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1 Hyperplane arrangements

The main object of this paper is to survey some recently discovered connec-
tions between hyperplane arrangements, interval orders, and trees. We will
only indicate the highlights of this development; further details and proofs
will appear elsewhere. First we review some basic facts about hyperplane
arrangements. A hyperplane arrangement is a finite collection A of affine
hyperplanes in a (finite-dimensional) affine space A. We will consider here
only the case A = R

n (regarded as an affine space). The theory of hyper-
plane arrangements has been extensively developed and has deep connections
with many other areas of mathematics, such as algebraic geometry, alge-
braic topology, and the theory of hypergeometric functions; see for example
[16][17]. We will be primarily concerned with the number r(A) of regions
of A, i.e., the number of connected components of the space R

n −
⋃

H∈A H .
Closely related to this number is the number b(A) of bounded regions of A.

A fundamental object associated with the arrangement A is its intersec-
tion poset LA (actually a meet semilattice), defined as follows. The elements
of LA are the nonempty intersections of subsets of the hyperplanes in A, in-
cluding the empty intersection A. The elements of LA are ordered by reverse
inclusion, so in particular LA has a unique minimal element 0̂ = A. LA will
have a unique maximal element (and thus be a lattice) if and only if the in-
tersection of all the hyperplanes in A is nonempty. For the basic facts about
posets and lattices we are using here, see [27, Ch. 3]. The characteristic
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Figure 1: A hyperplane arrangement.
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Figure 2: An intersection poset.

polynomial χA(q) of A is defined by

χA(q) =
∑

x∈LA

µ(0̂, x)qdimx,

where µ denotes the Möbius function of LA [27, Ch. 3]. Figure 1 illustrates
a hyperplane arrangement A in R

2, while Figure 2 shows the intersection
poset LA, with vertex x labelled with the number µ(0̂, x), and vertices cor-
responding to hyperplanes also labelled by the same letter as in Figure 1.
From Figure 2 we see that χA(q) = q2 − 4q + 4. The connection between
the characteristic polynomial and the number of regions was discovered by
Zaslavsky [32, §2].
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1.1 Theorem. With notation as above, we have

r(A) = (−1)nχA(−1) =
∑

x∈LA

|µ(0̂, x)|

b(A) = (−1)ρ(LA)χA(1) =

∣

∣

∣

∣

∣

∑

x∈LA

µ(0̂, x)

∣

∣

∣

∣

∣

,

where ρ(LA) denote the rank (one less than the number of levels) of the
intersection poset LA.

An important arrangement, known as the braid arrangement and denoted
Bn, consists of all hyperplanes xi = xj , where 1 ≤ i < j ≤ n. (See [16, Exam-
ple 1.10][17, Example 1.9].) It is easy to see that for the braid arrangement
we have r(Bn) = n!, since a region of the arrangement is specified by a linear
ordering of the n coordinates. (Moreover, b(Bn) = 0 since the origin belongs
to all the hyperplanes in Bn.) With a little more work one can if fact show
(see e.g. [16, Prop. 2.26][17, Prop. 2.54]) that

χ
Bn

(q) = q(q − 1) · · · (q − n + 1).

The hyperplane arrangements discussed in this paper are closely related to
the braid arrangement and could be called modifications or deformations
of the braid arrangement. Much of this work was done in collaboration
with Christos Athanasiadis, Nati Linial, Igor Pak, Alexander Postnikov, and
Shmulik Ravid, whose contributions will be noted in the appropriate places. I
am also grateful to Persi Diaconis for helpful comments regarding exposition.
Our primary concern will be with the following deformation of Bn. Let
ℓ = (ℓ1, . . . , ℓn) ∈ R

n, with ℓi > 0, and define Aℓ to be the arrangement in
R

n whose hyperplanes are given by

xi − xj = ℓi, i 6= j. (1)

A classical theorem of Whitney [30] gives a formula for the characteristic
polynomial of any subarrangement G of the braid arrangement Bn. Such an
arrangement is called a graphical arrangement, because its set of hyperplanes
xi = xj may be identified with the edges ij of a graph G with vertices
1, 2, . . . , n. Whitney’s theorem for the arrangement G asserts that

χ
G
(q) =

∑

S⊆E(G)

(−1)#Sqc(S),
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where E(G) denotes the set of edges of G, and c(S) is the number of con-
nected components of the spanning subgraph GS of G with edge set S. Post-
nikov [20] has generalized Whitney’s theorem to subarrangements of arbitrary
deformations of the braid arrangement. Rather than state Postnikov’s theo-
rem in its full generality here, we will just cite special cases as needed, calling
the resulting formula the “Whitney formula” for that arrangement.

For many of the arrangements we will be considering, the characteristic
polynomial is actually determined by the number of regions. More precisely,
suppose that A = (A1, A2, . . .) is a sequence of arrangements such that An

is an arrangement in R
n, and every hyperplane in An is parallel to some

hyperplane of the braid arrangement Bn. Let S be a k-element subset of
{1, 2, . . . , n}. Let AS

n denote the subarrangement of An consisting of all
hyperplanes parallel to xi − xj = 0 for i, j ∈ S. We call the sequence A
an exponential sequence of arrangements if r(AS

n) = r(Aj) for all k-element
subsets S of {1, 2, . . . , n}, where 1 < k < n. The following result is a simple
consequence of Theorem 1.1 and the exponential formula of enumerative
combinatorics (e.g., [25, Cor. 6.2]).

1.2 Theorem. Let A be an exponential sequence of arrangements, and
write rn = r(An), χn(q) = χAn

(q). Then

∑

n≥0

χn(q)
xn

n!
=

(

∑

n≥0

(−1)nrn

xn

n!

)−q

.

(Equivalently, the sequence χ0(q), χ1(q), . . . is a sequence of polynomials of
binomial type in the sense of [21][22].) In particular, if bn = b(An), then

∑

n≥1

bn

xn

n!
= 1 −

(

∑

n≥0

rn

xn

n!

)−1

.

2 Interval orders

Let P = {I1, . . . , In} be a collection of closed intervals of positive length on
the real line. Partially order the set P by defining Ii < Ij if Ii lies entirely
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to the left of Ij , i.e., if Ii = [a, b] and Ij = [c, d] then b < c. Any partially
ordered set isomorphic to P is known as an interval order. A basic reference
for the theory of interval orders is [5], which gives references to the origins
of this subject within economics and psychology. We will be considering
labelled interval orders whose intervals have specified lengths. Thus given
a sequence ℓ = (ℓ1, . . . , ℓn) of positive real numbers, let Iℓ be the set of
all partial orderings of 1, 2, . . . , n for which there exists a set of intervals
I1, . . . , In satisfying: (a) Ii has length ℓi, and (b) i < j in P if and only
if Ii lies entirely to the left of Ij . If each ℓi = 1, then the corresponding
interval orders are known as unit interval orders or semiorders, and have
been subjected to considerable scrutiny. For other values of ℓi there has
been considerably less work. The following result shows the main connection
between interval orders and deformations of the braid arrangement.

2.1 Theorem. Let ℓ = (ℓ1, . . . , ℓn) with ℓi > 0. Then

r(Aℓ) = #Iℓ,

the number of elements of Iℓ.

The proof of Theorem 2.1 is a straightforward consequence of the relevant
definitions. Theorem 2.1 suggests several generalizations of the concept of
interval order which may be worth further investigation. (Some work in this
direction appears in [3] and [4], but the enumerative aspects are not consid-
ered.) Perhaps the most straightforward of these generalizations corresponds
to the arrangement

xi − xj = ℓ
(1)
i , . . . , ℓ

(mi)
i , i 6= j, (2)

for positive integers mi and real numbers 0 < ℓ
(1)
i < ℓ

(2)
i < · · · < ℓ

(mi)
i .

This arrangement corresponds to a collection of marked intervals Ii of length
ℓ
(mi)
i . The interval Ii is marked with “dots” at distances ℓ

(1)
i , . . . , ℓ

(mi)
i from

the left endpoint (so in particular the right endpoint is marked). We want
to count the number of different ways of placing these intervals on the real
axis, where two placements P1 and P2 are considered the same if for every
i and j, the number of marked points of Ii to the left of the left endpoint
of Ij is the same for P1 as for P2. The number of inequivalent placements
(“generalized interval orders”) is the number of regions of the arrangement

(2). We could even allow ℓ
(1)
i = 0, in which case we must require in the
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definition of placement that the left endpoint of Ii not coincide with any
marked point of another interval. (Thus the order type does not change
under small perturbations of the interval placements.)

There is a special case of these generalized interval orders with a further
connection with arrangements. It is clear what we mean for two placements
P1 and P2 of marked intervals to be isomorphic, namely, there is a bijection
ϕ between the intervals of P1 and those of P2 such that for all intervals I of
P1, ϕ(I) has the same number of marks as I, and for all intervals I, J of P1,
the number of marks of I to the left of the left endpoint of J is equal to the
number of marks of ϕ(I) to the left of the left endpoint of ϕ(J).

2.2 Theorem. Let ℓ1, . . . , ℓm > 0, and let An denote the arrangement
in R

n given by
xi − xj = ℓ1, . . . , ℓm, i 6= j. (3)

(Note that this is the special case of (2) when all the marked intervals are
identical.) Let A0

n denote the arrangement obtained from An by adjoining
the hyperplanes xi = xj, i.e.,

A0
n = An ∪ Bn.

Then r(A0
n) = n!ν(An), where ν(An) is the number of nonisomorphic gen-

eralized interval orders corresponding to An.

There is a direct connection between the number of regions of the arrange-
ments An and A0

n of the previous theorem, obtained in collaboration with
A. Postnikov. Regard ℓ = (ℓ1, . . . , ℓm) as fixed, and define the generating
functions
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Fℓ(x) =
∑

n≥0

r(An)
xn

n!

F 0
ℓ (x) =

∑

n≥0

r(A0
n)

xn

n!

=
∑

n≥0

ν(An)xn.

2.3 Theorem. We have

Fℓ(x) = F 0
ℓ (1 − e−x).

In the special case ℓ = (1) (i.e., m = 1 and ℓ1 = 1), we have that r(An) is
the number of labelled semiorders on n points, while ν(An) is the number of
unlabelled (i.e., nonisomorphic) semiorders on n points. It is a well-known
result of Wine and Freund [31][5, p. 98][29, p. 195] that this latter number is
just the Catalan number 1

n+1

(

2n

n

)

, so Theorem 2.3 in the case of semiorders
may be regarded as determining the number of labelled semiorders. This
result is equivalent to a result of Chandon, Lemaire, and Pouget [2]. It is not
difficult to show that if ℓ = (1, 2, . . . , k), then

ν(An) =
1

kn + 1

(

(k + 1)n

n

)

,

generalizing the result of Wine and Freund. For instance, if n = 3 and k = 2,
then we get twelve nonisomorphic placements of three marked intervals, each
of length two, with a mark in the center and at the right endpoint. These
twelve placements are shown in Figure 3, where each of the three symbols
•, ◦, and ⋆ indicates the left endpoint, center, and right endpoint of an
interval. More generally, we have the following result of Athanasiadis [1].

2.4 Theorem. Let 0 < ℓ1 < · · · < ℓm be integers such that the set
{1, 2, 3, . . . , }−{ℓ1, . . . , ℓm} is closed under addition (so in particular ℓ1 = 1).
Let P (x) =

∑m

j=1 xℓj−1. For n > 0 let Rn(x) be the remainder upon dividing

(1 + (x − 1)P (x))n by (1 − x)n. Let A0
n be as in Theorem 2.2. Then r(A0

n)
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Figure 3: Nonisomorphic marked interval placements.
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is equal to the coefficient of xn in the Taylor series expansion about x = 0 of
the rational function (n − 1)!xn−1Rn(1/x)(1 − x)−n.

For any ℓ1, . . . , ℓm > 0 the symmetric group Sn acts on the arrange-
ments An and A0

n (by permutation of coordinates), and therefore also acts
on the intersection posets of these arrangements. Thus one can apply the
representation-theoretic machinery of [26], as has been done by Robert Gill
[9] in the case ℓ = (1, 2, . . . , k). For structural properties of generalized inter-
val orders corresponding to the arrangement xi−xj = ℓ1, ℓ2 for i 6= j, see [3]
and [4]. These generalized interval orders are there called double semiorders.

3 Generic interval lengths

An interesting special case of the arrangement Aℓ occurs when the ℓi are
generic. Intuitively this means that the hyperplanes (1) have as few inter-
sections as possible. More precisely, we mean that the intersection poset of
the arrangement Aℓ is the same as the case when ℓ1, . . . , ℓn are linearly inde-
pendent over the rationals. It is not difficult to determine the exact criterion
on ℓ1, . . . , ℓn necessary for this condition to hold, though we do not state
this result here. We have in particular that (ℓ1, . . . , ℓn) is generic if ℓ1, . . . , ℓn

are linearly independent over the rationals. Hence the set of generic inter-
val lengths (ℓ1, . . . , ℓn) is dense in the positive orthant of R

n. (In fact, the
set of nongeneric interval lengths has measure 0.) Moreover (ℓ1, . . . , ℓn) is
generic if ℓ1, . . . , ℓn are superincreasing, i.e., ℓi+1 is much larger than ℓi. It
might be interesting to find a characterization of interval orders whose in-
terval lengths are superincreasing in terms of forbidden subposets, similar to
the well-known characterizations of interval orders and semiorders (e.g., [5,
pp. 28 and 30][29, pp. 86 and 193]).

Define a power series

y = 1 + x + 5
x2

2!
+ 46

x3

3!
+ 631

x4

4!
+ 9655

x5

5!
+ 267369

x6

6!
+ 7442758

x7

7!
+ · · ·

by the equation
1 = y(2 − exy).
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Let

z =
∑

n≥0

cn

xn

n!

= 1 + x + 3
x2

2!
+ 19

x3

3!
+ 195

x4

4!
+ 2831

x5

5!
+ 53703

x6

6!
+ 1264467

x7

7!

+35661979
x8

8!
+ 1173865927

x9

9!
+ 44218244942

x10

10!
+ · · ·

be the unique power series satisfying

z′

z
= y2, z(0) = 1.

3.1 Theorem. Let cn be as above. Then cn is equal to the number of
regions of the arrangement (1), where ℓ1, . . . , ℓn are generic.

Theorem 3.1 shows that the number of labelled interval orders with n
generic interval lengths does not depend on the actual lengths (provided
they are generic). On the other hand, the posets themselves (or even their
isomorphism types) do depend on the choice of lengths.

The basic tool used to prove Theorem 3.1 is Whitney’s formula (as dis-
cussed in Section 1) for the arrangement Aℓ. The next theorem states this
result in a somewhat simplified form. (The case q = −1 is all that is needed
to prove Theorem 3.1.)

3.2 Theorem. Let An be the arrangement (1), where ℓ1, . . . , ℓn are
generic.Then

χAn
(q) =

∑

G

(−1)e(G)2b(G)qc(G),

where G ranges over all bipartite graphs on the vertex set 1, 2 . . . , n, and
where e(G) denotes the number of edges of G, b(G) the number of blocks
(maximal doubly connected subgraphs), and c(G) the number of connected
components.

Theorem 1.2 applies to the generic arrangement Aℓ, so we obtain the
following corollary.

10



3.3 Corollary. If An is the arrangement of Theorem 3.2 then we have

∑

n≥0

χAn
(q)

xn

n!
=

(

∑

n≥0

(−1)nr(An)
xn

n!

)−q

.

In particular,
∑

n≥1

b(An)
xn

n!
= 1 −

(

∑

n≥0

r(An)
xn

n!

)−1

.

The first few polynomials χAn
(q) are given by

χA1
(q) = q

χA2
(q) = q2 − 2q

χA3
(q) = q3 − 6q2 + 12q

χA4
(q) = q4 − 12q3 + 60q2 − 122q

χA5
(q) = q5 − 20q4 + 180q3 − 850q2 + 1780q

χA6
(q) = q6 − 30q5 + 420q4 − 3390q3 + 15780q2 − 34082q.

4 Alternating trees and local search trees

In this section we will be concerned with the arrangement in R
n given by

xi − xj = 1, 1 ≤ i < j ≤ n.

Denote this arrangement by Ln, and set r(Ln) = gn. N. Linial conceived
the idea of looking at this arrangement, and he and S. Ravid made some
computations from which a fascinating conjecture about the value of gn was
obtained. This conjecture was recently proved by Postnikov. We first make
a number of relevant combinatorial definitions.

• An alternating tree or intransitive tree is a labelled tree, say with the
n + 1 vertices 0, 1, . . . , n, such that if a1, . . . , ak are the vertices of a

11
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Figure 4: An alternating tree.

path in the tree (in the given order), then either a1 < a2 > a3 <
a4 > · · · ak or a1 > a2 < a3 > a4 < · · · ak. See Figure 4 for an
example. Alternating trees first arose in the work of Gelfand, Graev,
and Postnikov [6, §5] (where they are called admissible trees), and were
further investigated by Postnikov [19]. He showed that if fn denotes
the number of alternating trees on n + 1 vertices and if

y =
∑

n≥0

fn

xn

n!

= 1 + x + 2
x2

2!
+ 7

x3

3!
+ 36

x4

4!
+ 246

x5

5!
+ 2104

x6

6!
+ · · · ,

then

y = e
x
2
(y+1)

fn−1 =
1

n2n−1

n
∑

k=1

(

n

k

)

kn−1.

• A local binary search tree (LBST) is a labelled (plane) binary tree, such
that every left child has a smaller label than its parent, and every right
child has a larger label than its parent. (Compare with the notion of a
binary search tree, in which all the nonroot vertices of the left subtree
of a vertex v have lower labels than v, and similarly for right subtrees.)
See Figure 5 for an example. LBST’s were first considered by Gessel
[7], though not with that terminology. Postnikov [20] found a bijection
between alternating trees with n+1 vertices and LBST’s with n vertices
labelled 1, 2, . . . , n.
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Figure 5: A local binary search tree.

• An easy bijection, obtained independently by A. Postnikov and S.
Ravid, shows that gn is equal to the number of tournaments T on
the vertex set {1, 2, . . . , n} such that in every directed cycle of T , there
are more edges (i, j) with i < j than with i > j.

• It is also easy to see that gn is equal to the number of partially or-
dered sets on the vertex set {1, 2, . . . , n} that are the intersection of a
semiorder (as defined in Section 2) with the chain 1 < 2 < · · · < n.
(More generally, if ℓ = (ℓ1, . . . , ℓn) with ℓi > 0, then the number of
regions of the arrangement xi − xj = ℓi, 1 ≤ i < j ≤ n, is equal to
the number of posets obtained by intersecting an element of Iℓ with
the chain 1 < 2 < · · · < n.) Let us call the intersection of a semiorder
on the vertex set {1, 2, . . . , n} with the chain 1 < 2 < · · · < n a sleek
poset. For instance, the poset with cover relations 1 < 2, 3 < 2, 3 < 4
is a semiorder. When we intersect it with the chain 1 < 2 < 3 < 4
we obtain the poset 1 < 2, 3 < 4, which is not a semiorder (or even
an interval order) but is sleek. It was shown in collaboration with A.
Postnikov that a poset on the vertex set {1, 2, . . . , n} is sleek if and
only it contains no induced subposet of the four types shown in Fig-
ure 6, where a < b < c < d. This is the analogue for sleek posets of
the characterization of Scott and Suppes [5, p. 30][28][29, p. 193] of
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Figure 6: Obstructions to sleekness.

semiorders in terms of two forbidden induced subposets.

• Whitney’s formula for the arrangement Ln yields that

gn =
∑

G

(−1)κ(G),

where G ranges over all bipartite graphs on the vertex set 1, 2, . . . , n
such that if i1, i2, . . . , i2k are the vertices of a cycle (in that order), then
exactly k indices 1 ≤ j ≤ 2k satisfy ij > ij+1 (where we take subscripts
modulo 2k), and where κ(G) denotes the cyclomatic number (number
of linearly independent cycles in the mod 2 cycle space) of G.

• Athanasiadis [1] has shown, based on a combinatorial interpretation
[17, Thm. 2.3.22] of the characteristic polynomial of an arrangement
defined over a finite field, that the characteristic polynomial χn(q) of
Ln is given by

χn(q) = q

n
∑

k=1

(k − 1)!S(n, k)

n−k
∑

i=0

(

n − k

i

)(

q − k − i − 1

k − 1

)

,

where S(n, k) denotes a Stirling number of the second kind.

The primary result on the Linial arrangement Ln is the following. It was
conjectured by this writer on the basis of data supplied by Linial and Ravid,
and recently proved by Postnikov.

4.1 Theorem. For all n ≥ 0 we have fn = gn.

Theorem 1.2 applies to the arrangement Ln (see Corollary 4.2(a) below),
so Theorem 4.1 in fact determines the characteristic polynomial of Ln.
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4.2 Corollary. The characteristic polynomial χn(q) of Ln is given by

∑

n≥0

χn(q)
xn

n!
=

(

∑

n≥0

(−1)ngn

xn

n!

)−q

.

In particular
∑

n≥1

b(Ln)
xn

n!
= 1 −

(

∑

n≥0

gn

xn

n!

)−1

.

Moreover,

χn(q) =

n
∑

i=1

(−1)n−ifi,nq
i,

where fi,n is the number of alternating trees on the vertices 0, 1, . . . n such
that vertex 0 has degree i.

5 The Shi arrangement and parking functions.

An arrangement closely related to those discussed above is given by xi−xj =
0, 1 for 1 ≤ i < j ≤ n and will be called the Shi arrangement (called by
Headley [12, Ch. VI] the sandwich arrangement associated with the sym-
metric group Sn), denoted Sn. It was first considered by J.-Y. Shi [23] in his
investigation of the affine Weyl group Ãn, so we will call it the Shi arrange-
ment. Shi showed the surprising result [23, Cor. 7.3.10]

r(Sn) = (n + 1)n−1 (4)

using group-theoretic techniques. Later Shi [24] generalized his result to other
Weyl groups. Headley [11][12, Ch. VI] gave a proof of equation (4) based on
Zaslavsky’s theorem (Theorem 1.1), and in fact computed the characteristic
polynomial χ

Sn
(q), viz.,

χ
Sn

(q) = q(q − n)n−1. (5)

One can also deduce (5) from (4) using Theorem 1.2; and an elegant “color-
ing” proof has been given by Athanasiadis [1]. We will give a bijective proof
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of a refinement of equation (4) related to inversions of trees. This work was
done in collaboration with Igor Pak.

In order to motivate our result, first consider the case of the braid ar-
rangement Bn. If w is a permutation of 1, 2 . . . , n, then define its code or
inversion table to be the sequence C(w) = (a1, . . . , an) where ai is the num-
ber of elements j for which j > i and w−1(j) < w−1(i). (The definition
of C(w) is sometimes given as a minor variation of our definition here.) In
particular,

∑

i ai = ℓ(w), the number of inversions of w (or the length of w
in the sense of Coxeter groups). It is clear that 0 ≤ ai ≤ n − i, and it is
easy to see that C is a bijection from the symmetric group Sn to the set of
sequences (a1, . . . , an) with 0 ≤ ai ≤ n − i. There follows the well-known
result [27, Cor. 1.3.10]

∑

w∈Sn

qℓ(w) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1). (6)

Now let R0 be the region of Bn defined by x1 > x2 > · · · > xn, which we
call the base region. We will assign an n-tuple κ(R) of nonnegative integers to
every region R of Bn as follows. First define κ(R0) = (0, 0, . . . , 0). Suppose
that κ(R) has been defined, and that R′ is a region such that (a) κ(R′)
has not yet been defined, (b) some hyperplane xi = xj (with i < j) is a
boundary facet of both R and R′, and (c) R0 and R lie on the same side
of the hyperplane xi = xj . Define κ(R′) = κ(R) + εi, where εi is the ith
unit coordinate vector. It is then easy to see that κ(R) is well-defined, and
that κ(R) is the code of some permutation w ∈ Sn. Moreover, for any code
C(w) with w ∈ Sn there is a unique region R of Bn with κ(R) = C(w).
Thus the map C−1κ defines a bijection between the regions of Bn and the
symmetric group Sn, with the property that if C−1κ(R) = w, then the
number of hyperplanes of Bn separating R from R0 is ℓ(w), the number of
inversions of w. We now describe a completely analogous construction for
the arrangement Sn.

Let T be a tree with vertices 0, 1, . . . , n. An inversion of T is a pair
1 ≤ i < j such that vertex j lies on the unique path in T from 0 to i. Write
ℓ(T ) for the number of inversions of T . The polynomial

In+1(q) =
∑

T

qℓ(T ),
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summed over all trees with vertices 0, 1, . . . , n, is known as the inversion
enumerator for trees. Analogously to equation (6) (but more difficult to
prove [8][15]) we have

∑

n≥0

(1 + q)(
n

2
)xn

n!
= exp

∑

n≥1

qn−1In(1 + q)
xn

n!
.

Consider now n cars C1, . . . , Cn that want to park on a one-way street
with parking places 0, 1, . . . , n− 1 in that order. Each car Ci has a preferred
space ai. The cars enter the street one at a time in the order C1, . . . , Cn. A
car tries to park in its preferred space. If that space is occupied, then it parks
in the next available space. If there is no space then the car leaves the street.
The sequence (a1, . . . , an) is called a parking function if all the cars can park,
i.e., no car leaves the street. (Our definition is a slight variant of the usual
definition.) It is not difficult to see that the sequence (a1, . . . , an) is a parking
function if and only if it has at most i terms greater than or equal to n−i, for
1 ≤ i ≤ n. Equivalently, a parking function is a permutation of the code of a
permutation. For further information on parking functions, see [10, §2.6][13].
The number of parking functions of length n is (n+1)n−1, and Kreweras [14]
in fact gave a bijection C between trees with vertices 0, 1, . . . , n and parking
functions such that if C(T ) = (a1, . . . , an) then a1 + · · · + an =

(

n

2

)

− ℓ(T ).
Thus the number of parking functions (a1, . . . , an) of length n such that
∑

ai = k is equal to the number of labelled trees with vertices 0, 1, . . . , n
and with

(

n

2

)

− k inversions. It follows that the parking function C(T ) is a
good analogue of the code of a permutation. Theorem 5.1 below makes this
analogy even stronger.

Let R0 be the region of Sn defined by x1 > x2 > · · · > xn and x1−xn < 1,
which we call the base region. Equivalently, R0 is the unique region contained
between all pairs of parallel hyperplanes of Sn. We will assign an n-tuple
λ(R) of nonnegative integers to every region R of Sn as follows. First define
λ(R0) = (0, 0, . . . , 0). Suppose that λ(R) has been defined, and that R′ is
a region such that (a) λ(R′) has not yet been defined, (b) some hyperplane
H of Sn is a boundary facet of both R and R′, and (c) R0 and R lie on the
same side of the hyperplane H . Define

λ(R′) =

{

λ(R) + εi, if H is given by xi − xj = 0 with i < j
λ(R) + εj, if H is given by xi − xj = 1 with i < j.

}
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It is then easy to see that λ(R) is well-defined, and that λ(R) is a parking
function. Moreover, if λ(R) = (a1, . . . , an), then a1 + · · ·+ an is equal to the
number of hyperplanes in Sn separating R from R0. Not so evident is the
following result obtained in collaboration with Igor Pak [18].

5.1 Theorem. The map λ defined above is a bijection from the regions
of Sn to the set of all parking functions of length n. Consequently, the number
of regions R for which i hyperplanes separate R from R0 is equal to the
number of trees on the vertices 0, 1, . . . , n with

(

n

2

)

− i inversions.

Theorem 5.1 can be reformulated in terms of posets. Given a permutation
w ∈ Sn, let Pw = {(i, j) : 1 ≤ i < j ≤ n, w(i) < w(j)}. Partially order
Pw by the rule (i, j) ≤ (k, l) if k ≤ i < j ≤ l. Let F (J(Pw), q) denote the
rank-generating function of the lattice J(Pw) of order ideals of Pw, as defined
in [27, pp. 99 and 106]. Then it is not difficult to show that Theorem 5.1 is
equivalent to the formula

∑

w∈Sn

F (J(Pw), q) = In+1(q).

Theorem 5.1 suggests a host of additional problems dealing with the Shi
arrangement and related arrangements. Many of these problems are currently
under investigation.
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