onnetions between the theories of parking funtions, empirial proesses, androoted trees.Trivially, V1(x) = x1. The formulaV2(x) = x1x2 + 12x21has two natural interpretations by a subdivision of �2(x) into 2 piees of areas x1x2and 12x21, as shown in Figure 1 for horizontal oordinate x1 = 1 and vertial oordinatex2 = 2.The 5 terms of V3(x) = x1x2x3 + 12x21x2 + 12x1x22 + 12x21x3 + 16x31 (1)an be interpreted in two ways as the volumes determined by two di�erent subdivisionsof �3(x) into 5 hambers, as in the perspetive diagrams of Figure 2 where xi = i fori = 1; 2; 3, the �rst oordinate points out of the page, the seond to the right and thethird up, and the viewpoint is (5;�2; 4).A entral result of this paper is the general formula for the volume polynomial whihwe present in the following theorem. Setion 2 o�ers a simple probabilisti proof of this2



Figure 1: �2(x) and its two subdivisions

Figure 2: �3(x) and its two subdivisions
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theorem. We show in Setion 4 how this argument an also be interpreted geometiallyby a subdivision of �n(x) into a olletion of n-dimensional hambers, with the volumeof eah hamber orresponding to a term of the volume polynomial. This generalizes thesubdivisions of �2 and �3 shown in the right hand panels of Figures 1 and 2. Tehnially,by a subdivision of �n(x) we mean a polytopal subdivision in the sense of Ziegler [39, p.129℄, and we all the n-dimensional polytopes involved the hambers of the subdivision.The subdivision of �n(x) desribed in Setion 4 is a speialization of a result presentedin Setion 3 in the general ontext of \setions of order ones". Setion 6 shows howthe subdivisions shown in the left hand panels of Figures 1 and 2 an be generalized toarbitrary n. The hambers of this subdivision of �n(x) are indexed in a natural way byrooted binary plane trees with n+1 leaf verties, and the on�guration of these hambersprovides a representation of another interesting polytope with many appliations, knownas the assoiahedron.Theorem 1 For eah n = 1; 2; : : :,Vn(x) = Xk2Kn nYi=1 xkiiki! = 1n! Xk2Kn� nk1; : : : ; kn�xk11 � � �xknn ; (2)where Kn := fk 2 Nn : jXi=1 ki � j for all 1 � j � n� 1 and nXi=1 ki = ng (3)with N := f0; 1; 2; : : :g.In partiular, the number of nonzero oeÆients in Vn is the number of elements ofKn, whih is well known to be the nth Catalan number Cn (see e.g. [34, Exer. 6.19(w)℄for a simple variant), the �rst few of whih are 1; 2; 5; 14; 42; 132; : : ::#Kn = Cn := 1n+ 1�2nn �: (4)Formula (2) should be ompared with the following alternate formula, whih as in-diated in Setion 2 an be read from a formula of Stek [36, 37℄ for the umulativedistribution funtion of the random vetor of order statistis of n independent randomvariables with uniform distribution on an interval:Vn(x) = det241(j � i+ 1 � 0)(j � i+ 1)!  iXh=1 xh!j�i+1351�i;j�n (5)4



where det [aij℄1�i;j�n denotes the determinant of the n � n matrix with entries aij, and1(� � �) equals 1 if � � � and 0 else. See [23℄ for an elementary probabilisti proof of (5). Thisformula allows the expansion of Vn(x) into monomial terms to be generated for arbitaryn by just few lines of Mathematia ode.Another formula of Stek [36, 37℄, with an elementary proof in [23℄, gives the number#(b; ) of j 2 Zn with j1 < j2 < � � � < jn and bi < ji < i for all 1 � i � n for arbitraryb;  2 Zn with b1 � b2 � � � � < bn and 1 � 2 � � � � < n:#(b; ) = det �1(j � i+ 1 � 0; i � bj > 1)�i � bj + j � i� 1j � i + 1 ��1�i;j�n : (6)We explain after the proof of Theorem 12 how these formulae (5) and (6) an be deduedfrom a result of MaMahon on the enumeration of plane partitions.In Setion 2 we dedue the following speial evaluations of the volume polynomialfrom some well known results in the theory of empirial distributions: for a; b � 0n!Vn(a; b; : : : ; b) = a(a + nb)n�1 (7)while for n � 3 and a; b;  � 0n!Vn(a; n�2plaesz }| {b; : : : ; b ; ) = a(a+ nb)n�1 + na(� b)(a + (n� 1)b)n�2 (8)and for n � 3, 1 � m � n� 2 and a; b;  � 0n!Vn(a; n�m�1 plaesz }| {b; : : : ; b; ; m�1 plaesz }| {0; : : : ; 0 ) = a mXj=0 �nj�(� (m+ 1� j)b)j(a+ (n� j)b)n�j�1: (9)As we indiate in Setion 5, these formulae read from the theory of empirial distributionshave interesting ombinatorial interpretations in terms of parking funtions and planepartitions.2 Uniform Order Statistis and Empirial Distribu-tion FuntionsLet (Un;i; 1 � i � n) be the order statistis of n independent uniform (0; 1) variablesU1; U2; : : : ; Un. That is to say, Un;1 � Un;2 � � � � � Un;n are the ranked values of the5



Ui; 1 � i � n. Beause the random vetors (Un;j; 1 � j � n) and (1�Un;n+1�j; 1 � j � n)have the same uniform distribution with onstant density n! on the simplexfu 2 Rn : 0 � u1 � � � � � un � 1g (10)for arbitrary vetors r and s in this simplex there are the formulaeP (Un;j � sj for all 1 � j � n) = n!Vn(x1; : : : ; xn) where xj := sj � sj�1 (11)where s0 := 0 andP (Un;j � rj for all 1 � j � n) = n!Vn(x1; : : : ; xn) where xj := rn+2�j � rn+1�j (12)where rn+1 := 1. Thus the probabilityPn(r; s) := P (rj � Un;j � sj for all 1 � j � n) (13)an be evaluated in terms of Vn if either r = 0 or s = 1. See [30, x9.3℄ for a reviewof results involving these probabilities, inluding various reursion formulae whih areuseful for their omputation.Proof of Theorem 1. By homogeneity of Vn, it suÆes to prove the formula whensn � 1. Fix x and onsider the probability (11). For 1 � i � n + 1 let Ni denotethe number of Un;j that fall in the interval (si�1; si℄, with the onventions s0 = 0 andsn+1 = 1: Ni := nXi=1 1(si�1 < Un;j � si) = nXi=1 1(si�1 < Uj � si): (14)The seond expression for Ni shows that the random vetor (Ni; 1 � i � n + 1) has themultinomial distribution with parameters n and (x1; : : : ; xn; xn+1) for xi := si � si�1,meaning that for eah vetor of n + 1 nonnegative integers (ki; 1 � i � n + 1) withPn+1i=1 ki = n, we have P (Ni = ki; 1 � i � n+ 1) = n! n+1Yi=1 xikiki! : (15)By de�nition of the Un;j and (14), the events (Un;j � sj) and (�ji=1Ni � j) are idential.Thus P (Un;j � sj for all 1 � j � n) = P (�ji=1Ni � j for all 1 � j � n)= Xk2Kn P (Ni = ki; 1 � i � n;Nn+1 = 0) = n! Xk2Kn nYi=1 xikiki!6



by appliation of (15) with kn+1 = 0. Compare the result of this alulation with (11)to obtain (2). 2It is easily seen that the deomposition of the event (11) onsidered in the aboveargument orresponds to a polytopal subdivision of �n(x) whih for n = 2 and n = 3is that shown in the right hand panels of Figures 1 and 2. See Setion 4 for furtherdisussion of this subdivision of �n(x).The following orollary of Theorem 1 spells out two more probabilisti interpretationsof Vn.Corollary 2 Let (Ni; 1 � i � n + 1) be a random vetor with multinomial distributionwith parameters n and (p1; : : : ; pn+1), as if Ni is the number of times i appears in asequene of n independent trials with probability pi of getting i on eah trial for 1 � i �n+ 1, where Pn+1i=1 pi = 1. ThenP (�ij=1Nj � i for all 1 � i � n) = n!Vn(p1; p2; : : : ; pn): (16)and P (�ij=1Nj < i for all 1 � i � n) = n!Vn(pn+1; pn; : : : ; p2): (17)Proof. The �rst formula is read from the previous proof of (2). The seond is just the�rst applied to ( bN1; : : : ; bNn+1) := (Nn+1; : : : ; N1) instead of (N1; : : : ; Nn+1), beausejXi=1 bNi = jXi=1 Nn+2�i = n� n+1�jXi=1 Niso that jXi=1 bNi � j i� n+1�jXi=1 Ni < n + 1� j;and hene the event that Pji=1 bNi � j for all 1 � j � n is idential to the event thatPmi=1Ni < m for all 1 � m � n. 2Let Fn(t) := 1n nXi=1 1(Ui � t) = 1n nXi=1 1(Un;i � t)
7



be the usual empirial distribution funtion assoiated with the uniform random sampleU1; : : : ; Un. So Fn rises by a step of 1=n at eah of the sample points. It is well known[30℄ that for any for ontinuous inreasing funtions f and g, the probabilityP (f(t) � Fn(t) � g(t) for all t)equals Pn(r; s) as in (13) where r and s are easily expressed in terms of values of theinverse funtions of f and g at i=n for 0 � i � n. As an example, Daniels [3℄ disoveredthe remarkable fat that for 0 � p � 1 the probability that the empirial distributionfuntion does not ross the line joining (0; 0) to (p; 1) equals 1 � p, no matter whatn = 1; 2; : : :: P (Fn(t) � t=p for all 0 � t � 1) = 1� p (18)whih an be rewritten asP (Un;i � ip=n for all 1 � i � n) = 1� p: (19)As observed in [24, Chapter X℄, Daniels' formula (18) an be understood without al-ulation by an argument whih gives the stronger result of T�akas [38, Theorem 13.1℄that this formula holds with Fn replaed by F for any random right-ontinuous non-dereasing step funtion F with ylially exhangeable inrements and F (0) = 0 andF (1) = 1. Essentially, this is a ontinuous parameter form of the ballot theorem. Manyother proofs of Daniels' formula are known: see [30, x9.1℄ and papers ited there. Theform (19) of Daniels' formula is equivalent via (12) ton!Vn(1� p; p=n; : : : ; p=n) = 1� p (20)for 0 � p � 1. By homogeneity of Vn, this amounts to the identity (7) of polynomials intwo variables a and b.Pyke [25, Lemma 1℄ found the following formula: for all real b and x with0 � b � 1 and 0 � nb� x � 1; (21)P �max1�i�n(bi� Un;i) � x� = (1 + x� nb) bx=aXj=0 �nj�(jb� x)j(1 + x� jb)n�j�1: (22)As indiated in [30, p. 354, Exerise 2℄, this formula gives an expression for the prob-ability that the empirial umulative distribution funtion based on a sample of n in-dependent uniform (0; 1) variables rosses an arbitrary straight line through the unit8



square. See [30, x9.1℄ for proof of an equivalent of (22), various related results, andfurther referenes. The identity in distribution(Un;i; 1 � i � n) d= (1� Un;n+1�i; 1 � i � n)shows that the probability in (22) equalsP (Un;i � 1 + x� nb + b(i� 1) for all 1 � i � n) (23)whih aording to (11) is equal in turn ton!Vn(x1; : : : ; xn) for xi = 8>><>>: 1 + x� nb if i = 1b if 2 � i < n� bx=a + 1(n� i+ 2)b� x if i = n� bx=a + 10 if i > n� bx=a + 1: (24)For a := 1 + x � nb and b subjet to (21), that is 0 < a � 1 and 0 � b � 1, the abovedisussion gives us equality of (22) and (24) with x = a+nb� 1. In partiular, provided0 � x < a there is only a term for j = 0 in (22), so the equality of (22) and (24) reduesto (7). Similarly, for a � x < 2a there are only terms for j = 0 and j = 1 in (22). Forn � 3 this allows us to dedue (8) from (22) �rst for a; b;  > 0 with a+ (n� 2)b+  = 1and  < b, thene as an identity of polynomials in a; b; . Similarly, for n � 3 and1 � m � n� 2 when bx=a = m we obtain the identity (9) of polynomials in a; b; .Aording to Stek [36, 37℄, for r; s in the simplex (10) there is the following deter-minantal formula for Pn(r; s) as in (13):Pn(r; s) = n! det �1(j � i+ 1 � 0)(j � i+ 1)! (si � rj)j�i+1+ �1�i;j�n : (25)The speial ase of (5) when sn � 1 an be read from (11), (13) and the speial ase of(25) with r = 0 and s the vetor of partial sums of x. The general ase of (5) followsby homogeneity of Vn from the speial ase, with xi replaed by xi=� for arbitrary � �Pni=1 xi. See also Niederhausen [22℄, where probabilities of the form (25) are expressedin terms of She�er polynomials.3 Setions of order onesWe will obtain some results for a lass of polytopes we all \setions of order ones"and then show in the next setion how these results apply diretly to �n(x). Let P be9
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Figure 3: A partially ordered seta partial ordering of the set f�1; : : : ; �pg, suh that if �i < �j then i < j. A linearextension of P is an order-preserving bijetion � : P ! [p℄ = f1; 2; : : : ; pg, so if z < z0in P then �(z) < �(z0). We will identify � with the permutation (written as a word)a1 � � �ap of [p℄ de�ned by �(�ai) = i. In partiular, the identity permutation 12 � � �pis a linear extension of P . Let L(P ) denote the set of linear extensions of P . Given� = a1 � � �ap 2 L(P ) de�ne A� to be the set of all order-preserving maps f : P ! Rsuh that f(�a1) � f(�a2) � � � � � f(�ap)f(�aj) < f(�aj+1); if aj > aj+1:A basi property of order-preserving maps f : P ! R is given by the followingtheorem, whih is equivalent to [32, Lemma 4.5.3(a)℄.Theorem 3 The set of all order-preserving maps f : P ! R is a disjoint union of thesets A� as � ranges over L(P ).For instane, if P is given by Figure 3 then the order-preserving maps f : P ! R arepartitioned by the following seven onditionsf(�1) � f(�2) � f(�3) � f(�4) � f(�5) � f(�6)f(�1) � f(�2) � f(�3) � f(�5) < f(�4) � f(�6)f(�1) � f(�3) < f(�2) � f(�4) � f(�5) � f(�6)f(�1) � f(�3) < f(�2) � f(�5) < f(�4) � f(�6)f(�1) � f(�3) � f(�5) < f(�2) � f(�4) � f(�6)f(�2) < f(�1) � f(�3) � f(�4) � f(�5) � f(�6)f(�2) < f(�1) � f(�3) � f(�5) < f(�4) � f(�6) (26)
De�ne the order one C(P ) of the poset P to be the set of all order-preserving mapsf : P ! R�0 . Thus C(P ) is a pointed polyhedral one in the spae RP . Assume nowthat P has a unique maximal element 1̂, and let t1 < � � � < tn = 1̂ be a hain C in P .10



(With a little more work we ould relax the assumption that C is a hain. The onditionthat tn = 1̂ entails no real loss of generality sine we an just adjoin a 1̂ to P andinlude it in C.) Let x1; : : : ; xn be nonnegative real numbers. Set ui = x1 + � � �+ xi andu = (u1; : : : ; un). Let Wu denote the subspae of RP de�ned by f(ti) = ui for 1 � i � n.De�ne the order one setion CC(P;u) to be the intersetion C(P )\Wu, restrited to theoordinates P � C. (The restrition to the oordinates P � C merely deletes onstantoordinates and has no e�et on the geometri and ombinatorial struture of C(P )\Wu.)Equivalently, CC(P;u) is the set of all order-preserving maps f : P �C ! R�0 suh thatthe extension of f to P de�ned by f(ti) = ui remains order-preserving. Note thatCC(P;u) is bounded sine for all s 2 P �C and all f 2 CC(P;u) we have 0 � f(s) � un.Thus CC(P;u) is a onvex polytope ontained in RP�C . Moreover, dimCC(P;u) = jP�Cjprovided eah xi > 0 (or in ertain other situations, suh as when no element of P � Cis greater than t1).There is an alternative way to view the polytope CC(P;u). Let P1; : : : ;Pn be onvexpolytopes (or just onvex bodies) in the same ambient spae Rm , and let x1; : : : ; xn 2 R�0 .De�ne the Minkowski sum (or more aurately, Minkowski linear ombination)x1P1 + � � �+ xnPn = fx1X1 + � � �+ xnXn : Xi 2 Pig:ThenQ = x1P1+� � �+xnPn is a onvex polytope that was �rst investigated by Minkowski(at least for m � 3) and whose study belongs to the subjet of integral geometry (e.g.,[29℄). In partiular, the m-dimensional volume of Q has the formVol(Q) = Xa1+���+an=mai2N � ma1; : : : ; an�V (Pa11 ; : : : ;Pann )xa11 � � �xann ;where V (Pa11 ; : : : ;Pann ) 2 R�0 . These numbers are known as the mixed volumes of thepolytopes P1; : : : ;Pn and have been extensively investigated.Now suppose that P1; : : : ;Pn are integer polytopes (i.e., their verties have integeroordinates) in Rm , and let x1; : : : ; xn 2 N . Given any integer polytope P � Rm , writeN(P) = #(P \ Zm);the number of integer points in P. Then we all N(x1P1 + � � � + xnPn), regarded asa funtion of x1; : : : ; xn 2 N , the mixed lattie point enumerator of P1; : : : ;Pn. It wasshown by MMullen [16℄ (see also [17℄[18℄ for two related survey artiles) that N(x1P1+� � � + xnPn) is a polynomial in x1; : : : ; xn (with rational oeÆients) of total degree atmost m. Moreover, the terms of degree m are given by Vol(x1P1 + � � �+ xnPn). Henethe oeÆients of the terms of degree m are nonnegative, but in general the oeÆients11



of N(x1P1 + � � �+ xnPn) may be negative. In the speial ase n = 1, the mixed lattiepoint enumerator N(xP) is alled the Ehrhart polynomial of the integer polytope P andis denoted i(P; x). An introdution to Ehrhart polynomials appears in [32, pp. 235{241℄.De�ne the order polytope O(P ) of the �nite poset P to be the set of all order-preserving maps f : P ! [0; 1℄ = fx 2 R : 0 � x � 1g. Thus O(P ) is a onvex polytopein RP of dimension jP j. The basi properties of order polytopes are developed in [31℄.Theorem 4 Given P , C, and u as above, so ui = x1 + � � �+ xi, letPi = fs 2 P � C : s 6< ti�1g(with P1 = P �C). Regard the order polytope O(Pi) as lying in RP�C by setting oordi-nates indexed by elements of (P � C)� Pi equal to 0. ThenCC(P;u) = x1O(P1) + x2O(P2) + � � �+ xnO(Pn):Proof. We an regard O(Pi) as the set of order preserving maps f : P � C ! [0; 1℄suh that f(s) = 0 if s < ti�1. From this it is lear that every element of x1O(P1) +x2O(P2) + � � � + xnO(Pn) is an order-preserving map g : P � C ! R�0 suh that theextension of g to P de�ned by g(ti) = x1 + � � �+ xi remains order-preserving. HeneCC(P;u) � x1O(P1) + x2O(P2) + � � �+ xnO(Pn):For the onverse, we may assume (by deleting elements of P if neessary) that eah xi > 0.let f 2 CC(P;u). Let s 2 PC and de�ne g1(s) = f(s) and f1(s) = min(1; x�11 g1(s)). Setg2(s) = g1(s)� x1f1(s) = max(g1(s)� x1; 0):Now let f2(s) = min(1; x�12 g2(s)) and setg3(s) = g2(s)� x2f2(s) = max(g2(s)� x2; 0):Continuing in this way gives funtions f1; f2; : : : ; fn, for whih it an be heked thatfi 2 O(Pi) and f = x1f1 + � � �+ xnfn;so CC(P;u) � x1O(P1) + x2O(P2) + � � �+ xnO(Pn): 212



We now want to give a formula for the number of integer points in CC(P;u), whihby Theorem 4 is just the mixed lattie point enumerator of the polytopes O(Pi). Let Cbe the hain t1 < � � � < tn = 1̂ as above. Given � = a1 � � �ap 2 L(P ), write hi(�) for theheight of ti in �, i.e., ti = ��1(ahi(�)). Thus 1 � h1(�) < � � � < hn(�) = p. Also writedi(�) = #fj : hi�1(�) � j < hi(�); aj > aj+1g;where we set h0(�) = 0 and a0 = 0. Thus di(�) is the number of desents of � appearingbetween hi�1(�) and hi(�). Reall (e.g., [32, x1.2℄) that the number of ways to hoose jobjets with repetition from a set of k objets is given by��kj�� = �k + j � 1j � = k(k + 1) � � � (k + j � 1)j! : (27)Regarding ��kj�� as a polynomial in k 2 Z, note that ��kj�� = 0 for �j + 1 � k � 0.Theorem 5 We haveN(CC(P;u)) = X�2L(P ) n�1Yi=1 �� xi � di(�) + 1hi(�)� hi�1(�)� 1�� : (28)Proof. Fix � = a1 � � �ap 2 L(P ). Write hi = hi(�) and di = di(�). Let f : P ! R bean order-preserving map suh that (a) f 2 A�, (b) f(ti) = ui = x1+ � � �+xi, and () therestrition f jP�C of f to P �C satis�es f jP�C 2 CC(P;u). If we write i = f(�ai), thenfor �xed � it follows from Theorem 3 that the integer points f jP�C 2 CC(P;u), where fsatis�es (a) and (b), are given by0 � 1 � 2 � � � � � h1 = x1 � h1+1 � � � � � h2 = x1 + x2� � � � � p = x1 + � � �+ xn (29)j < j+1 if aj > aj+1: (30)Let �; �;m 2 N and 0 � j1 < j2 < � � � < jq � m. Elementary ombinatorial reasoningshows that the number of integer vetors (r1; : : : ; rm) satisfying� = r0 � r1 � � � � � rm � rm+1 = � + �rji < rji + 1 for 1 � i � q13



is equal to ����q+1m ��. Hene the number of integer sequenes satisfying (29) and (30) isgiven by ��x1 � d1 + 1h1 � 1 ����x2 � d2 + 1h2 � h1 � 1�� � � ��� xn � dn + 1hn � hn�1 � 1�� :Summing over all � 2 L(P ) yields (28). 2Example 6 Let P be given by Figure 3, and let t1 = �1, t2 = �3, and t3 = �6. Theonditions in equation (26) beome in the notation of the above proof as follows:0 � 1 = x1 � 2 � 3 = x1 + x2 � 4 � 5 � 6 = x1 + x2 + x30 � 1 = x1 � 2 � 3 = x1 + x2 � 4 < 5 � 6 = x1 + x2 + x30 � 1 = x1 � 2 = x1 + x2 < 3 � 4 � 5 � 6 = x1 + x2 + x30 � 1 = x1 � 2 = x1 + x2 < 3 � 4 < 5 � 6 = x1 + x2 + x30 � 1 = x1 � 2 = x1 + x2 � 3 < 4 � 5 � 6 = x1 + x2 + x30 � 1 < 2 = x1 � 3 = x1 + x2 � 4 � 5 � 6 = x1 + x2 + x30 � 1 < 2 = x1 � 3 = x1 + x2 � 4 < 5 � 6 = x1 + x2 + x3;yielding N(CC(P;u)) = ��x2 + 11 ����x3 + 12 ��+ ��x2 + 11 ����x32 �� + ��x33 ��+��x3 � 13 �� + ��x33 �� + ��x11 ����x3 + 12 ��+ ��x11 ����x32 �� :We mentioned earlier that the terms of highest degree (here of degree jP � Cj) ofN(x1P1 + � � � + xnPn) are given by Vol(x1P1 + � � � + xnPn). Hene we obtain fromTheorem 5 the following result.Corollary 7 The volume of CC(P;u) is given byVol(CC(P;u)) = X�2L(P ) nYi=1 xhi(�)�hi�1(�)i(hi(�)� hi�1(�))! : (31)Thus if m = jP � Cj then the mixed volume m! � V (O(P1)a1 ; : : : ;O(Pn)an) is equal tothe number of linear extensions � 2 L(P ) suh that ti has height a1 + � � �+ ai in �, for1 � i � n. 14



The ase n = 2 of Corollary 7 (or equivalently the ase n = 1 where t1 an be anyelement of P , not just the top element) appears in [31, (16)℄.The produt of two polytopes P 2 Rp and Q 2 Rq is de�ned to be their artesianprodut P �Q 2 Rp+q . If �L(P) denotes the poset of nonempty faes of P, then �L(P �Q) = �L(P)� �L(Q) (see Ziegler [39, pp. 9{10℄). If P is a d-simplex, then �L(P) is just aboolean algebra of rank d with the minimum element removed. Moreover, the produtof n one-dimensional simplies is ombinatorially equivalent (even aÆnely equivalent)to a d-ube. If � = a1 � � �ap 2 LP , then de�ne �� to be the subset of CC(P;u) givenby equation (29). Thus when eah xi > 0 we have that �� is a produt of simplies ofdimensions h1 � 1, h2 � h1 � 1; : : : ; hp � h1 � 1, andVol(��) = nYi=1 xhi(�)�hi�1(�)i(hi(�)� hi�1(�))! :Moreover, the ��'s form the hambers of a polyhedral deomposition 
C(P;u) of CC(P;u).We regard 
C(P;u) as the set of all faes of the ��'s (inluding the ��'s themselves),partially ordered by inlusion. Note that the formula (31) orresponds to an expliitdeomposition of CC(P;u) into \nie" piees (produts of simplies) whose volumes arethe terms in (31).Our next result onerns the ombinatorial struture of the deomposition of CC(P;u)into the hambers ��. First we review some information from [31, x5℄ about the oneC(P ) of all order-preserving maps f : P ! R�0 . (The paper [31℄ atually deals with theorder omplex O(P ) rather than the one C(P ), but this does not a�et our arguments.)Reall (e.g., [32, p. 100℄) that an order ideal I of P is a subset of P suh that if t 2 Iand s < t, then s 2 I. The poset (atually a distributive lattie) of all order ideals of P ,ordered by inlusion, is denoted J(P ). Given a hain K : ; = I0 < I1 < � � � < Ik = P inJ(P ), de�ne CK(P ) to onsist of all f : P ! R�0 satisfying0 � f(I1) � f(I2 � I1) � � � � � f(Ik � Ik�1); (32)where f(S) denotes the ommon value of f at all the elements of the subset S of P .Clearly CK(P ) is a k-dimensional one in RP . It is not hard to see that the set 
(P ) =fCK(P ) : K is a hain in J(P ) ontaining ; and Pg is a triangulation of C(P ). Thehambers (maximal faes) of 
(P ) onsist of the ones0 � f(�a1) � � � � � f(�ap);where � = a1 � � �ap 2 L(P ). Moreover, CK(P ) is an interior fae of 
(P ) (i.e., does notlie on the boundary) if and only if eah subset Ii� Ii�1 of equation (32) is an antihain,15



i.e., no two distint elements of Ii� Ii�1 are omparable. Suh hains of J(P ) are alledLoewy hains. Let 
Æ(P ) denote the set of interior faes of 
(P ) regarded as a partiallyordered set under inlusion. Thus 
Æ(P ) is isomorphi to the set of Loewy hains ofJ(P ), ordered by inlusion. Similarly, we let 
ÆC(P;u) denote the set of interior faes ofthe polyhedral deomposition 
C(P;u).Theorem 8 Let Wu denote the subspae of RP given by f(ti) = ui, 1 � i � n. De�nea map � : 
Æ(P ) ! 
ÆC(P;u) by letting �(CK(P )) equal �K(P ) \Wu restrited to theoordinates P � C. Then � is an isomorphism of posets.Proof. Let (32) de�ne an interior fae CK(P ) of C(P ), so ; = I0 < I1 < � � � < Ik = Pis a Loewy hain. Thus eah set Ij � Ij�1 ontains at most one element of the hainC : t1 < � � � < tn. Let ti 2 Iji � Iji�1. (In partiular, jn = k sine tn = 1̂.) Then�(CK(P )) is de�ned by the equations0 � f(I1) � f(I2 � I1) � � � � � f(Ij1 � Ij1�1) = u1� f(Ij1+1 � Ij1) � � � � � f(Ij2 � Ij2�1) = u2 � � � � � f(Ik � Ik�1) = un:It follows immediately that � is a bijetion, and that two Loewy hains K and K 0 satisfyK � K 0 if and only if �(CK(P )) � �(CK0(P )). Hene � is a poset isomorphism. 2The point of Theorem 8 is that it gives a simple ombinatorial desription (namely,the poset 
Æ(P ), whih is isomorphi to the set of Loewy hains of J(P ) under inlusion)of the geometrially de�ned poset 
ÆC(P;u). Note that 
Æ(P ) depends only on P , noton the hain C.4 �n(x) as a setion of an order oneIn this setion we will apply the theory developed in the previous setion to �n(x). Letus say that two integer polytopes P � Rk and Q � Rm are integrally equivalent if thereis an aÆne transformation ' : Rk ! Rm whose restrition to P is a bijetion ' : P ! Q,and suh that if a� denotes aÆne span, then ' restrited to Zk \ a�(P) is a bijetion' : Zk\a�(P)! Zm\a�(Q). It follows that P and Q have the same ombinatorial typeand the same \integral struture," and hene the same volume, Ehrhart polynomial, et.Now let i denote an i-element hain, and let Qn = 2 � n, the produt of a two-element hain with an n-element hain. We regard the elements of Qn as �1; : : : ; �2nwith �1 < � � � < �n, �n+1 < � � � < �2n, and �i < �n+i for 1 � i � n. Let ti = �n+i, andlet C be the hain t1 < � � � < tn. As in the previous setion let x1; : : : ; xn � 0, and set16



ui = x1 + � � � + xi. The polytope CC(Qn;u) � RQn�C �= Rn thus by de�nition is givenby the equations 0 � f1 � � � � � fnfi � ui; 1 � i � n:Let yi = fi � fi�1 (with f0 = 0). Then the above equations beomeyi � 0; 1 � i � ny1 + � � �+ yi � x1 + � � �+ xn:These are just the equations for �n(x). The transformation yi = fi � fi�1 induesan integral equivalene between CC(Qn;u) and �n(u). Hene the results of the abovesetion, when speialized to P = Qn, are diretly appliable to �n(x).Theorem 4 expresses CC(P;u) as a Minkowski linear ombination of order polytopesO(Pi). In the present situation, where P = 2 � n, the poset Pi is just the hain�i < �i+1 < � � � < �n. The order polytope O(Pi) is de�ned by the onditionsf1 = � � � = fi�1 = 0; 0 � fi � � � � � fn � 1:This is just a simplex of dimension n� i+1 with verties (0j; 1n�j), i�1 � j � n, where(0j; 1n�j) denotes a vetor of j 0's followed by n� j 1's. Swithing to the y oordinates(i.e., yi = fi � fi�1) yields the following result.Theorem 9 Let �i be the (n� i+ 1)-dimensional simplex in Rn de�ned byy1 = � � � = yi�1 = 0yi � 0; : : : ; yn � 0yi + � � �+ yn � 1;with verties (0j�1; 1; 0n�j) for i � j � n, and (0; 0; : : : ; 0). Then�n(x) = x1�1 + x2�2 + � � �+ xn�n:Consider the set L(Qn) of linear extensions of Qn. A linear extension � = a1 : : : a2n 2L(Qn) is uniquely determined by the positions of n+1; : : : ; 2n (sine 1; : : : ; nmust appearin inreasing order). If aji = n+i for 1 � i � n, then 1 � j1 < � � � < jn = 2n and ji � 2i.The number of suh sequenes is just the Catalan number Cn = 1n+1�2nn � (see e.g. [34,Exerise 6.19(t)℄, whih is a minor variation). If we set ki = ji� ji�1 (with j0 = 0), thenthe sequenes k = (k1; : : : ; kn) are just those of equation (3). Moreover, in the linear17
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Figure 4: The poset Q3 = 2� 3extension a1 � � �a2n there are no desents to the left of n + 1, and there is exatly onedesent between n + i and n + i + 1 provided that ki+1 � ki � 2. (If ki+1 � ki = 1 thenthere are no desents between n+ i and n+ i + 1.) By Theorem 5 we onludeN(�n(x)) = Xk2Kn��x1 + 1k1 �� nYi=2 ��xiki�� ; (33)where Kn is given by (3). Taking terms of highest degree yields Theorem 1. Thuswe have obtained an expliit deomposition of �n(x) into produts of simplies whosevolumes are the terms in (2). (A ompletely di�erent suh deomposition will be given inSetion 6.) Moreover, Theorem 8 gives the ombinatorial struture of the interior faesof this deomposition.Note. Equation (33) was obtained independently by Ira Gessel (private ommuni-ation) by a di�erent method.Let us illustrate the above disussion with the ase n = 3. The poset Q3 is shownin Figure 4. The linear extensions of Q3 are given as follows, with the elements 4; 5; 6orresponding to the hain C shown in boldfae:123456124356124536142356142536Hene the points (y1; y2; y3) 2 �3(x) are deomposed into the sets0 � y1 � y2 � y3 � x10 � y1 � y2 � x1 < y3 � x1 + x20 � y1 � y2 � x1 � x1 + x2 < y3 � x1 + x2 + x30 � y1 � x1 < y2 � y3 � x1 + x20 � y1 � x1 < y2 � x1 + x2 < y3 � x1 + x2 + x3; (34)18
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Figure 5: The lattie J(Q3) of order ideals of Q3yielding N(�3(x)) = ��x1 + 13 ��+ ��x1 + 12 ����x21 �� + ��x1 + 12 ����x31 ��+��x1 + 11 ����x22 ��+ ��x1 + 11 ����x21 ����x31 �� :Theorem 8 allows us to desribe the inidene relations among the faes of the deom-position of �3(x) whose hambers are the losures of the �ve sets in equation (34). Thelattie J(Q3) of order ideals of Q3 has �ve maximal hains. This lattie is shown inFigure 5, with elements labeled a; b; : : : ; j. The elements a; b; i; j appear in every Loewyhain of J(Q3) and an be ignored. The simpliial omplex of hains of J(P ) (witha; b; i; j removed) is shown in Figure 6(a). The Loewy hains orrespond to the interiorfaes, of whih �ve have dimension 2, �ve have dimension 1, and one has dimension0. Figure 6 shows the \dual omplex" of the interior faes. This gives the inidenerelations among the �ve hambers of the deomposition of �3(x) into �ve produts ofsimplies obtained from 
ÆC(P;u) by the hange of oordinates yi = fi � fi�1 disussedabove. For a piture, see the seond subdivision of �3(x) in Figure 2.We mentioned earlier that in general the oeÆients of the mixed lattie point enu-merator N(x1P1 + � � � + xnPn) may be negative. The polytope �n(x) is an exeption,however, and in fat satis�es a slightly stronger property.Corollary 10 The polynomial N(�n(x1 � 1; x2; : : : ; xn)) has nonnegative oeÆients.19
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cFigure 6: The order omplex of J(Q3) with a; b; i; j omitted, and the interior fae dualomplexProof. Immediate from equation (33), sine the polynomial �� ti�� has nonnegative oef-�ients. 2Note. One an also think of CC(Qn;u) as the \polytope of frational shapes on-tained in the shape (un; un�1; : : : ; u1)." In general, let � = (�1; : : : ; �n) be a partition,i.e., �i 2 N and �1 � � � � � �n, whih we also all a shape. We say that a shape� = (�1; : : : ; �n) is ontained in � if �i � �i for all i. (This partial ordering on shapesde�nes Young's lattie [32, Exer. 3.63℄. Additional properties of Young's lattie may befound in various plaes in [34℄.) If we relax the onditions that the �i's are integers butonly require them to be real (with �1 � � � � � �n � 0), then we an think of � as a\frational shape." Thus CC(Qn;u) just onsists of the frational shapes ontained inthe shape (un; un�1; : : : ; u1).5 Connetions with parking funtions and plane par-titions.There are two additional interpretations of the volume and lattie point enumerator of�n(x) that we wish to disuss. The �rst onerns the subjet of parking funtions,originally de�ned by Konheim and Weiss [9℄. A parking funtion of length n may bede�ned as a sequene (a1; : : : ; an) of positive integers whose inreasing rearrangementb1 � � � � � bn satis�es bi � i. For the reason for the terminology \parking funtion,"as well as additional results and referenes, see [34, Exerise 5.49℄. A basi result ofKonheim and Weiss is that the number of parking funtions of length n is (n+ 1)n�1.Write park(n) for the set of all parking funtions of length n. For x = (x1; : : : ; xn) 2Nn de�ne an x-parking funtion to be a sequene (a1; : : : ; an) of positive integers whose20



inreasing rearrangement b1 � � � � � bn satis�es bi � x1 + � � � + xi. Thus an ordinaryparking funtion orresponds to the ase x = (1; 1; : : : ; 1). Let Pn(x) denote the numberof x-parking funtions. Note that Pn(x) = 0 if x1 = 0.Theorem 11 Pn(x) = X(a1;:::;an)2park(n) xa1 � � �xan = n!Vn(x) (35)Proof. Given (a1; : : : ; an) 2 park(n), replae eah i by an integer in the set fx1 +� � �+ xi�1 + 1; : : : ; x1 + � � �+ xig. The number of ways to do this is given by the middleexpression in (35), and every x-parking funtion is obtained exatly one in this way.This yields the �rst equality. The seond equality follows from the expansion (2) ofVn(x), sine a parking funtion is obtained by hoosing k 2 Kn, forming a sequene withki i's, and permuting its elements in � nk1;:::;kn� ways. 2Take xi = 1 for all i in (35) and apply (7) for a = b = 1 to reover the result of [9℄that the number of parking funtions of length n is (n+1)n�1. We note that formula (7)an be given a simple ombinatorial proof generalizing the proof of Pollak [5, p. 13℄ forthe ase of ordinary parking funtions; see [33, p. 10℄ for the ase a = b. We note thatTheorem 11 also gives enumerative interpretations of formulae (8) and (9). Presumablythese formulae too ould be derived ombinatorially in the setting of parking funtions,but we will not attempt that here.An interesting speial ase of Theorem 11 arises when we take xi = qi�1 for someq > 0. In this ase we haven!Vn(1; q; q2; : : : ; qn�1) = X(a1;:::;an)2park(n) qa1+���+an�n:It follows from a result of Kreweras [11℄ (see also [34, Exer. 5.49()℄) that alson!Vn(1; q; q2; : : : ; qn�1) = q(n2)In(1=q);where In(q) is the inversion enumerator of labeled trees.We an generalize equation (7) by giving a simple produt formula for the Ehrhartpolynomial i(�n(x); r) of �n(x) in the ase x = (a; b; b; : : : ; b) (see Theorem 13). Firstwe need to disuss another way to interpret N(�n(x)).Let � = (�1; : : : ; �`) be a partition, so �i 2 N and �1 � � � � � �` � 0. A plane partitionof shape � and largest part at most m is an array � = (�ij) of integers 1 � �ij � m,21



de�ned for 1 � i � ` and 1 � j � �i, whih is weakly dereasing in rows and olumns.For instane, the plane partitions of shape (2; 1) and largest part at most 2 are given by11 21 22 21 221 1 1 2 2 ;where we only display the positive parts �ij > 0. Basi information on plane partitionsmay be found in [34, xx7.20{7.22℄. If x = (x1; : : : ; xn) 2 Nn then setu = (u1; : : : ; un) = (x1; x1 + x2; � � � ; x1 + � � �+ xn)and write ~u = (un; : : : ; u1), so that ~u is a partition.Theorem 12 Let x 2 Nn . Then N(�n(x)) is equal to the number of plane partitions ofshape ~u and largest part at most 2.Proof. If (y1; : : : ; yn) 2 �n(x) \ Zn, then de�ne the plane partition � of shape u tohave y1 + � � �+ yi 2's in row n+ 1� i and the remaining entries equal to 1. This sets upa bijetion between the integer points in �n(x) and the plane partitions of shape ~u andlargest part at most 2. 2Note. Beause of the onnetion given by Theorem 12 between integer points in�n(x) and plane partitions, a number of results onerning �n(x) appear already (some-times impliitly) in the plane partition literature. In partiular, onsider the determi-nantal formula (6) of Stek. Let j 0i = ji � i, b0i = bi � i + 1, and 0i = i � i � 1. Weare then ounting sequenes j 01 � j 02 � � � � � j 0n satisfying b0i � j 0i � 0i. If b0i > b0i+1then we an replae b0i+1 by b0i without a�eting the sequenes j 01 � � � � � j 0n beingounted. Similarly if 0i > 0i+1 we an replae 0i with 0i+1. Moreover, learly the numberof sequenes being ounted is not hanged by adding a �xed integer k to eah b0i and0i. Hene it osts nothing to assume that 0 � b01 � � � � � b0n and 0 � 01 � � � � � 0n(with b0i � 0i). Let � = (0n; : : : ; 01) and � = (b0n; : : : ; b01). Then � and � are partitions,and � � � in the sense of ontainment of diagrams (see [34, x7.2℄). Let Y denote theposet (atually a distributive lattie) of all partitions of all nonnegative integers, orderedby diagram ontainment. The lattie Y is just Young's lattie mentioned above. Interms of Young's lattie, we see that that the number #(b; ) of equation (6) is just thenumber of elements (j 0n; : : : ; j 01) in the interval [�; �℄ of Y . Alternatively, #(b; ) is thenumber of multihains � = �0 � �1 � �2 = � of length two in the interval [�; �℄ ofY . Kreweras [10, x2.3.7℄ gives a determinantal formula for the number of multihains ofany �xed length k in the interval [�; �℄. (See also [32, Exer. 3.63℄.) Suh a multihain is22



easily seen to be equivalent to a plane partition of shape �=� with largest part at mostk. When speialized to k = 2, Kreweras' formula beomes preisely our equation (25).Moreover, the speial ase � = ; of Kreweras' formula was already known to MaMahon(put x = 1 in the implied formula for GF (p1p2 � � � pm;n) in [14, p. 243℄). By Theorem 12the number of elements of the interval [;; �℄ is just N(�n(x)), where � is the partition ~uof Theorem 12. Hene in some sense MaMahon already knew a determinantal formulafor N(�n(x)) and thus also (by taking leading oeÆients of N(�n(rx)) regarded as apolynomial in r) for the volume Vn(x).Theorem 13 Let a; b 2 N and x = (a; b; b; : : : ; b) 2 Nn . Then the Ehrhart polynomiali(�n(x)) is given byi(�n(x); r) = 1n! (ra+ 1)(r(a+ nb) + 2)(r(a+ nb) + 3) � � � (r(a+ nb) + n): (36)In partiular, the number N(�n(x)) of integer points in �n(x) satis�esN(�n(x)) = 1n! (a+ 1)(a+ nb + 2)(a+ nb + 3) � � � (a + nb+ n):First proof. The theorem is simply a restatement of a standard result in the subjetof ballot problems and lattie path enumeration, going bak at least to Lyness [13℄, andwith many proofs. A good disussion appears in [19, xx1.4{1.6℄. See also [20, x1.3,Lemma 3B℄.Seond proof. We give a proof di�erent from the proofs alluded to above, beauseit has the virtue of generalizing to give Theorem 14 below. The polytope r�n(x) isjust �n(rx). Hene by Theorem 12 i(�n(x); r) is just the number of plane partitionsof shape ru and largest part at most 2. Identify the partition u with its diagram,onsisting of all pairs (i; j) with 1 � i � n and 1 � j � ~ui = a + (n � i)b. De�ne theontent (s) of s = (i; j) 2 ~u by (s) = j � i (see [34, p. 373℄). An expliit formula forthe number of plane partitions of shape u and any bound on the largest part was �rstobtained by Protor and is disussed in [34, Exer. 7.101℄ (as well as a generalization dueto Krattenthaler). Protor's formula for the ase at hand givesi(�n(x); r) = Ys=(i;j)2r~un+(s)�r~ui 1 + n + (s)n+ (s) Ys=(i;j)2r~un+(s)>r~ui rb+ 1 + n+ (s)n + (s) :When all the fators of the above produts are written out, there is onsiderable anel-lation. The only denominator fators that survive are those indexed by (i; 1), 1 � i � n,23



yielding the denominator n!. The surviving numerator fators are ra + 1 (indexed by(n; ra)) and r(a+ nb) + k, 2 � k � n (indexed by (1; r(a+ (n� 1)b)� n+ k)), the lastn� 1 squares in the �rst row of ~u). 2Note from (36) that the leading oeÆient of i(�n(x); r) (and hene the volume Vn(x)of �n(x)) is given by a(a + nb)n�1, agreeing with equation (7).There is a straightforward generalization of Theorems 12 and 13 involving planepartitions of shape u with largest part at most m+1 (instead of just m+1 = 2). Givenx 2 Nn as before, let �mn (x) � Rnm be the polytope of all n�m matries (yij) satisfyingyij � 0 and vi1 � vi2 � � � � � vim � x1 + � � �+ xi;for 1 � i � n, where vij = yi1 + yi2 + � � �+ yij:Thus �1n(x) = �n(x). Then the proof of Theorem 12 arries over mutatis mutandisto show that N(�mn (x)) is the number of plane partitions of shape ~u and largest partat most m + 1. The result of Protor mentioned above gives an expliit formula forthis number when x = (a; b; b; : : : ; b). Replaing x by rx and omputing the leadingoeÆient of the resulting polynomial in r gives a formula for the volume V mn (x) of�mn (x). This omputation is similar to that in the proof of Theorem 13, though thedetails are more ompliated. We merely state the result here without proof. Is therea diret ombinatorial proof similar to the proofs of Theorem 13 (the ase m = 1 ofTheorem 14) appearing in [19℄ and [20℄?Theorem 14 Let x = (a; b; b; : : : ; b) 2 Nn . Then(nm)!V mn (x) = 1! 2! � � �m! f hmni(n +m)n�1(n+m� 1)n�2 � � � (n+ 1)n�m;where f hmni denotes the number of standard Young tableaux of shape hmni = (m;m; : : : ;m)(n m's in all), given expliitly by the \hook-length formula" [34, Cor. 7.21.6℄.6 A subdivision of �n(x) onneted with the assoi-ahedronIn this setion we desribe a polyhedral subdivison (�̂n(k;x); k 2 Kn) of �n(x) di�erentfrom the subdivision disussed in Setion 3. This subdivision is losely related to aonvex polytope known as the assoiahedron, de�ned as follows. Let En+2 be a onvex24



(n + 2)-gon. A polygonal deomposition of En+2 onsists of a set of diagonals of En+2that do not ross in their interiors. Hene the maximal polygonal deompositions are thetriangulations, and ontain exatly n�1 diagonals. Let de(En+2) denote the poset of allpolygonal deompositions of En+2, ordered by inlusion, with a top element 1̂ adjoined.It was �rst shown by C. W. Lee [12℄ and M. Haiman [7℄ that de(En+2) is the fae lattieof an (n� 1)-dimensional onvex polytope An+2, known as the assoiahedron or Stashe�polytope. (Earlier Stashe� [35℄ de�ned the assoiahedron as a simpliial omplex andonstruted a geometri realization as a onvex body but not as a polytope. Some authors(e.g., [39, p. 18℄ refer to the dual of An+2 as the assoiahedron.) A vast generalization isdisussed in [6, Ch. 7℄. For some further information see [34, Exer. 6.33℄.We next give a somewhat di�erent desription of the assoiahedron (or more preisely,of its fae lattie) that is most onvenient for our purposes. A fan in Rm is a (�nite)olletion F of pointed polyhedral ones (with verties at the origin) satisfying the twoonditions:� If C; C 0 2 F then C \C 0 is a fae (possibly onsisting of just the origin) of C and C 0.� If C 2 F and C 0 is a fae of C, then C 0 2 F .A fan F is alled omplete if SC2F = Rm .In analogy to subdivisions of polytopes, the m-dimensional ones of a omplete fanin Rm are alled hambers. We will de�ne a fan whose hambers are indexed by planebinary trees with n internal verties. The de�nition of a plane tree may be found forinstane in [32, Appendix℄. The key point is that the subtrees of any vertex are linearlyordered T1; : : : ; Tk, indiated in drawing the tree (with the root on the bottom) by plaingthe subtrees in the order T1; : : : ; Tk from left to right. A binary plane tree is a plane treefor whih eah vertex v has zero or two subtrees. In the latter ase we all the vertex aninternal vertex. Otherwise v is a leaf or endpoint. We will always regard plane trees asbeing drawn with the root at the bottom.Let T be a plane binary tree with n internal verties (so n + 1 leaves). The numberof suh trees is the Catalan number Cn [34, 6.19(d)℄. Do a depth-�rst searh through T(as de�ned e.g. in [34, pp. 33{34℄) and label the internal verties 1; 2; : : : ; n in the orderthey are �rst enountered from above. Equivalently, every internal vertex is greater thanthose in its left subtree, and smaller than those in its right subtree. We all this labelingof the internal verties of T the binary searh labeling. Figure 7 gives an example whenn = 4. Let y2; : : : ; yn�1 denote the oordinates in Rn�1 . If the internal vertex i of T(using the labeling just de�ned) is the parent of vertex j and i < j, then assoiate withthe pair (i; j) the inequality yi+1 + yi+2 + � � �+ yj � 0; (37)25
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���� ����\\\\ �������\\\\ \\\\ ����31 2 4Figure 7: A plane tree with the binary searh labeling of its internal vertieswhile if i > j then assoiate with (i; j) the inequalityyj+1 + yj+2 + � � �+ yi � 0: (38)We get a system of n � 1 homogeneous linear inequalities that de�ne a simpliial oneCT in Rn�1 . For example, the inequalities orresponding to the tree of Figure 7 are givenby y2 � 0y2 + y3 � 0y4 � 0:Lemma 15 The Cn ones CT , as T ranges over all plane binary trees with n internalverties, form the hambers of a omplete fan Fn in Rn�1 . (For instane, Figure 8 showsthe fan F3.)Proof. Given 1 � i � n, let Di be the one in Rn�1 de�ned byy2 + y3 + � � �+ yi � 0y3 + � � �+ yi � 0� � �yi � 0yi+1 � 0yi+1 + yi+2 � 0� � �yi+1 + yi+2 + � � �+ yn � 0:26



Note thatDi = �(y2; : : : ; yn) 2 Rn�1 : y2 + y3 + � � �+ yi = maxfy2 + y3 + � � �+ yk : 1 � k � ng	 :In partiular,D1 = f(y2; : : : ; yn) 2 Rn�1 : y2 + y3 + � � �+ yk � 0; 2 � k � ng:Claim: Let Ti onsist of all plane binary trees with n internal verties and with root i(in the binary searh labeling). ThenDi = [T2Ti CT : (39)The proof of the laim is by indution on n, the ases n = 1 and n = 2 being trivialto hek. Let n � 3, and assume the laim for all m < n. Let T 2 Ti. Hene by theindution hypothesis, the set of all possible left subtrees T1 with root j of the root i ofT de�nes all points (y2; y3; : : : ; yi�1) 2 Ri�1 suh that y2 + y3 + � � �+ yj is the maximumpartial sum of the sequene (y2; : : : ; yi�1). Sine generially vertex j will be the left hildof the root i (beause the maximum partial sum y2+ y3+ � � �+ yk will our for a uniquek), we obtain the additional inequality yj+1 + yj+2 + � � � + yi � 0. This means thaty2 + y3 + � � �+ yi is the maximum partial sum of the sequene (y2; y3; : : : ; yi). Similarly,the set of all possible right subtrees T2 with root j of the root i of T de�nes all points(yi+1; yi+2; : : : ; yn) 2 Rn�i suh that yi+1 + yi+2 + � � � + yj is the maximum partial sumof the sequene (yi+1; yi+2; : : : ; yn). Sine generially j will be a hild of the root i, weobtain the additional inequality yi+1 + yi+2 + � � �+ yj � 0. This means thaty2 + y3 + � � �+ yk � y2 + y3 + � � �+ yi; for all i+ 1 � k � n:Hene Di = ST2Ti CT , so the proof of the laim follows by indution.From the de�nition of Di it is lear thatn[i=1Di = Rn�1 : (40)The proof of the lemma then follows from equations (39) and (40). 2Theorem 16 The fae poset P (Fn) of the fan Fn, with a top element 1̂ adjoined, isisomorphi to the fae lattie de(En+2) of the assoiahedron An+2.27
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Proof. The fae lattie of a omplete fan is ompletely determined by the inidenesbetween the hambers and rays (one-dimensional faes). (See [32, Exer. 3.12℄ for astronger statement.) The hambers of Fn (proved to be a omplete fan in Lemma 15)have already been desribed in terms of plane binary trees. There is a well-knownbijetion between plane binary trees on 2n + 1 verties and triangulations of a onvex(n+2)-gon En+2. This bijetion is explained for instane in [34, Cor. 6.2.3℄. In partiular,to de�ne the bijetion we �rst need to �x an edge " of En+2, alled the root edge. Wehope that Figure 9 will make this bijetion lear; see the previous referene for furtherdetails. Thus we have a bijetion between the hambers C of Fn and the triangulationsof the onvex (n+ 2)-gon En+2.We now desribe the rays R of Fn. We an desribe R uniquely by speifying onenonzero point on R. We will index these points by the diagonalsD of a onvex (n+2)-gonEn+2. Label the verties of En+2 as 0; 1; : : : ; n + 1 lokwise beginning with one vertexof " and ending with the other. Let ei denote the unit oordinate vetor orrespondingto the oordinate yi in the spae Rn�1 with oordinates y2; : : : ; yn. Given the diagonalD between verties i < j of En+2, assoiate a point pD 2 Rn�1 as follows:pD = 8<: ej; if i = 0�ei+1; if j = n + 1ej � ei+1; otherwise:We laim that the ray f�pD : � 2 R�0g is the ray of Fn that is the intersetion of allthe hambers of Fn orresponding to the triangulations of En+2 that ontain D. Fromthis laim the proof of the theorem follows (using the fat that Fn is a simpliial fan,i.e., every fae is a simpliial one).Consider �rst the diagonal D with verties 0 and j. Let � be a triangulation of En+2ontaining D. The internal verties of T orresponding to the regions (triangles) of thetriangulation �. Beause of our proedure for labeling the internal verties of a planebinary tree T , it follows that the labels of the internal verties \above" D (i.e., on theopposite side of D as the root edge ") will be 1; 2; : : : ; j � 1, while the internal vertiesbelow D will be labeled j; j + 1; : : : ; n. (See Figure 9 for an example with n = 8. Thediagonal D in question is labeled D1 and onnets vertex 0 to vertex j = 6. The planebinary tree T is drawn with dashed lines.) Consider the internal edges of T that give rise(via equations (37) and (38)) to hambers whose equations involve yj. No suh edge anappear below D, sine j is the least vertex label appearing below D. Similarly no suhedge an appear above D, sine only verties less than j appear above D. Hene suh anedge must ross D. The top (farthest from the root) vertex a of this edge is < j, while thebottom vertex b is � j. Hene the hamber equation is given by ya+1+ya+2+� � �+yb � 0,29
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Similarly, onsider an internal edge of T whose labels are a and b where i+1 � a < j andj � b. These are preisely the edges whose orresponding hamber equation (again eitherya+1 + ya+2 + � � �+ yb � 0 or ya+1 + ya+2 + � � �+ yb � 0) involves yj but not yi+1. Sine bappears below D and a above, the hamber equation is in fat ya+1+ ya+2+ � � �+ yb � 0.In partiular, the point ej � ei+1 lies on the hamber. Every other hamber equationeither involves neither yi+1 nor yj, or else involves both (with a oeÆient 1). Heneei+1 � ej lies on every hamber orresponding to a triangulation ontaining D, so theintersetion of these hambers is the ray ontaining ej � ei+1. This ompletes the proofof the laim, and with it the theorem. 2The onnetion between �n(x) and the fan Fn is provided by the onept of a planetree with edge lengths. If we assoiate with eah edge e of the plane tree T a positivereal number `(e), then we all the pair (T; `) a plane tree with edge lengths. Suh a treean be drawn by letting the length of eah edge e be `(e).Now �x a real number s > 0, whih will be the sum of the edge lengths of a planetree. Let x = (x1; : : : ; xn) 2 Rn+ with P xi < s. Let y = (y1; : : : ; yn) 2 Rn+ withy1 + � � � + yi � x1 + � � � + xi for 1 � i � n. We assoiate with the pair (x;y) a planetree with edge lengths '(x;y) = ( �T ; `) as follows. Start at the root and traverse the treein preorder (or depth-�rst order) [34, pp. 33{34℄. First go up a distane x1, then downa distane y1, then up a distane x2, then down a distane y2, et. After going downa distane yn, omplete the tree by going up a distane xn+1 = s � x1 � � � � � xn andthen down a distane yn+1 = s � y1 � � � � � yn. Generially we obtain a planted planebinary tree with edge lengths, i.e, the root has degree one (or one hild), and all otherinternal verties have degree two. Figure 10 shows the planted plane binary tree withedge lengths assoiated with s = 16 and x = (6; 2; 7), y = (1; 4; 3). If �T is a plantedplane tree, then we let T denote the tree obtained by \unplanting" (uprooting?) �T , i.e.,remove from �T the root and its unique inident edge e (letting the other vertex of ebeome the root of T ).Fix the sequene x = (x1; : : : ; xn) withP xi < s. For a plane binary tree T (withoutedge lengths) with n internal verties (and hene n + 1 leaves), de�ne �T = �T (x) tobe the set of all y = (y1; : : : ; yn) 2 Rn+ suh that '(x;y) = ( �T ; `) for some `. Let Tndenote the set of plane binary trees with n internal verties. Let T 2 Tn with the binarysearh labeling of its internal verties as de�ned earlier in this setion. We now de�ne asequene k(T ) = (k1; : : : ; kn) 2 Nn as follows: (1) ki = 0 if the left hild of vertex i is aninternal vertex. (2) If the left hild of vertex i is an endpoint, then let ki be the largestinteger r for whih there is a hain i = j1 < j2 < � � � < jr of internal verties suh thatjh is a left hild of jh+1 for 1 � h � r� 1. For instane, if T is the tree of Figure 11 then31
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Figure 10: A planted plane binary tree with edge lengthsk(T ) = (2; 3; 0; 1; 0; 1; 0; 2; 0).Lemma 17 The map T 7! k(T ) is a bijetion from Tn to the set Kn de�ned by equation(3).Proof. Let k(T ) = (k1; : : : ; kn). The hains i = j1 < j2 < � � � < jr desribed abovepartition the internal verties of T , so P ki = n. Sine kj2 = � � � = kjr = 0, it followsthat kh+1 + kh+2 + � � � + kn � n � h for 0 � h � n � 1. Hene k1 + � � � + kh � h, sok(T ) 2 Kn.It remains to show that given k = (k1; : : : ; kn) 2 Kn, there is a unique T 2 Tn suhthat k(T ) = k. We an onstrut the subtree of internal verties of T as follows. Let T1be de�ned by starting at the root and making k1�1 steps to the left. (Eah step is froma vertex to an adjaent vertex.) Hene we have k1 verties in all, and we are loated atthe vertex furthest from the root. Suppose that Ti has been onstruted for i < n, andthat we are loated at vertex vi. If ki+1 > 0, then move one step to the right and ki+1�1steps to the left, yielding the tree Ti+1 and the vertex vi+1 at whih we are loated. Ifki+1 = 0, then move down the tree (toward the root) until we have traversed exatly oneedge in a southeast diretion. This gives the tree Ti+1 = Ti and a new present loationvi+1. Let T = Tn. It is easily heked that the de�nition of Kn ensures that T is de�ned(and, though not really needed here, that vn is the root vertex) and k(T ) = k. Sinethere are Cn = 1n+1�2nn � plane binary trees with n internal verties and sine #Kn = Cn,32
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() The interior fae omplex �Æn of �n is ombinatorially equivalent to the assoiahe-dron, i.e., the set of interior faes of �n, ordered by inlusion, in isomorphi to the faelattie of the assoiahedron.Proof of (a). The onstrution of the plane tree with edge lengths '(x;y) = ( �T ; `) isde�ned if and only if y 2 �n(x). Sine generially '(x;y) is a planted plane binary tree,it follows that the sets �T (x), T 2 Tn, form the hambers of a polyhedral deompositionof �n(x). 2Proof of (b). Let '(x;y) = ( �T ; `) as above. Call a vertex v of �T a left leaf if it is a leaf(endpoint) and is the left hild of its parent. Similarly a right edge is an edge that slantsto the right as we move away from the root. Let P (v) be the path from the left leaf vtoward the root that terminates after the �rst right edge is traversed (or terminates atthe root if there is no suh right edge). Let (v) be the label of the (internal) vertexthat is the parent of v. Then the length of the path P (v) is just x(v). If (v) = i,then exatly ki of the paths P (u) end at the path P (v). Suppose that these paths areP (u1); : : : ; P (uki) where u1 < � � � < uki. Then the paths P (uj) interset the path P (v)in the order P (u1); : : : ; P (uki) from the bottom up. Hene for eah i with ki > 0, we anindependently plae on a path of length xi the ki points that form the bottoms of thepaths P (uj). The plaement of these points de�nes a point in a simplex unimodularlyequivalent to �ki(xi), so �T (x) is unimodularly equivalent to �k1(x1)� � � � � �kn(xn) aslaimed. 2Example 19 Let �T be the planted plane binary tree of Figure 12. On the path of lengthx1 from the root r to v1 we an plae verties 1 and 3 in bijetion with the points ofthe simplex 0 � t3 � t1 � x1 of volume x21=2. On the path of length x2 from 1 tov2 we an plae vertex 2 in bijetion with the points of the simplex 0 � t2 � x2, ofvolume x2. Finally on the path of length x4 from 3 to v3 we an plae verties 4; 5; 6in bijetion with the points of the simplex 0 � t6 � t5 � t4 � x4, of volume x34=6.Hene �T is unimodularly equivalent to the produt �2(x1)� �1(x2)� �3(x4), of volumex21x2x34=2! 1! 3!.It is easy to make the unimodular equivalene between �T and �k1(x1)�� � ���kn(xn)ompletely expliit. For instane, in the above example t3 is the distane between vertiesr and 3, so t3 = x1 � y1 + x2 � y2 + x3 � y3:Similarly, t1 = x1 � y1:34
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Thus these n � 1 equations, together with yi � 0 and y1 + � � � + yi � x1 + � � � + xi,determine ��T .Note that if we replae eah yk by yk � xk in the inequalities (37) and (38) de�ningthe hambers of the fan Fn of Theorem 16, then we obtain preisely the inequalities (41)and (42). From this we onlude the following. Given x = (x1; : : : ; xn) 2 Rn�0 , translatethe fan Fn so that the enter of the translated fan eFn is at (x2; : : : ; xn). Add a new y1axis and lift eFn into Rn , giving a \nonpointed fan" (i.e., a deomposition of Rn satisfyingthe de�nition of a fan exept that the ones are nonpointed) whih we denote by R� eFn.(Thus eah one C 2 eFn lifts to the nonpointed one R � C.) Finally interset eahhamber (maximal one) R �C of R � eFn with the polytope �n(x). Then the polytopesC \ �n(x) are just the hambers �̂(k;x) of the polyhedral deomposition Pn of �n(x).Moreover, the interior faes of this deomposition are just the intersetions of arbitraryones in R � eFn with �n(x). Hene the interior fae poset of Pn is isomorphi to thefae poset of the fan Fn, whih by Theorem 16 is the fae lattie of the assoiahedron.2 Notes.The deomposition of �n(x) given by Theorem 16 is fundamentally di�erent (i.e.,has a di�erent ombinatorial type) than that of Theorem 8. For instane, when n = 3Figure 6 shows that the interior fae dual omplex desribed by Theorem 8 is not adeomposition of a onvex polytope, unlike the situation in Theorem 16. In that asewhen n = 3 the interior fae dual omplex is just a solid pentagon. The two subdivisionsfo �3(x) are shown expliitly in Figure 2.We are grateful to Vitor Reiner for pointing out to us that Theorem 16 is related tothe onstrution of the assoiahedron appearing in the papers [12℄ and [26℄, and that aBn-analogue of this onstrution appears in [1, x3℄. Note that the proof of Theorem 16shows that the rays of the fan Fn are the vetors ei and �ei for 1 � i � n � 1, andei � ej for 1 � i < j � n� 1. As pointed out to us by Reiner, it follows from [12℄ thatwe an resale these vetors (i.e., multiply them by suitable positive real numbers) sothat their onvex hull is ombinatorially equivalent (as de�ned in the next setion) tothe assoiahedron An+2.Some of the results of this setion an be interpreted probabilistially in terms ofthe kind of random plane tree with edge lengths derived from a Brownian exursion byNeveu and Pitman [21℄. It was in fat by onsideration of suh random trees that we were�rst led to the formula (2) for the volume polynomial, with the geometri interpretationprovided by Theorem 18. 36
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