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Abstract. Let i = 1 + q + · · · + qi−1. For certain sequences (r1, . . . , rl) of positive inte-
gers, we show that in the Hecke algebra Hn(q) of the symmetric group Sn, the product
(1 + r1Tr1

) · · · (1 + rlTrl
) has a simple explicit expansion in terms of the standard basis {Tw}.

An interpretation is given in terms of random walks on Sn.
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1 Main Results

Let Sn denote the symmetric group of permutations of {1, . . . , n}. For 1 ≤ i ≤ n − 1 let
si = (i, i + 1) ∈ Sn, the adjacent transposition interchanging i and i + 1 and leaving all the
other elements fixed. For any w ∈ Sn denote by `(w) the length of w, i.e., the minimal p such
that w can be written as

w = sr1
sr2

· · · srp

for certain r1, r2, . . . , rp; such a sequence r = (r1, . . . , rp) is called a reduced decomposition (or
reduced word) provided p = `(w).

The Hecke Algebra (or Iwahori-Hecke algebra) Hn(q) of the symmetric group Sn (e.g., [5,
§7.4]) is defined as follows: Hn(q) is a R-algebra with identity 1 and generators T1, T2, . . . , Tn−1

which satisfy relations

(Ti + 1)(Ti − q) = 0,

TiTj = TjTi, |i − j| ≥ 2, (1.1)

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i ≤ n − 2.
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For any w = sr1
sr2

· · · srp ∈ Sn for which (r1, r2, . . . , rp) is reduced, define Tw = Tr1
Tr2

· · · Trp .
A basic property of Hecke algebras is that Tw does not depend on the choice of reduced de-
composition of w, and for 1 ≤ k ≤ n − 1, Tw satisfies

TwTk =

{
Twsk

, if `(wsk) = `(w) + 1,

qTwsk
+ (q − 1)Tw, if `(wsk) = `(w) − 1.

(1.2)

Let r = (r1, r2, · · · , rl) be any sequence of positive integers (not necessarily reduced). For
convenience assume that max{r1, . . . , rl} = n − 1. Set

i = 1 + q + · · · + qi−1.

For any w ∈ Sn, define αr(w) ∈ Z[q] by

Q(r) := (1 + r1Tr1
)(1 + r2Tr2

) · · · (1 + rlTrl
) =

∑

w∈Sn

αr(w)Tw.

We are primarily concerned with the polynomials αr(w). In particular, for which r’s will αr(w)
have “nice” values for all w ∈ Sn?

For each w = w1w2 · · ·wn ∈ Sn, we write w � r if w = sc1 · · · sck
for some subsequence

c1, . . . , ck of r = (r1, . . . , rl). It follows from equation (1.2) that αr(w) = 0 unless w � r. Let
ar(i) denote the number of i’s in r, and let inv(w) = (invw(1), invw(2), . . . , invw(n− 1)) denote
the inversion sequence of w, i.e., for any 1 ≤ i ≤ n − 1, invw(i) is the number of j’s such that
wj < wi and j > i. It is easy to see that if w � r then invw(i) ≤ ar(i) for all 1 ≤ i ≤ n − 1,
and these two conditions are equivalent when r is reduced.

We call r = (r1, . . . , rl) a tight sequence if it satisfies the following:

1. For each prefix r[i] := (r1, . . . , ri) of r, 1 ≤ i ≤ l, we have

ar[i](1) ≥ ar[i](2) ≥ ar[i](3) ≥ · · · .

2. For all 2 ≤ i ≤ l and ri ≥ 2, if ar[i](ri) ≤ max{r1, . . . , ri} + 1 − ri, then ar[i](ri − 1) =
ar[i](ri).

Notice that any prefix of the sequences (1, 2, 1, 3, 2, 1, . . .) or (1, 2, . . . , n, 1, 2, . . . , n−1, . . . , 1, 2, 1)
is a tight sequence.

The main result of this paper is the following.

Theorem 1.1. Let r be a tight sequence with max{r} = n − 1. Then for any w ∈ Sn and
w � r, we have

αr(w) =

n−1∏

i=2

i
max{ar(i−1)−1,invw(i)}. (1.3)

Example 1.2. (a) Define the standard tight sequence ρn of degree n by

ρn = (1, 2, 1, 3, 2, 1, 4, 3, 2, 1, . . . , n − 1, n − 2, . . . , 1).

2



It is easy to see that ρn is not only a tight sequence but also a reduced decomposition of
the element w0 = n, n − 1 . . . , 1 ∈ Sn. Theorem 1.1 becomes

αρn(w) = 1n−12n−2 · · · (n − 1), (1.4)

independent of w ∈ Sn.

(b) Let r = (1, 2, 1, 1, 3, 1). Then we have

αr(w) = 23, ∀w ∈ {1234, 1324, 2134, 2314, 3124, 3214}

and
αr(w) = 233, ∀w ∈ {1243, 1342, 2143, 2341, 3142, 3241}.

Otherwise we have αr(w) = 0.

Alexander Molev has pointed out (private communication dated September 1, 2008) that
Theorem 1.1 in the case of the standard tight sequence is connected to the “fusion procedure”
for the Hecke algebra, which goes back to Cherednik [1][2].

2 Proof of the Main Theorem

For the proof of Theorem 1.1 we need the following lemma.

Lemma 2.3. Let r = (r1, . . . , rl) ∈ Pl with max{r} = n − 1, where P = {1, 2, . . . }. Set
r′ = (r, k) (the concatenation of r and k), 1 ≤ k ≤ n − 1. Then for any w ∈ Sn, we have

1. If w � r, then αr′(w) = αr(wsk) · k,

2. If w � r, wsk � r, then αr′(w) = αr(w),

3. If w,wsk � r, and `(wsk) = `(w) + 1, then αr′(w) = αr(w) + αr(wsk) · kq,

4. If w,wsk � r, and `(wsk) = `(w) − 1, then αr′(w) = αr(w) · qk + αr(wsk) · k.

Proof. We have

Q(r′) = Q(r)(1 + kTk) =
∑

w�r

αr(w)Tw +
∑

u�r

αr(u)Tu · kTk. (2.1)

We will prove the desired result by applying (1.2), and comparing the coefficients of Tw on
both sides of (2.1).

1. If w � r, then there is u � r such that u · sk = w. In this case Tw can only be obtained
by Tu · kTk, so we have αr′(w) = αr(u) · k = αr(wsk) · k.

2. If w � r and wsk � r, then there is no u � r such that usk = w. Hence Tw can only be
obtained by Tw · 1, so we have αr′(w) = αr(w).
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3. If w,wsk � r and `(wsk) = `(w) + 1, then Tw · kTk = kTwsk
, and there is u = w · sk � r

such that Tu · kTk = k((q − 1)Tu + qTu·sk
) = k((q − 1)Twsk

+ qTw). Therefore we have
αr′(w) = αr(w) + αr(u) · kq = αr(w) + αr(wsk) · kq.

4. If w,wsk � r and `(wsk) = `(w) − 1, then Tw · kTk = k((q − 1)Tw + qTwsk
), and there is

u = w · sk � r such that Tu · kTk = kTu·sk
= kTw. Therefore we have

αr′(w) = αr(w) + αr(u) · k + αr(w) · k(q − 1)

= αr(w) · qk + αr(wsk) · k.

We also want to list the following result related to inv(w) and inv(wsk), which is frequently
used in the proof of Theorem 1.1. The proof of this result is quite straightforward and is
omitted here.

Lemma 2.4. For any permutation w ∈ Sn and adjacent transposition sk, 1 ≤ k ≤ n − 1, we
have the following properties of the statistic invw.

1. If `(wsk) = `(w) − 1, then

invw(k) > invw(k + 1), invwsk
(k) = invw(k + 1), and invwsk

(k + 1) = invw(k) − 1.

2. If `(wsk) = `(w) + 1 then

invw(k) ≤ invw(k + 1), invwsk
(k) = invw(k + 1) + 1, and invwsk

(k + 1) = invw(k).

Now we are ready to prove the main theorem.

Proof of Theorem 1.1. The proof is by induction on l, the length of the sequence r. It is trivial
to check that (1.3) holds for r = (i) for any positive integer i. Suppose that (1.3) holds for
some tight sequence r, and r′ = (r, k) is also a tight sequence. We want to prove that (1.3)
also holds for r′. The case when k > max{r} is trivial, so from now on we will assume that
max{r} = max{r′} = n − 1.

For any i 6= k, k + 1 (1 ≤ i ≤ n − 1), we have ar′(i) = ar(i), and invw(i) = invwsk
(i).

Therefore

max{ar′(i − 1) − 1, invw(i)} = max{ar(i − 1) − 1, invw(i)} = max{ar(i − 1) − 1, invwsk
(i)}

holds for any i 6= k, k + 1 (2 ≤ i ≤ n − 1). Hence we only need to concentrate on the values of
max{ar′(i−1)−1, invw(i)} for i = k, k+1. (When k = 1, we only consider max{ar′(1), invw(2).)

Next we will prove that αr′(w) =
∏n−1

i=2 i
max{ar′ (i−1)−1,invw(i)} according to the four cases in

Lemma 2.3, and we will frequently use Lemma 2.4.

1. Let w � r. In this case invw(k) = ar(k) + 1 = ar′(k) ≤ n − k. Since r, r′ are both
tight sequences we have ar′(k − 1) = ar(k − 1) = ar(k) + 1. Moreover, since invwsk

(k) =
invw(k + 1) < invw(k) = ar(k) + 1, we have

max{ar′(k − 1) − 1, invw(k)} = ar(k) + 1 = max{ar(k − 1) − 1, invwsk
(k)} + 1.
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Since invwsk
(k + 1) = invw(k) − 1 = ar(k) and ar′(k) = ar(k) + 1, we have

max{ar′(k) − 1, invw(k + 1)} = max{ar(k) − 1, invwsk
(k + 1)} = ar(k).

Hence we conclude that

αr′(w) = αr(wsk) · k =

n−1∏

i=2

i
max{ar(i−1)−1,invwsk

(i)} · k =

n−1∏

i=2

i
max{ar′ (i−1)−1,invw(i)}.

2. Let w � r and wsk � r. In this case we have `(wsk) = `(w) + 1 and invw(k) = ar(k).

Since invw(k + 1) ≥ invw(k) = ar(k) and ar′(k) = ar(k) + 1, we have

max{ar(k) − 1, invw(k + 1)} = max{ar′(k) − 1, invw(k + 1)}.

It follows that αr′(w) = αr(w) =
∏n−1

i=2 i
max{ar′ (i−1)−1,invw(i)}.

3. Let w,wsk � r and `(wsk) = `(w) + 1. Since invw(k) < ar(k), invwsk
(k) ≤ ar(k) and

ar(k − 1) − 1 ≥ ar(k), we have

max{ar(k − 1) − 1, invw(k)} = max{ar(k − 1) − 1, invwsk
(k)} = ar(k − 1) − 1.

Since invw(k + 1) = invwsk
(k) − 1 ≤ ar(k) − 1, and invwsk

(k + 1) = invw(k) < ar(k), we
have

max{ar(k) − 1, invw(k + 1)} = max{ar(k) − 1, invwsk
(k + 1)} = ar(k) − 1.

Hence αr(w) = αr(wsk). Therefore we have

αr′(w) = αr(w) + αr(wsk) · kq = αr(w)(k + 1) =

n−1∏

i=2

i
max{ar(i−1)−1,invw(i)} · (k + 1).

Moreover, since max{ar′(k)− 1, invw(k + 1)} = ar(k) = max{ar(k)− 1, invw(k + 1)}+ 1,
we have αr′(w) =

∏n−1
i=2 i

max{ar′ (i−1)−1,invw(i)}.

4. Let w,wsk � r and `(wsk) = `(w) − 1. In this case invw(k) ≤ ar(k).

Since invwsk
(k) = invw(k + 1) < invw(k) ≤ ar(k) and ar(k − 1) − 1 ≥ ar(k), we have

max{ar(k − 1) − 1, invw(k)} = max{ar(k − 1) − 1, invwsk
(k)} = ar(k − 1) − 1.

Since invwsk
(k + 1) = invw(k) − 1, we have

max{ar(k) − 1, invw(k + 1)} = max{ar(k) − 1, invwsk
(k + 1)} = ar(k) − 1.

Hence αr(w) = αr(wsk). Therefore we have

αr′(w) = αr(w) · qk +αr(wsk) ·k = αr(w) · (k + 1) =

n−1∏

i=2

i
max{ar(i−1)−1,invw(i)} · (k + 1).

Moreover, since max{ar′(k)− 1, invw(k + 1)} = ar(k) = max{ar(k)− 1, invw(k + 1)}+ 1,
we have αr′(w) =

∏n−1
i=2 i

max{ar′ (i−1)−1,invw(i)}.
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Hence the proof is complete.

We can use Theorem 1.1 and its proof to compute αr(w) for certain sequences r that are
not tight sequences.

Corollary 2.5. Let r be a sequence of adjacent transpositions, and max{r} = n − 1. If r has
the prefix ρn = (1, 2, 1, 3, 2, 1 . . . , n, n − 1, . . . , 1), then we have

αr(w) =

n−1∏

i=2

i
max{ar(i−1)−1,invw(i)}. (2.2)

Proof. We will prove equation (2.2) by induction on the length of r. Since ρn is a tight sequence,
from Theorem 1.1 we know that the result holds for r = ρn. Next assume the result for r and
let r′ = (r, k) with 1 ≤ k ≤ n − 1. We do an induction similar to what we did in the proof of
Theorem 1.1. Since r has the prefix ρn, it follows that for any w ∈ Sn, w,wsk � r. Therefore
only cases 3 and 4 will occur. Moreover, since ar(k − 1) ≥ n − (k − 1), ar(k) ≥ n − k and
ar′(k) = ar(k) + 1, we have

max{ar(k − 1) − 1, invw(k)} = max{ar(k − 1) − 1, invwsk
(k)} = ar(k − 1) − 1,

max{ar(k) − 1, invw(k + 1)} = max{ar(k) − 1, invwsk
(k + 1)} = ar(k) − 1,

and
max{ar′(k) − 1, invw(k + 1)} = ar(k) = max{ar(k) − 1, invw(k + 1)} + 1.

Hence for both case 3 and 4 we have αr′(w) =
∏n−1

i=2 i
max{ar′(i−1)−1,invw(i)}. .

Note that r is a reduced decomposition of w ∈ Sn if and only if the reverse of r is a reduced
decomposition of w−1. Thus we have the following result.

Corollary 2.6. Let r be a sequence of adjacent transpositions, and max{r} = n − 1. If

1. r is the reverse of a tight sequence, or

2. r has suffix ρn = (1, 2, 1, 3, 2, 1 . . . , n, n − 1, . . . , 1),

then for any w ∈ Sn and w � r, we have

αr(w) =

n−1∏

i=2

i
max{ar(i−1)−1,inv

w−1 (i)}. (2.3)

Note. If a sequence r′ is obtained from r by transposing two adjacent terms that differ by
at least 2, then Q(r) = Q(r′), so αw(r) = αw(r′). Thus our results extend to sequences that
can be obtained from those of Theorem 1.1, Corollary 2.5, and Corollary 2.6 by applying such
“commuting transpositions” to r.
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3 A Connection with Random Walks on Sn

There is a huge literature on random walks on Sn, e.g., [3]. Our results can be interpreted in
this context. First consider the case q = 1. In this case the Hecke algebra Hn(q) reduces to the
group algebra RSn of Sn, and the generator Ti becomes the adjacent transposition si. Thus

Q(r)q=1 = (1 + r1sr1
)(1 + r2sr2

) · · · (1 + rlsrl
).

We normalize this expression by dividing each factor 1 + risi by 1 + ri. Write

Dj = (1 + jsj)/(1 + j),

and set
Q̃(r) = Dr1

Dr2
· · ·Drl

.

If P is a probability distribution on Sn, then let σP =
∑

w∈Sn
P (w)w ∈ RSn. If P ′ is another

probability distribution on Sn, then σPσP ′ = σP∗P ′ for some probability distribution P ∗ P ′,
the convolution of P and P ′. It follows that Q̃(r) = σPr for some probability distribution Pr

on Sn. Theorem 1.1 gives (after setting q = 1 and normalizing) an explicit formula for the
distribution Pr, i.e., the values Pr(w) for all w ∈ Sn. Note in particular that if r is the standard
tight sequence ρn = (1, 2, 1, 3, 2, 1, 4, 3, 2, 1, . . . , n−1, n−2, . . . , 1), then from equation (1.4) we
get

Q̃(ρn) =
1

n!

∑

w∈Sn

w = σU ,

where U is the uniform distribution on Sn. (We have been informed by Alexander Molev
that an equivalent result was given by Jucys [6] in 1966. We have also been informed by
Persi Diaconis that this result, and similar results for some other groups, were known by
him and Colin Mallows twenty years ago.) It is not hard to see directly why we obtain the
uniform distribution. Namely, start with any permutation w = w1 · · ·wn ∈ Sn. Do nothing
with probability 1/2 or apply s1 (i.e., interchange w1 and w2) with probability 1/2, obtaining
y1y2w3 · · ·wn. Thus y2 is equally likely to be w1 or w2. Now either do nothing with probability
1/3 or apply s2 with probability 2/3, obtaining y1z2z3w4 · · ·wn. Then z3 is equally likely to be
w1, w2 or w3. Continue in this way, applying s3,. . . , sn−1 at each step or doing nothing, with
probability 1/(i + 1) of doing nothing at the ith step, obtaining d1 · · · dn. Then dn is equally
likely to be any of 1, 2, . . . , n. Now apply s1, s2, . . . , sn−2 or do nothing as before, obtaining
e1 · · · en. The last element en has never switched, so en = dn, and now en−1 is equally likely to
be any element of {1, 2, . . . , n}−{dn}. Continue as before with s1, . . . , sn−3, then s1, . . . , sn−4,
etc., ending in s1, s2, s1, at which point we obtain a uniformly distributed random permutation.

Now consider the situation for Hn(q). If P is a probability distribution on Sn then write
τP =

∑
w∈Sn

P (w)Tw ∈ Hn(q). If P ′ is another probability distribution on Sn, then in
general it is not true that τP τ ′

P = τR for some probability distribution R. A probabilistic
interpretation of Theorem 1.1 requires the use of a Markov chain. Let 0 < q < 1. Note that
from equation (1.2) we have

Tw(1 + kTk) =

{
Tw + kTwsk

, `(wsk) = `(w) + 1

qkTw + qkTwsk
, `(wsk) = `(w) − 1.
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Divide each side by 1 + k. Let w = w1 · · ·wn. We can then interpret multiplication of Tw

by (1 + kTw)/(1 + k) as follows. If wk < wk+1 then transpose wk and wk+1 with probability
k/(1 + k), or do nothing with probability 1/(1 + k). If wk > wk+1, then transpose wk and
wk+1 with probability qk/(1 + k), or do nothing with probability qk/(1 + k). Since

qk

1 + k
+

qk

1 + k
< 1,

we have a “leftover” probability of (1 − (qk + qk)/(1 + k)). In this case the process has failed
and we should start it all over. Let us call this procedure a k-step.

If r = (r1, . . . , rl) is a tight sequence, then begin with the identity permutation and apply an
r1-step, r2-step, etc. If we need to start over, then we again begin with the identity permutation
and apply an r1-step, r2-step, etc. Eventually (with probability 1) we will apply ri-steps for
all 1 ≤ i ≤ l, ending with a random permutation v. In this case, Theorem 1.1 tells us the
distribution of v, namely, the probability of v is

P (v) =
αr(v)

∏l
i=1(1 + ri)

.

In particular, if r is the standard tight sequence ρn, then v is uniformly distributed.

Example 3.7. Start with the permutation 123 and r = ρ3 = (1, 2, 1). Let us calculate by
“brute force” the probability P = P (123) that v = 123. There are three ways to achieve
v = 123.

(a) Apply a 1-step, a 2-step, and a 1-step, doing nothing each time. This has probability
(1/2)(1/(2 + q))(1/2) = 1/4(2 + q).

(b) Apply a 1-step and switch. Apply a 2-step and do nothing. Apply a 1-step and switch.
This has probability q/4(2 + q).

(c) Apply a 1-step and switch. Apply a 2-step and do nothing. Try to apply a 1-step but
go back to the beginning, after which we continue the process until ending up with 123.
This has probability

1

2

1

2 + q
(1 − q)P =

P (1 − q)

2(2 + q)
.

Hence

P =
1

4(2 + q)
+

q

4(2 + q)
+

P (1 − q)

2(2 + q)
.

Solving for P gives (somewhat miraculously!) P = 1/6. Similarly for all other w ∈ S3

we get P (w) = 1/6.

Note. A probabilistic interpretation of certain Hecke algebra products different from ours
appears in a paper by Diaconis and Ram [4].
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