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Abstrat

We investigate several hyperplane arrangements that an be viewed as deformations of

Coxeter arrangements. In partiular, we prove a onjeture of Linial and Stanley that the

number of regions of the arrangement

x

i

� x

j

= 1; 1 � i < j � n;

is equal to the number of alternating trees on n+1 verties. Remarkably, these numbers have

several additional ombinatorial interpretations in terms of binary trees, partially ordered sets,

and tournaments. More generally, we give formulae for the number of regions and the Poinar�e

polynomial of ertain �nite subarrangements of the aÆne Coxeter arrangement of type A

n�1

.

These formulae enable us to prove a \Riemann hypothesis" on the loation of zeros of the

Poinar�e polynomial. We give asymptotis of the Poinar�e polynomials when n goes to the

in�nity. We also onsider some generi deformations of Coxeter arrangements of type A

n�1

.

1 Introdution

The Coxeter arrangement of type A

n�1

is the arrangement of hyperplanes in R

n

given by

x

i

� x

j

= 0; 1 � i < j � n: (1.1)

This arrangement has n! regions. They orrespond to n! di�erent ways of ordering the sequene

x

1

; : : : ; x

n

.

In the paper we extend this simple, nevertheless important, result to the ase of a general lass

of arrangements whih an be viewed as deformations of the arrangement (1.1).
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One speial ase of suh deformations is the arrangement given by

x

i

� x

j

= 1; 1 � i < j � n: (1.2)

We will all it the Linial arrangement. This arrangement was �rst onsidered by N. Linial and

S. Ravid. They alulated its number of regions and the Poinar�e polynomial for n � 9. On the

basis of this numerial data the seond author of the present paper made a onjeture that the

number of regions of (1.2) is equal to the number of alternating trees on n+ 1 verties (see [29℄).

A tree T on the verties 1; 2; : : : ; n + 1 is alternating if the verties in any path in T alternate,

i.e., form an up-down or down-up sequene. Equivalently, every vertex is either less than all its

neighbors or greater than all its neighbors. These trees �rst appeared in [11℄, and in [20℄ a formula

for the number of suh trees on n + 1 verties was proved. In this paper we provide a proof of

the onjeture on the number of regions of the Linial arrangement. Another proof was given by

Athanasiadis [3, Thm. 4.1℄.

In fat, we prove a more general result for trunated aÆne arrangements, whih are ertain

�nite subarrangements of the aÆne hyperplane arrangement of type

e

A

n�1

(see Setion 9). As a

byprodut we get an amazing theorem on the loation of zeros of Poinar�e polynomials of these

arrangements. This theorem states that in one ase all zeros are real, whereas in the other ase all

zeros have the same real part.

The paper is organized as follows. In Setion 2 we give the basi notions of hyperplane arrange-

ment, number of regions, Poinar�e polynomial, and intersetion poset. In Setion 3 we desribe

the arrangements we will be onerned with in this paper|deformations of the arrangement (1.1).

In Setion 4 we review several general theorems on hyperplane arrangements. Then in Setion 5

we apply these theorems to deformed Coxeter arrangements. In Setion 6 we onsider a \semi-

generi" deformation of the braid arrangement (the Coxeter arrangement of type A

n�1

) related

to the theory of interval orders. In Setion 7 we study the hyperplane arrangements whih are

related, in a speial ase, to interval orders (f. [29℄) and the Catalan numbers. We prove a theo-

rem that establishes a relation between the numbers of regions of suh arrangements. In Setion 8

we formulate the main result on the Linial arrangement. We introdue several ombinatorial ob-

jets whose numbers are equal to the number of regions of the Linial arrangement: alternating

trees, loal binary searh trees, sleek posets, semiayli tournaments. We also prove a theorem

on haraterization of sleek posets in terms of forbidden subposets. Finally, in Setion 9 we study

trunated aÆne arrangements. We prove a funtional equation for the generating funtion for the

numbers of regions of suh arrangements, dedue a formula for these numbers, and from it obtain

a theorem on the loation of zeros of the harateristi polynomial.

2 Arrangements of Hyperplanes

First, we give several basi notions related to arrangements of hyperplanes. For more details,

see [34, 16, 17℄.

A hyperplane arrangement is a disrete olletion of aÆne hyperplanes in a vetor spae. We

will be onerned here only with �nite arrangements. Let A be a �nite hyperplane arrangement in

a real �nite-dimensional vetor spae V . It will be onvenient to assume that the vetors dual to

hyperplanes in A span the vetor spae V

�

; the arrangement A is then alled essential. Denote by

r(A) the number of regions of A, whih are the onneted omponents of the spae V �

S

H2A

H .

We will also onsider the number b(A) of \relatively bounded" regions of A, whih will just be the

number of bounded regions when A is essential.

These numbers have a natural q-analogue. Let A

C

denote the omplexi�ed arrangement A. In

other words, A

C

is the olletion of the hyperplanes H 
 C , H 2 A, in the omplex vetor spae

V 
C . Let C

A

be the omplement to the union of the hyperplanes of A

C

in V 
C , and let H

k

(�; C )
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denote singular ohomology with oeÆients in C . Then one an de�ne the Poinar�e polynomial

Poin

A

(q) of A as

Poin

A

(q) =

X

k�0

dimH

k

(C

A

; C ) q

k

;

the generating funtion for the Betti numbers of C

A

.

The following theorem, proved in the paper of Orlik and Solomon [16℄, shows that the Poinar�e

polynomial generalizes the number of regions r(A) and the number of bounded regions b(A).

Theorem 2.1 We have r(A) = Poin

A

(1) and b(A) = Poin

A

(�1).

Orlik and Solomon gave a ombinatorial desription of the ohomology ring H

�

(C

A

; C ) (f. Se-

tion 8.3) in terms of the intersetion poset L

A

of the arrangement A.

The intersetion poset is de�ned as follows: The elements of L

A

are nonempty intersetions of

hyperplanes in A ordered by reverse inlusion. The poset L

A

has a unique minimal element

^

0 = V .

This poset is always a meet-semilattie for whih every interval is a geometri lattie. It will be

a (geometri) lattie if and only if L

A

ontains a unique maximal element, i.e., the intersetion of

all hyperplanes in A is nonempty. (When A is essential, this intersetion is f0g.) In fat, L

A

is a

geometri semilattie in the sense of Wahs and Walker [31℄, and thus for instane is a shellable

and hene Cohen-Maaulay poset.

The harateristi polynomial of A is de�ned by

�

A

(q) =

X

z2L

A

�(

^

0; z) q

dim z

; (2.1)

where � denotes the M�obius funtion of L

A

(see [27, Setion 3.7℄).

Let d be the dimension of the vetor spae V . Note that it follows from the properties of

geometri latties [27, Proposition 3.10.1℄ that the sign of �(

^

0; z) is equal to (�1)

d�dimz

.

The following simple relation between the (topologially de�ned) Poinar�e polynomial and the

(ombinatorially de�ned) harateristi polynomial was found in [16℄:

�

A

(q) = q

d

Poin

A

(�q

�1

): (2.2)

Sometimes it will be more onvenient for us to work with the harateristi polynomial �

A

(q)

rather than the Poinar�e polynomial.

A ombinatorial proof of Theorem 2.1 in terms of the harateristi polynomial was earlier

given by T. Zaslavsky in [34℄.

The number of regions, the number of (relatively) bounded regions, and, more generally, the

Poinar�e (or harateristi) polynomial are the most simple numerial invariants of a hyperplane

arrangement. In this paper we will alulate these invariants for several hyperplane arrangements

related to Coxeter arrangements.

3 Coxeter Arrangements and their Deformations

Let V

n�1

denote the subspae (hyperplane) in R

n

of all vetors (x

1

; : : : ; x

n

) suh that x

1

+� � �+x

n

=

0. All hyperplane arrangements that we onsider below lie in V

n�1

. The lower index n � 1 will

always denote dimension of an arrangement.

The braid arrangement or Coxeter arrangement (of type A

n�1

) is the arrangement A

n�1

of

hyperplanes in V

n�1

� R

n

given by

x

i

� x

j

= 0; 1 � i < j � n: (3.1)

3



�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

r

Figure 1: The Coxeter hyperplane arrangement A

2

.

It is lear that A has r(A

n�1

) = n! regions (alled Weyl hambers) and b(A

n�1

) = 0 bounded

regions. Arnold [1℄ alulated the ohomology ring H

�

(C

A

n

; C ). In partiular, he proved that

Poin

A

n�1

(q) = (1 + q)(1 + 2q) � � � (1 + (n� 1)q): (3.2)

In this paper we will study deformations of the arrangement (3.1), whih are hyperplane ar-

rangements in V

n�1

� R

n

of the following type:

x

i

� x

j

= a

(1)

ij

; : : : ; a

(m

ij

)

ij

; 1 � i < j � n; (3.3)

where m

ij

are nonnegative integers and a

(k)

ij

2 R.

One speial ase is the arrangement given by

x

i

� x

j

= a

ij

; 1 � i < j � n: (3.4)

The following hyperplane arrangements of type (3.3) are worth mentioning:

� The generi arrangement (see the end of Setion 5) given by

x

i

� x

j

= a

ij

; 1 � i < j � n;

where the a

ij

's are generi real numbers.

� The semigeneri arrangement G

n

(see Setion 6) given by

x

i

� x

j

= a

i

; 1 � i � n; 1 � j � n; i 6= j;

where the a

i

's are generi real numbers.

� The Linial arrangement L

n�1

(see [29℄ and Setion 8) given by

x

i

� x

j

= 1; 1 � i < j � n: (3.5)

� The Shi arrangement S

n�1

(see [25, 26, 29℄ and Setion 9.2) given by

x

i

� x

j

= 0; 1; 1 � i < j � n: (3.6)

� The extended Shi arrangement S

n�1; k

(see Setion 9.2) given by

x

i

� x

j

= �k;�k + 1; : : : ; k + 1; 1 � i < j � n; (3.7)

where k � 0 is �xed.
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Figure 2: Seven regions of the Linial arrangement L

2

.

� The Catalan arrangements (see Setion 7) C

n�1

(1) given by

x

i

� x

j

= �1; 1; 1 � i < j � n; (3.8)

and C

0

n�1

(1) given by

x

i

� x

j

= �1; 0; 1; 1 � i < j � n: (3.9)

� The trunated aÆne arrangement A

ab

n�1

(see Setion 9) given by

x

i

� x

j

= �a+ 1;�a+ 2; : : : ; b� 1; 1 � i < j � n; (3.10)

where a and b are �xed integers suh that a+ b � 2.

One an de�ne analogous arrangements for any root system. Let V be a real d-dimensional ve-

tor spae, and let R be a root system in V

�

with a hosen set of positive roots R

+

= f�

1

; �

2

; : : : ; �

N

g

(see, e.g., [7, Ch. VI℄). The Coxeter arrangement R of type R is the arrangement of hyperplanes

in V given by

�

i

(x) = 0; 1 � i � N: (3.11)

Brieskorn [6℄ generalized Arnold's formula (3.2). His formula for the Poinar�e polynomial

of (3.11) involves the exponents e

1

; : : : ; e

d

of the orresponding Weyl group W :

Poin

R

(q) = (1 + e

1

q)(1 + e

2

q) � � � (1 + e

d

q):

Consider the hyperplane arrangement given by

�

i

(x) = a

(1)

i

; : : : ; a

(m

i

)

i

1 � i � N; (3.12)

where x 2 V , m

i

are some nonnegative integers, and a

(k)

i

2 R. Many of the results of this paper

have a natural ounterpart in the ase of an arbitrary root system. We will briey outline several

related results and onjetures in Setion 9.4.

4 Whitney's Formula and the NBC Theorem

In this setion we review several essentially well-known results on hyperplane arrangements that

will be useful in the what follows.

Consider the arrangement A of hyperplanes in V

�

=

R

d

given by equations

h

i

(x) = a

i

; 1 � i � N; (4.1)
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where x 2 V , the h

i

2 V

�

are linear funtionals on V , and the a

i

are real numbers.

We all a subset I of f1; 2; : : : ; Ng entral if the intersetion of the hyperplanes h

i

(x) = a

i

,

i 2 I , is nonempty. For a subset I = fi

1

; i

2

; : : : ; i

l

g, denote by rk(I) the dimension (rank) of the

linear span of the vetors h

i

1

; : : : ; h

i

l

.

The following statement is a generalization of a lassial formula of Whitney [32℄.

Theorem 4.1 The Poinar�e and harateristi polynomials of the arrangement A are equal to

Poin

A

(q) =

X

I

(�1)

jIj�rk(I)

q

rk(I)

; (4.2)

�

A

(q) =

X

I

(�1)

jIj

q

d�rk(I)

; (4.3)

where I ranges over all entral subsets in f1; 2; : : : ; Ng. In partiular,

r(A) =

X

I

(�1)

jIj�rk(I)

(4.4)

b(A) =

X

I

(�1)

jIj

:

We also need the well-known ross-ut theorem (see, [27, Corollary 3.9.4℄).

Theorem 4.2 Let L be a �nite lattie with minimal element

^

0 and maximal element

^

1, and let X

be a subset of verties in L suh that (a)

^

0 62 X, and (b) if y 2 L and y 6=

^

0, then x � y for some

x 2 X. Then

�

L

(

^

0;

^

1) =

X

k

(�1)

k

n

k

; (4.5)

where n

k

is the number of k-element subsets in X with join equal to

^

1.

Proof of Theorem 4.1 Let z be any element in the intersetion poset L

A

, and let L(z) be the

subposet of all elements x 2 L

A

suh that x � z, i.e., the subspae x ontains z. In fat, L(z)

is a geometri lattie. Let X be the set of all hyperplanes from A whih ontain z. If we apply

Theorem 4.2 to L = L(z) and sum (4.5) over all z 2 L

A

, we get the formula (4.3). Then by (2.2)

we get (4.2). �

A yle is a minimal subset I suh that rk(I) = jI j � 1. In other words, a subset I =

fi

1

; i

2

; : : : ; i

l

g is a yle if there exists a nonzero vetor (�

1

; �

2

; : : : ; �

l

), unique up to a nonzero

fator, suh that �

1

h

i

1

+ �

2

h

i

2

+ � � �+ �

l

h

i

l

= 0. It is not diÆult to see that a yle I is entral

if, in addition, we have �

1

a

i

1

+ �

2

a

i

2

+ � � �+ �

l

a

i

l

= 0. Thus, if a

1

= � � � = a

N

= 0 then all yles

are entral, and if the a

i

are generi then there are no entral yles.

A subset I is alled ayli if jI j = rk(I), i.e., I ontains no yles. It is lear that any ayli

subset is entral.

Corollary 4.3 In the ase when the a

i

are generi, the Poinar�e polynomial is given by

Poin

A

(q) =

X

I

q

rk(I)

;

where the sum is over all ayli subsets I of f1; 2; : : : ; Ng. In partiular, the number of regions

r(A) is equal to the number of ayli subsets.
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Indeed, in this ase a subset I is ayli if and only if it is entral.

Remark 4.4 The word \generi" in the orollary means that no k distint hyperplanes in (4.1)

interset in an aÆne subspae of odimension less than k. For example, if A is de�ned over Q then

it is suÆient to require that the a

i

be linearly independent over Q.

Let us �x a linear order � on the set f1; 2; : : : ; Ng. We say that a subset I of f1; 2; : : : ; Ng is a

broken entral iruit if there exists i 62 I suh that I [ fig is a entral yle and i is the minimal

element of I [ fig with respet to the order �.

The following, essentially well-known, theorem gives us the main tool for the alulation of

Poinar�e (or harateristi) polynomials. We will refer to it as the No Broken Ciruit (NBC)

Theorem.

Theorem 4.5 We have

Poin

A

(q) =

X

I

q

jIj

;

where the sum is over all ayli subsets I of f1; 2; : : : ; Ng without broken entral iruits.

Proof We will dedue this theorem from Theorem 4.1 using the involution priniple. In order to

do this we onstrut an involution � : I ! �(I) on the set of all entral subsets I with a broken

entral iruit suh that for any I we have rk(�(I)) = rk(I) and j� � I j = jI j � 1.

This involution is de�ned as follows: Let I be a entral subset with a broken entral iruit,

and let s(I) be the set of all i 2 1; : : : ; N suh that i is the minimal element of a broken entral

iruit J � I . Note that s(I) is nonempty. If the minimal element s

�

of s(I) lies in I , then we

de�ne �(I) = I n fs

�

g. Otherwise, we de�ne �(I) = I [ fs

�

g.

Note that s(I) = s(�(I)), thus � is indeed an involution. It is lear now that all terms in (4.2)

for I with a broken entral iruit anel eah other and the remaining terms yield the formula in

Theorem 4.5. �

Remark 4.6 Note that by Theorem 4.5 the number of subsets I without broken entral iruits

does not depend on the hoie of the linear order �.

5 Deformations of Graphi Arrangements

In this setion we show how to apply the results of the previous setion to arrangements of type (3.3)

and to give an interpretation of these results in terms of (olored) graphs.

With the hyperplane x

i

� x

j

= a

(k)

ij

of (3.3) one an assoiate the edge (i; j) that has the

olor k. We will denote this edge by (i; j)

(k)

. Then a subset I of hyperplanes orresponds to a

olored graph G on the set of verties f1; 2; : : : ; ng. Aording to the de�nitions in Setion 4, a

iruit (i

1

; i

2

)

(k

1

)

; (i

2

; i

3

)

(k

2

)

; : : : ; (i

l

; i

1

)

(k

l

)

in G is entral if a

(k

1

)

i

1

;i

2

+a

(k

2

)

i

2

;i

3

+ � � �+a

(k

l

)

i

l

;i

1

= 0. Clearly,

a graph G is ayli if and only if G is a forest.

Fix a linear order on the edges (i; j)

(k)

, 1 � i < j � n, 1 � k � m

ij

. We will all a subset of

edges C a broken A-iruit if C is obtained from a entral iruit by deleting the minimal element

(here A stands for the olletion fa

(k)

ij

g). Note that it should not be onfused with the lassial

notion of a broken iruit of a graph, whih orresponds to the ase when all a

(k)

ij

are zero.

We summarize below several speial ases of the NBC Theorem (Theorem 4.5). Here jF j

denotes the number of edges in a forest F .

7



Corollary 5.1 The Poinar�e polynomial of the arrangement (3.3) is equal to

Poin

A

(q) =

X

F

q

jF j

;

where the sum is over all olored forests F on the verties 1; 2; : : : ; n (an edge (i; j) an have a olor

k, where 1 � k � m

ij

) without broken A-iruits. The number of regions of arrangement (3.3) is

equal to the number of suh forests.

In the ase of the arrangement (3.4) we have:

Corollary 5.2 The Poinar�e polynomial of the arrangement (3.4) is equal to

Poin

A

(q) =

X

F

q

jF j

;

where the sum is over all forests on the set of verties f1; 2; : : : ; ng without broken A-iruits. The

number of regions of the arrangement (3.4) is equal to the number of suh forests.

In the ase when the a

(k)

ij

are generi these results beome espeially simple.

For a forest F on verties 1; 2; : : : ; n we will write m

F

:=

Q

(i;j)2F

m

ij

, where the produt is

over all edges (i; j), i < j, in F . Let (F ) denote the number of onneted omponents in F .

Corollary 5.3 Fix nonnegative integersm

ij

, 1 � i < j � n. Let A be an arrangement of type (3.3)

where the a

(k)

ij

are generi. Then

1. Poin

A

(q) =

P

F

m

F

q

jF j

,

2. r(A) =

P

F

m

F

,

where the sums are over all forests F on the verties 1; 2; : : : ; n.

Corollary 5.4 The number of regions of the arrangement (3.4) with generi a

ij

is equal to the

number of forests on n labelled verties.

This orollary is \dual" to the following known result (see, e.g., [27, Exerise 4.32(a)℄). Let

P

n

be the permutohedron, i.e., the polyhedron with verties (�

1

; : : : ; �

n

) 2 R

n

, where �

1

; : : : ; �

n

ranges over all permutations of 1; : : : ; n.

Proposition 5.5 The number of integer lattie points in P

n

is equal to the number of forests on

n labelled verties.

The onneted omponents of the

�

n

2

�

-dimensional spae of all arrangements (3.4) orrespond

to (oherent) zonotopal tilings of the permutohedron P

n

, i.e., ertain subdivisions of P

n

into

parallelepipeds. The regions of a generi arrangement (3.4) orrespond to the verties of the

orresponding tiling, whih are all integer lattie points in P

n

.

It is also well-known that the volume of the permutohedron P

n

is equal to the number of

parallelepipeds in a tiling whih, in turn, is equal to n

n�2

|the number of trees on n labelled

verties. Dually, this implies the following result.

Proposition 5.6 The number of verties (i.e., one-dimensional intersetions of hyperplanes) of

the arrangement (3.4) with generi a

ij

is equal to n

n�2

.
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6 A Semigeneri Deformation of the Braid Arrangement.

De�ne the \semigeneri" deformation G

n

of the braid arrangement (3.1) to be the arrangement

x

i

� x

j

= a

i

; 1 � i � n; 1 � j � n; i 6= j;

where the a

i

's are generi real numbers (e.g., linearly independent over Q). The signi�ane of

this arrangement to the theory of interval orders is disussed in [29, x3℄. In [29, Thm. 3.1 and Cor.

3.3℄ a generating funtion for the number r(G

n

) of regions and for the harateristi polynomial

�

G

n

(q) of G

n

is stated without proof. In this setion we provide the proofs.

Theorem 6.1 Let

z =

X

n�0

r(G

n

)

x

n

n!

= 1 + x+ 3

x

2

2!

+ 19

x

3

3!

+ 195

x

4

4!

+ 2831

x

5

5!

+ 53703

x

6

6!

+ � � � :

De�ne a power series

y = 1 + x+ 5

x

2

2!

+ 46

x

3

3!

+ 631

x

4

4!

+ 11586

x

5

5!

+ 267369

x

6

6!

+ � � �

by the equation

1 = y(2� e

xy

):

Then z is the unique power series satisfying

z

0

z

= y

2

; z(0) = 1:

Proof We use the formula (4.4) to ompute R(G

n

). Given a entral set I of hyperplanes x

i

�x

j

= a

i

in G

n

, de�ne a direted graph G

I

on the vertex set 1; 2; : : : ; n as follows: let i! j be a direted edge

of G

I

if and only if the hyperplane x

i

� x

j

= a

i

belongs to I . (By slight abuse of notation, we are

using I to denote a set of hyperplanes, rather than the set of their indies.) Note that G

I

annot

ontain both the edges i ! j and j ! i, sine the intersetion of the orresponding hyperplanes

is empty. If k

1

; k

2

; : : : ; k

r

are distint elements of f1; 2; : : : ; ng, then it is easy to see that if r is

even then there are exatly two ways to diret the edges k

1

k

2

; k

2

k

3

; : : : ; k

r�1

k

r

; k

r

k

1

so that the

hyperplanes orresponding to these edges have nonempty intersetion, while if r is odd then there

are no ways. It follows that G

I

, ignoring the diretion of edges, is bipartite (i.e., all iruits have

even length). Moreover, given an undireted bipartite graph on the verties 1; 2; : : : ; n with bloks

(maximal onneted subgraphs that remain onneted when any vertex is removed) B

1

; : : : ; B

s

,

there are exatly two ways to diret the edges of eah blok so that the resulting direted graph

G is the graph G

I

of a entral set I of hyperplanes. In addition, rk(I) = n � (G), where (G)

is the number of onneted omponents of G. Letting e(G) be the number of edges and b(G) the

number of bloks of G, it follows from equation (4.3) that

�

G

n

(q) =

X

G

(�1)

e(G)

2

b(G)

q

(G)

;

where G ranges over all bipartite graphs on the vertex set 1; 2; : : : ; n. This formula appears without

proof in [29, Thm. 3.2℄. In partiular, putting q = �1 gives

r(G

n

) = (�1)

n

X

G

(�1)

e(G)+(G)

2

b(G)

: (6.1)

To evaluate the generating funtion z =

P

r(G

n

)

x

n

n!

, we use the following strategy.
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(a) Compute A

n

:=

P

G

(�1)

e(G)

, where G ranges over all (undireted) bipartite graphs on

1; 2; : : : ; n.

(b) Use (a) and the exponential formula to ompute B

n

:=

P

G

(�1)

e(G)

, where now G ranges

over all onneted bipartite graphs on 1; 2; : : : ; n.

() Use (b) and the blok-tree theorem to ompute the sum C

n

:=

P

G

(�1)

e(G)

, where G ranges

over all bipartite bloks on 1; 2; : : : ; n.

(d) Use () and the blok-tree theorem to ompute the sum D

n

:=

P

G

(�1)

e(G)

2

b(G)

, where G

ranges over all onneted bipartite graphs on 1; 2; : : : ; n.

(e) Use (d) and the exponential formula to ompute the desired sum (6.1).

We now proeed to steps (a){(e).

(a) Let b

k

(n) be the number of k-edge bipartite graphs on the vertex set 1; 2; : : : ; n. It is known

(e.g., [28, Exerise 5.5℄) that

X

n�0

X

k�0

b

k

(n)q

k

x

n

n!

=

2

4

X

n�0

 

n

X

i=0

(1 + q)

i(n�i)

�

n

i

�

!

x

n

n!

3

5

1=2

:

Put q = �1 to get

X

n�0

A

n

x

n

n!

=

0

�

1 +

X

n�1

2

x

n

n!

1

A

1=2

= (2e

x

� 1)

1=2

:

(b) Aording to the exponential formula [12, p. 166℄, we have

X

n�1

B

n

x

n

n!

= log

X

n�0

A

n

x

n

n!

=

1

2

log(2e

x

� 1):

() Let B

0

n

denote the number of rooted onneted bipartite graphs on 1; 2; : : : ; n. Sine B

0

n

=

nB

n

, we get

X

n�1

B

0

n

x

n

n!

= x

d

dx

X

n�1

B

n

x

n

n!

=

x

2� e

�x

: (6.2)

Suppose now that B is a set of nonisomorphi bloks B and w is a weight funtion on B, so w(B)

denotes the weight of the blok B. Let

T (x) =

X

B2B

w(B)

x

p(B)

p(B)!

;

where p(B) denotes the number of verties of B. Let

u(x) =

X

G

 

Y

B

w(B)

!

x

p(G)

p(G)!

;

10



where G ranges over all rooted onneted graphs whose bloks are isomorphi to elements of B,

and where B ranges over all bloks of G. The blok-tree theorem [13, (1.3.3)℄[28, Exer. 5.20(a)℄

asserts that

u = xe

T

0

(u)

: (6.3)

If we take B to be the set of all nonisomorphi bipartite bloks, w(B) = (�1)

e(B)

, and u =

x=(2� e

�x

), then it follows from (6.2) that

T (x) =

X

n�1

C

n

x

n

n!

: (6.4)

(d) Let D

0

n

be de�ned like D

n

, exept that G ranges over all rooted onneted bipartite graphs

on 1; 2; : : : ; n, so D

0

n

= nD

n

. Let v(x) =

P

n�1

D

0

n

x

n

n!

. By the blok-tree theorem we have

v = xe

2T

0

(v)

;

where T (x) is given by (6.4). Write f

h�1i

(x) for the ompositional inverse of a power series

f(x) = x+ a

2

x

2

+ � � �, i.e., f(f

h�1i

(x)) = f

h�1i

(f(x)) = x. Substitute v

h�1i

for x and use (6.3) to

get

x = v

h�1i

(x)e

2T

0

(x)

= v

h�1i

(x)

�

x

u

h�1i

(x)

�

2

:

Substitute v(x) for x to obtain

x v(x) = u

h�1i

(v(x))

2

:

Take the square root of both sides and ompose with u(x) = x=(2� e

�x

) on the left to get

p

xv

2� e

�

p

xv

= v: (6.5)

(e) Equation (6.1) and the exponential formula show that

z = exp

0

�

�

X

n�1

(�1)

n

D

n

x

n

n!

1

A

= exp

�

�

Z

v(�x)

x

�

; (6.6)

where

R

denotes the formal integral, i.e.,

R

P

a

n

x

n

n!

=

P

a

n

x

n+1

(n+1)!

. (The �rst minus sign in (6.6)

orresponds to the fator (�1)

(G)

in (6.1).)

Let v(�x) = �xy

2

. Equation (6.5) beomes (taking are to hoose the right sign of the square

root)

1 = y(2� e

xy

);

while (6.6) shows that z

0

=z = �v(�x)=x = y

2

. This ompletes the proof. 2

Note. The semigeneri arrangement G

n

satis�es the hypotheses of [29, Thm. 1.2℄. It follows

that

X

n�0

�

G

n

(q)

x

n

n!

= z(�x)

�q

;
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as stated in [29, Cor. 3.3℄. Here z is as de�ned in Theorem 6.1.

An arrangement losely related to G

n

is given by

G

0

n

: x

i

� x

j

= a

i

; 1 � i < j � n;

where the a

i

's are generi. The analogue of equation (6.1) is

r(G

0

n

) = (�1)

n

X

G

(�1)

e(G)+(G)

2

b(G)

;

where now G ranges over all bipartite graphs on the vertex set 1; 2; : : : ; n for whih every blok is

alternating, i.e., every vertex is either less that all its neighbors or greater than all its neighbors.

The �rst author of this paper has obtained a result analogous to Theorem 6.1.

7 Catalan Arrangements and Semiorders

Let us �x distint real numbers a

1

; a

2

; : : : ; a

m

> 0, and let A = (a

1

; : : : ; a

m

). In this setion we

onsider the arrangement C

n�1

= C

n�1

(A) of hyperplanes in the spae V

n�1

= f(x

1

; : : : ; x

n

) 2 R

n

j

x

1

+ � � �+ x

n

= 0g given by

x

i

� x

j

= a

1

; a

2

; : : : ; a

m

; i 6= j: (7.1)

We onsider also the arrangement C

0

n�1

= C

0

n�1

(A) obtained from C

n�1

by adjoining the hyper-

planes x

i

= x

j

, i.e., C

0

n

is given by

x

i

� x

j

= 0; a

1

; a

2

; : : : ; a

m

; i 6= j: (7.2)

Let

f

A

(t) =

X

n�0

r(C

n�1

)

t

n

n!

;

g

A

(t) =

X

n�0

r(C

0

n�1

)

t

n

n!

be the exponential generating funtions for the numbers of regions of the arrangements C

n�1

and

C

0

n�1

.

The main result of this setion is the following theorem, stated without proof in [29, Thm. 2.3℄.

Theorem 7.1 We have f

A

(t) = g

A

(1� e

�t

) or, equivalently,

r(C

0

n�1

) =

X

k�0

(n; k) r(C

k�1

);

where (n; k) is the signless Stirling number of the �rst kind, i.e., the number of permutations of

1; 2; : : : ; n with k yles.

Let us have a loser look at two speial ases of arrangements (7.1) and (7.2). Consider the

arrangement of hyperplanes in V

n�1

� R

n

given by the equations

x

i

� x

j

= �1; 1 � i < j � n: (7.3)

Consider also the arrangement given by

x

i

� x

j

= 0; �1; 1 � i < j � n: (7.4)

It is not diÆult to hek the following result diretly from the de�nition.
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Figure 3: Forbidden subposets for semiorders.

Proposition 7.2 The number of regions of the arrangement (7.4) is equal to n!C

n

, where C

n

is

the Catalan number C

n

=

1

n+1

�

2n

n

�

.

Theorem 7.1 then gives a formula for the number of regions of the arrangement (7.3).

Let R be a region of the arrangement (7.3), and let (x

1

; : : : ; x

n

) 2 R be any point in the region

R. Consider the poset P on the verties 1; : : : ; n suh that i >

P

j if and only if x

i

�x

j

> 1. Clearly,

distint regions orrespond to distint posets. The posets that an be obtained in suh a way are

alled semiorders. See [29℄ for more results on the relation between hyperplane arrangements and

interval orders (whih are a generalization of semiorders).

The symmetri group S

n

naturally ats on the spae V

n�1

by permuting the oordinates x

i

.

Thus it also permutes the regions of the arrangement (7.4). The region x

1

< x

2

< � � � < x

n

is

alled the dominant hamber. Every S

n

-orbit of regions of the arrangement (7.4) onsists of n!

regions and has a unique representative in the dominant hamber. It is also lear that the regions

of (7.4) in the dominant hamber orrespond to unlabelled (i.e., nonisomorphi) semiorders on n

verties. Hene, Proposition 7.2 is equivalent to a well-known result of Wine and Freund [33℄ that

the number of nonisomorphi semiorders on n verties is equal to the Catalan number. In the

speial ase of the arrangements (7.3) and (7.4), i.e., A = (1), Theorem 7.1 gives a formula for

the number of labelled semiorders on n verties whih was �rst proved by Chandon, Lemaire, and

Pouget [8℄.

The following theorem, due to Sott and Suppes [24℄, presents a simple haraterization of

semiorders (f. Theorem 8.4).

Theorem 7.3 A poset P is a semiorder if and only if it ontains no indued subposet of either of

the two types shown on Figure 3.

Return now to the general ase of the arrangements C

n�1

and C

0

n�1

given by (7.1) and (7.2).

The symmetri group S

n

ats on the regions of C

n�1

and C

0

n�1

. Let R

n�1

denotes the set of all

regions of C

n�1

.

Lemma 7.4 The number of regions of C

0

n�1

is equal to n! times the number of S

n

-orbits in R

n�1

.

Indeed, the number of regions of C

0

n�1

is n! times the number of those in the dominant hamber.

They, in turn, orrespond to S

n

-orbits in R

n�1

. As was shown in [29℄, the regions of C

n�1

an be

viewed as (labelled) generalized interval orders. On the other hand, the regions of C

0

n�1

that lie in

the dominant hamber orrespond to unlabelled generalized interval orders. The statement now is

tautologial, that the number of unlabelled objets is the number of S

n

-orbits.

Now we an apply the following well-known lemma of Burnside (atually �rst proved by Cauhy

and Frobenius, as disussed e.g. in [28, p. 404℄).
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Lemma 7.5 Let G be a �nite group whih ats on a �nite set M . Then the number of G-orbits

in M is equal to

1

jGj

X

g2G

Fix(g;M);

where Fix(g;M) is the number of elements in M �xed by g 2 G.

By Lemmas 7.4 and 7.5 we have

r(C

0

n�1

) =

X

�2S

n

Fix(�; C

n�1

);

where Fix(�; C

n�1

) is the number of regions of C

n�1

�xed by the permutation �.

Theorem 7.1 now follows easily from the following lemma.

Lemma 7.6 Let � 2 S

n

be a permutation with k yles. Then the number of regions of C

n�1

�xed

by � is equal to the total number of regions of C

k�1

.

Indeed, by Lemma 7.6, we have

r(C

0

n�1

) =

X

�2S

n

Fix(�; C

n�1

) =

X

k�0

(n; k) r(C

k�1

);

whih is preisely the laim of Theorem 7.1.

Proof of Lemma 7.6 We will onstrut a bijetion between the regions of C

n�1

�xed by � and

the regions of C

k�1

.

Let R be any region of C

n�1

�xed by a permutation � 2 S

n

, and let (x

1

; : : : ; x

n

) be any point

in R. Then for any i; j 2 f1; : : : ; ng and any s = 1; : : : ;m we have x

i

� x

j

> a

s

if and only if

x

�(i)

� x

�(j)

> a

s

.

Let � = (

11



12

� � � 

1l

1

) (

21



22

� � � 

2l

2

) � � � (

k1



k2

� � � 

kl

k

) be the yle deomposition of the

permutation �. Write X

i

= (x



i1

; x



i2

; : : :) for i = 1; : : : ; k. We will write X

i

� X

j

> a if

x

i

0

� x

j

0

> a for any x

i

0

2 X

i

and x

j

0

2 X

j

. The notation X

i

� X

j

< a has an analogous

meaning. We will show that for any two lasses X

i

and X

j

and for any s = 1; : : : ;m we have either

X

i

�X

j

> a

s

or X

i

�X

j

< a

s

.

Let x

i

�

be the maximal element in X

i

and let x

j

�

be the maximal element in X

j

. Suppose that

x

i

�

�x

j

�

> a

s

. Sine R is �-invariant, for any integer p we have the inequality x

�

p

(i

�

)

�x

�

p

(j

�

)

> a

s

.

Then, sine x

i

�

is the maximal element of X

i

, we have x

i

�

� x

�

p

(j

�

)

> a

s

. Again, for any integer

q, we have x

�

q

(i

�

)

� x

�

p+q

(j

�

)

> a

s

, whih implies that X

i

�X

j

> a

s

.

Analogously, suppose that x

i

�

�x

j

�

< a

s

. Then for any integer p we have x

�

p

(i

�

)

�x

�

p

(j

�

)

< a

s

.

Sine x

j

�

� x

�

p

(j

�

)

, we have x

�

p

(i

�

)

� x

j

�

< a

s

. Finally, for any integer q we obtain x

�

p+q

(i

�

)

�

x

�

q

(j

�

)

< a

s

, whih implies that X

i

�X

j

< a

s

.

If we pik an element x

i

0

in eah lass X

i

we get a point (x

1

0

; x

2

0

; : : : ; x

k

0

) in R

k

. This point

lies in some region R

0

of C

k�1

. The onstrution above shows that the region R

0

does not depend

on the hoie of x

i

0

in X

i

.

Thus we get a map � : R ! R

0

from the regions of C

n�1

invariant under � to the regions of

C

k�1

. It is lear that � is injetive. To show that � is surjetive, let (x

1

0

; : : : ; x

k

0

) be any point

in a region R

0

of C

k

. Pik the point (x

1

; x

2

; : : : ; x

n

) 2 R

n

suh that x



11

= x



12

= � � � = x

1

0

,

x



21

= x



22

= � � � = x

2

0

; : : : ; x



k1

= x



k2

= � � � = x

k

0

. Then (x

1

; : : : ; x

n

) is in some region R of C

n�1

(here we use the ondition a

1

; : : : ; a

m

6= 0). Aording to our onstrution, we have �(R) = R

0

.

Thus � is a bijetion.

This ompletes the proof of Lemma 7.6 and therefore also of Theorem 7.1. �
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8 The Linial Arrangement

As before, V

n�1

= f(x

1

; : : : ; x

n

) 2 R

n

j x

1

+ � � � + x

n

= 0g. Consider the arrangement L

n�1

of

hyperplanes in V

n�1

given by the equations

x

i

� x

j

= 1; 1 � i < j � n: (8.1)

Reall that r(L

n�1

) denotes the number of regions of the arrangement L

n�1

. This arrangement

was �rst onsidered by Nati Linial and Shmulik Ravid. They alulated the numbers r(L

n�1

) and

the Poinar�e polynomials Poin

L

n�1

(q) for n � 9.

In this setion we give an expliit formula and several di�erent ombinatorial interpretations

for the numbers r(L

n�1

).

8.1 Alternating trees and loal binary searh trees

We all a tree T on the verties 0; 1; 2; : : : ; n alternating if the verties in any path i

1

; : : : ; i

k

in T

alternate, i.e., we have i

1

< i

2

> i

3

< � � � i

k

or i

1

> i

2

< i

3

> � � � i

k

. In other words, there are

no i < j < k suh that both (i; j) and (j; k) are edges in T . Equivalently, every vertex is either

greater than all its neighbors or less than all its neighbors. Alternating trees �rst appear in [11℄

and were studied in [20℄, where they were alled intransitive trees (see also [29℄).
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r r r r r
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��
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�

��

01 23

4

5

67

8

910

Figure 4: An alternating tree.

Let f

n

be the number of alternating trees on the verties 0; 1; 2; : : : ; n, and let

f(x) =

X

n�0

f

n

x

n

n!

be the exponential generating funtion for the sequene f

n

.

A plane binary tree B on the verties 1; 2; : : : ; n is alled a loal binary searh tree if for any

vertex i in T the left hild of i is less than i and the right hild of i is greater than i. These trees

were �rst onsidered by Ira Gessel (private ommuniation). Let g

n

denote the number of loal

binary searh trees on the verties 1; 2; : : : ; n. By onvention, g

0

= 1.

The following result was proved in [20℄ (see also [11, 29℄).

Theorem 8.1 For n � 1 we have

f

n

= g

n

= 2

�n

n

X

k=0

�

n

k

�

(k + 1)

n�1

and f = f(x) satis�es the funtional equation

f = e

x(1+f)=2

:
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Figure 5: A loal binary searh tree.

The �rst few numbers f

n

are given in the table below.

n 0 1 2 3 4 5 6 7 8 9 10

f

n

1 1 2 7 36 246 2104 21652 260720 3598120 56010096

The main result on the Linial arrangement is the following:

Theorem 8.2 The number r(L

n�1

) of regions of L

n�1

is equal to the number f

n

of alternat-

ing trees on the verties 0; 1; 2 : : : ; n, and thus to the number g

n

of loal binary searh trees on

1; 2; : : : ; n.

This theorem was onjetured by the seond author (thanks to the numerial data provided

by Linial and Ravid) and was proved by the �rst author. A di�erent proof was later given by C.

Athanasiadis [3℄.

In Setion 9 we will prove a more general result (see Theorems 9.1 and Corollary 9.9).

8.2 Sleek posets and semiayli tournaments

Let R be a region of the arrangement L

n�1

, and let (x

1

; : : : ; x

n

) be any point in R. De�ne

P = P (R) to be the poset on the verties 1; 2; : : : ; n suh that i <

P

j if and only if x

i

� x

j

> 1

and i < j in the usual order on Z.

We will all a poset P on the verties 1; 2; : : : ; n sleek if P is the intersetion of a semiorder

(see Setion 7) with the hain 1 < 2 < � � � < n.

The following proposition immediately follows from the de�nitions.

Proposition 8.3 The map R 7! P (R) is a bijetion between regions of L

n�1

and sleek posets on

1; 2; : : : ; n. Hene the number r(L

n�1

) is equal to the number of sleek posets on 1; 2; : : : ; n.

There is a simple haraterization of sleek posets in terms of forbidden indued subposets

(ompare Theorem 7.3).

Theorem 8.4 A poset P on the verties 1; 2; : : : ; n is sleek if and only if it ontains no indued

subposet of the four types shown on Figure 6, where a < b <  < d.
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Figure 7: Asending yles.

In the remaining part of this setion we prove Theorem 8.4.

First, we give another desription of regions in L

n�1

(or, equivalently, sleek posets). A tour-

nament on the verties 1; 2; : : : ; n is a direted graph T without loops suh that for every i 6= j

either (i; j) 2 T or (j; i) 2 T . For a region R of L

n�1

onstrut a tournament T = T (R) on the

verties 1; 2; : : : ; n as follows: let (x

1

; : : : ; x

n

) 2 R. If x

i

� x

j

> 1 and i < j, then (i; j) 2 T ; while

if x

i

� x

j

< 1 and i < j, then (j; i) 2 T .

Let C be a direted yle in the omplete graph K

n

on the verties 1; 2; : : : ; n. We will write

C = (

1

; 

2

; : : : ; 

m

) if C has the edges (

1

; 

2

); (

2

; 

3

); : : : ; (

m

; 

1

). By onvention, 

0

= 

m

. An

asent in C is a number 1 � i � m suh that 

i�1

< 

i

. Analogously, a desent in C is a number

1 � i � m suh that 

i�1

> 

i

. Let as(C) denote the number of asents and des(C) denote the

number of desents in C. We say that a yle C is asending if as(C) � des(C). For example,

the following yles are asending: C

0

= (a; b; ), C

1

= (a; ; b; d), C

2

= (a; d; b; ), C

3

= (a; b; d; ),

C

4

= (a; ; d; b), where a < b <  < d. These yles are shown on Figure 7.

We all a tournament T on 1; 2; : : : ; n semiayli if it ontains no asending yles. In other

words, T is semiayli if for any direted yle C in T we have as(C) < des(C).

Proposition 8.5 A tournament T on 1; 2; : : : ; n orresponds to a region R in L

n�1

, i.e., T =

T (R), if and only if T is semiayli. Hene r(L

n�1

) is the number of semiayli tournaments

on 1; 2; : : : ; n.

This fat was independently found by Shmulik Ravid.

For any tournament T on 1; 2; : : : ; n without yles of type C

0

we an onstrut a poset P =

P (T ) suh that i <

P

j if and only if i < j and (i; j) 2 T . Now the four asending yles C

1

, C

2

,

C

3

, C

4

in Figure 7 orrespond to the four posets on Figure 6. Therefore, Theorem 8.4 is equivalent

to the following result.

Theorem 8.6 A tournament T on the verties 1; 2; : : : ; n is semiayli if and only if it ontains

no asending yles of the types C

0

; C

1

; C

2

; C

3

, and C

4

shown in Figure 7, where a < b <  < d.
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Remark 8.7 This theorem is an analogue of a well-known fat that a tournament T is ayli if

and only if it ontains no yles of length 3. For semiayliity we have obstrutions of lengths 3

and 4.

Proof Let T be a tournament on 1; 2; : : : ; n. Suppose that T is not semiayli. We will show

that T ontains a yle of type C

0

; C

1

; C

2

; C

3

, or C

4

. Let C = (

1

; 

2

; : : : ; 

m

) be an asending

yle in T of minimal length. If m = 3, or 4 then C is of type C

0

; C

1

; C

2

; C

3

, or C

4

. Suppose

that m > 4.

Lemma 8.8 We have as(C) = des(C).

Proof Sine C is asending, we have as(C) � des(C). Suppose as(C) > des(). If C has

two adjaent asents i and i + 1 then (

i�1

; 

i+1

) 2 T (otherwise we have an asending yle

(

i�1

; 

i

; 

i+1

) of type C

0

in T ). Then C

0

= (

1

; 

2

; : : : ; 

i�1

; 

i+1

; : : : ; 

m

) is an asending yle in

T of length m� 1, whih ontradits the fat that we hose C to be minimal. So for every asent

i in C the index i+ 1 is a desent. Hene as(C) � des(C), and we get a ontradition. �

We say that 

i

and 

j

are on the same level in C if the number of asents between 

i

and 

j

is

equal to the number of desents between 

i

and 

j

.

Lemma 8.9 We an �nd i; j 2 f1; 2; : : : ;mg suh that (a) i is an asent and j is a desent in C,

(b) i 6� j � 1 (mod m), and () 

i

and 

j�1

are on the same level (see Figure 8).

Proof We may assume that for any 1 � s � m the number of asents in f1; 2; : : : ; sg is greater

than or equal to the number of desents in f1; 2; : : : ; sg (otherwise take some yli permutation

of (

1

; 

2

; : : : ; 

m

)). Consider two ases.

1. There exists 1 � t � m � 1 suh that 

t

and 

m

are on the same level. In this ase, if the

pair (i; j) = (1; t) does not satisfy onditions (a){() then t = 2. On the other hand, if the pair

(i; j) = (t+1;m) does not satisfy (a){() then t = m� 2. Hene, m = 4 and C is of type C

1

or C

2

shown in Figure 7.

2. There is no 1 � t � m� 1 suh that 

t

and 

m

are on the same level. Then 2 is an asent and

m� 1 is a desent. If the pair (i; j) = (2;m� 2) does not satisfy (a){() then m = 4 and C is of

type C

3

or C

4

shown in Figure 7. �

Now we an omplete the proof of Theorem 8.6. Let i; j be two numbers satisfying the onditions

of Lemma 8.9. Then 

i�1

, 

i

, 

j�1

, 

j

are four distint verties suh that (a) 

i�1

< 

i

, (b) 

j�1

> 

j

,

() 

i

and 

j�1

are on the same level, and (d) 

i�1

and 

j

are on the same level (see Figure 8). We

may assume that i < j.

r

r

r

r

6

?



j



j�1



i�1



i

Figure 8:
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If (

j�1

; 

i�1

) 2 T then (

i�1

; 

i

; : : : ; 

j�1

) is an asending yle in T of length less than m,

whih ontradits the requirement that C is an asending yle on T of minimal length. So

(

i�1

; 

j�1

) 2 T . If 

i�1

< 

j�1

then (

j�1

; 

j

; : : : ; 

m

; 

1

; : : : ; 

i�1

) is an asending yle in T of

length less than m. Hene, 

i�1

> 

j�1

.

Analogously, if (

i

; 

j

) 2 T then (

j

; 

j+1

; : : : ; 

p

; 

1

; : : : ; 

i

) is an asending yle in T of length

less than m. So (

j

; 

i

) 2 T . If 

i

> 

j

then (

i

; 

i+1

; : : : ; 

j

) is an asending yle in T of length

less than m. So 

i

< 

j

.

Now we have 

i�1

> 

j�1

> 

j

> 

i

> 

i�1

, and we get an obvious ontradition.

We have shown that every minimal asending yle in T is of length 3 or 4 and thus have proved

Theorem 8.6. �

8.3 The Orlik-Solomon algebra

In [16℄ Orlik and Solomon gave the following ombinatorial desription of the ohomology ring of

the omplement of an arbitrary omplex hyperplane arrangement. Consider a omplex arrangement

A of aÆne hyperplanes H

1

; H

2

; : : : ; H

N

in the omplex spae V

�

=

C

n

given by

H

i

: f

i

(x) = 0; i = 1; : : : ; N;

where f

i

(x) are linear forms on V (with a onstant term).

We say that hyperplanes H

i

1

; : : : ; H

i

p

are independent if the odimension of the intersetion

H

i

1

\ � � � \H

i

p

is equal to p. Otherwise, the hyperplanes are dependent.

Let e

1

; : : : ; e

N

be formal variables assoiated with the hyperplanes H

1

; : : : ; H

N

. The Orlik-

Solomon algebra OS(A) of the arrangementA is generated over the omplex numbers by e

1

; : : : ; e

N

,

subjet to the relations:

e

i

e

j

= �e

j

e

i

; 1 � i < j � N; (8.2)

e

i

1

� � � e

i

p

= 0; if H

i

1

\ � � � \H

i

p

= ;; (8.3)

p+1

X

j=1

(�1)

j

e

i

1

� � �e

i

j

� � � e

i

p+1

= 0; (8.4)

whenever H

i

1

; : : : ; H

i

p+1

are dependent. (Here e

i

j

denotes that e

i

j

is missing.)

Let C

A

= V �

S

i

H

i

be the omplement to the hyperplanes H

i

of A, and let H

�

DR

(C

A

; C )

denote de Rham ohomology of C

A

.

Theorem 8.10 (Orlik, Solomon [16℄) The map � : OS(A)! H

�

DR

(C

A

; C ) de�ned by

� : e

i

7! [df

i

=f

i

℄

is an isomorphism.

Here [df

i

=f

i

℄ is the ohomology lass in H

�

DR

(C

A

; C ) of the di�erential form df

i

=f

i

.

We will apply Theorem 8.10 to the Linial arrangement. In this ase hyperplanes x

i

� x

j

= 1,

i < j, orrespond to edges (i; j) of the omplete graph K

n

.
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Proposition 8.11 The Orlik-Solomon algebra OS(L

n�1

) of the Linial arrangement is generated

by e

vw

= e

(v;w)

, 1 � v < w � n, subjet to relations (8.2), (8.3), and also to the following relations:

e

ab

e

b

e

a

� e

ab

e

b

e

d

+ e

ab

e

a

e

d

� e

b

e

a

e

d

= 0;

e

a

e

b

e

bd

� e

a

e

b

e

ad

+ e

a

e

bd

e

ad

� e

b

e

bd

e

ad

= 0:

(8.5)

where 1 � a < b <  < d � n (f. Figure 7).

Proof Let C = (

1

; 

2

; : : : ; 

p

) be a yle in K

n

. We say that C is balaned if as(C) = des(C). We

may assume that in equation (8.4) i

1

; i

2

; : : : ; i

p

are edges of a balaned yle C. We will prove (8.4)

by indution on p. If p = 4 then C is of type C

1

; C

2

; C

3

, or C

4

(see Figure 7). Thus C produes

one of the relations (8.5). If p > 4, then we an �nd r 6= s suh that both C

0

= (

r

; 

r+1

; : : : ; 

s

)

and C

00

= (

s

; 

s+1

; : : : ; 

r

) are balaned. Equation (8.4) for C is the sum of the equations for C

0

and C

00

. Thus the statement follows by indution. �

Remark 8.12 This proposition is an analogue to the well-known desription of the ohomology

ring of the Coxeter arrangement (3.1), due to Arnold [1℄. This ohomology ring is generated by

e

vw

= e

(v;w)

, 1 � v < w � n, subjet to relations (8.2), (8.3) and also the following \triangle"

equation:

e

ab

e

b

� e

ab

e

a

+ e

b

e

a

= 0;

where 1 � a < b <  � n.

9 Trunated AÆne Arrangements

In this setion we study a general lass of hyperplane arrangements whih ontains, in partiular,

the Linial and Shi arrangements.

Let a and b be two integers suh that a � 0, b � 0, and a + b � 2. Consider the hyperplane

arrangement A

ab

n�1

in V

n�1

= f(x

1

; : : : ; x

n

) 2 R

n

j x

1

+ � � �+ x

n

= 0g given by

x

i

� x

j

= �a+ 1;�a+ 2; : : : ; b� 1; 1 � i < j � n: (9.1)

We all A

ab

n�1

a trunated aÆne arrangement beause it is a �nite subarrangement of the aÆne

arrangement of type

e

A

n�1

given by x

i

� x

j

= k, k 2 Z.

As we will see the arrangement A

ab

n�1

has di�erent behavior in the balaned ase (a = b) and

the unbalaned ase (a 6= b).

9.1 Funtional equations

Let f

n

= f

ab

n

be the number of regions of the arrangement A

ab

n�1

, and let

f(x) =

X

n�0

f

n

x

n

n!

(9.2)

be the exponential generating funtion for f

n

.

Theorem 9.1 Suppose a; b � 0.

1. The generating funtion f = f(x) satis�es the following funtional equation:

f

b�a

= e

x�

f

a

�f

b

1�f

: (9.3)
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2. If a = b � 1, then f = f(x) satis�es the equation:

f = 1 + xf

a

; (9.4)

Note that the equation (9.4) an be formally obtained from (9.3) by l'Hôpital's rule in the limit

a! b.

In the ase a = b the funtional equation (9.4) allows us to alulate the numbers f

aa

n

expliitly.

Corollary 9.2 The number f

aa

n

is equal to an(an� 1) � � � (an� n+ 2).

The funtional equation (9.3) is espeially simple in the ase a = b � 1. We all the arrange-

ment A

a;a+1

n�1

the extended Shi arrangement. In this ase we get:

Corollary 9.3 Let a � 1. The number f

n

of regions of the hyperplane arrangement in R

n

given

by

x

i

� x

j

= �a+ 1;�a+ 2; : : : ; a; i < j;

is equal to f

n

= (an+1)

n�1

, and the exponential generating funtion f =

P

n�0

f

n

x

n

n!

satis�es the

funtional equation f = e

x�f

a

.

In order to prove Theorem 9.1 we need several new de�nitions. A graded graph is a graph G

on a set V of verties labelled by natural numbers together with a funtion h : V ! f0; 1; 2; : : :g,

whih is alled a grading. For r � 0 the verties v of G suh that h(v) = r form the rth level

of G. Let e = (u; v) be an edge in G, u < v. We say that the type of the edge e is the integer

t = h(v)� h(u) and that a graded graph G is of type (a; b) if the types of all edges in G are in the

interval [�a+ 1; b� 1℄ = f�a+ 1;�a+ 2; : : : ; b� 1g.

Choose a linear order on the set of all triples (u; t; v), u; v 2 V , t 2 [�a+ 1; b� 1℄. Let C be

a graded yle of type (a; b). Every edge (u; v) of C orresponds to a triple (u; t; v), where t is

the type of the edge (u; v). Choose the edge e of C with the minimal triple (u; t; v). We say that

C n feg is a broken iruit of type (a; b).

Let (F; h) be a graded forest. We say that (F; h) is grounded or that h is a grounded grading

on the forest F if eah onneted omponent in F ontains a vertex on the 0th level.

Proposition 9.4 The number f

n

of regions of the arrangement (9.1) is equal to the number of

grounded graded forests of type (a; b) on the verties 1; 2; : : : ; n without broken iruits of type (a; b).

Proof By Corollary 5.1, the number f

n

is equal to the number of olored forests F on the verties

1; 2; : : : ; n without broken A-iruits. Every edge (u; v), u < v, in F has a olor whih is an integer

from the interval [�a+ 1; b� 1℄. Consider the grounded grading h on F suh that for every edge

(u; v), u < v, in F of olor t we have that t = h(v)�h(u) is the type of (u; v). It is lear that suh

a grading is uniquely de�ned. Then (F; h) is a grounded graded forest of type (a; b). Clearly, this

gives a orrespondene between olored and graded forests. Then broken A-iruits orrespond to

broken graded iruits. The proposition easily follows. �

From now on we �x the lexiographi order on triples (u; t; v), i.e., (u; t; v) < (u

0

; t

0

; v

0

) if and

only if u < u

0

, or (u = u

0

and t < t

0

), or (u = u

0

and t = t

0

and v < v

0

). Note the order of u, t,

and v. We will all a graded tree T solid if T is of type (a; b) and T ontains no broken iruits of

type (a; b).

Let T be a solid tree on 1; 2; : : : ; n suh that vertex 1 is on the rth level. If we delete the

minimal vertex 1, then the tree T deomposes into onneted omponents T

1

; T

2

; : : : ; T

m

. Suppose

that eah omponent T

i

is onneted with 1 by an edge (1; v

i

) where v

i

is on the r

i

-th level.
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Lemma 9.5 Let T; T

1

; : : : ; T

m

; v

1

; : : : ; v

m

, and r

1

; : : : ; r

m

be as above. The tree T is solid if and

only if (a) all T

1

; T

2

; : : : ; T

m

are solid, (b) for all i the r

i

-th level is the minimal nonempty level in

T

i

suh that �a+1 � r

i

� r � b� 1, and () the vertex v

i

is the minimal vertex on its level in T

i

.

Proof First, we prove that if T is solid then the onditions (a){() hold. Condition (a) is

trivial, beause if some T

i

ontains a broken iruit of type (a; b) then T also ontains this broken

iruit. Assume that for some i there is a vertex v

0

i

on the r

0

i

-th level in T

i

suh that r

0

i

< r

i

and

r

0

i

� r � �a + 1. Then the minimal hain in T that onnets vertex 1 with vertex v

0

i

is a broken

iruit of type (a; b). Thus ondition (b) holds. Now suppose that for some i vertex v

i

is not the

minimal vertex v

00

i

on its level. Then the minimal hain in T that onnets vertex 1 with v

00

i

is a

broken iruit of type (a; b). Therefore, ondition () holds too.

Now assume that onditions (a){() are true. We prove that T is solid. For suppose not. Then

T ontains a broken iruit B = C n feg of type (a; b), where C is a graded iruit and e is its

minimal edge. If B does not pass through vertex 1 then B lies in T

i

for some i, whih ontradits

ondition (a). We an assume that B passes through vertex 1. Sine e is the minimal edge in C,

e = (1; v) for some vertex v

0

on level r

0

in T . Suppose v 2 T

i

. If v

0

and v

i

are on di�erent levels

in T

i

then by (b), r

i

< r. Thus the minimal edge in C is (1; v

i

) and not (1; v

0

). If v

0

and v

i

are

on the same level in T

i

, then by () we have v

i

< v

0

. Again, the minimal edge in C is (1; v

i

) and

not (1; v

0

). Therefore, the tree T ontains no broken iruit of type (a; b), i.e., T is solid. �

Let s

i

be the minimal nonempty level in T

i

, and let l

i

be the maximal nonempty level in T

i

.

By Lemma 9.5, the vertex 1 an be on the rth level, r 2 fs

i

� b+1; s

i

� b+1; : : : ; l

i

+ a� 1g, and

for eah suh r there is exatly one way to onnet 1 with T

i

.

Let p

nkr

denote the number of solid trees (not neessarily grounded) on the verties 1; 2; : : : ; n

whih are loated on levels 0; 1; : : : ; k suh that vertex 1 is on the rth level, 0 � r � k.

Let

p

kr

(x) =

X

n�1

p

nkr

x

n

n!

; p

k

(x) =

k

X

r=0

p

kr

(x):

By the exponential formula (see [12, p. 166℄) and Lemma 9.5, we have

p

0

kr

(x) = exp b

kr

(x); (9.5)

where b

kr

(x) =

P

n�1

b

nkr

x

n

n!

and b

nkr

is the number of solid trees T on n verties loated on the

levels 0; 1; : : : ; k suh that at least one of the levels r � a+ 1; r � a+ 2; : : : ; r + b� 1 is nonempty,

0 � r � k. The polynomial b

kr

(x) enumerates the solid trees on levels 1; 2; : : : ; k minus trees on

levels 1; : : : ; r � a and trees on levels r + b; : : : ; k. Thus we obtain

b

kr

(x) = p

k

(x)� p

r�a

(x) � p

k�r�b

(x):

By (9.5), we get

p

0

kr

(x) = exp(p

k

(x)� p

r�a

(x)� p

k�r�b

(x));

where p

�1

(x) = p

�2

(x) = � � � = 0, p

0

(x) = x, p

k

(0) = 0 for k 2 Z. Hene

p

0

k

(x) =

k

X

r=0

exp(p

k

(x)� p

r�a

(x)� p

k�r�b

(x)):

Equivalently,

p

0

k

(x) exp(�p

k

(x)) =

k

X

r=0

exp(�p

r�a

(x)) exp(�p

k�r�b

(x)):
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Let q

k

(x) = exp(�p

k

(x)). We have

q

0

k

(x) = �

k

X

r=0

q

r�a

(x) q

k�r�b

(x); (9.6)

q

�1

= q

�2

= � � � = 1, q

0

= e

�x

, q

k

(0) = 1 for k 2 Z.

The following lemma desribes the relation between the polynomials q

k

(x) and the number of

regions of the arrangement A

ab

n�1

.

Lemma 9.6 The quotient q

k�1

(x)=q

k

(x) tends to

P

n�0

f

n

x

n

n!

as k !1.

Proof Clearly, p

k

(x)�p

k�1

(x) is the exponential generating funtion for the numbers of grounded

solid trees of height less than or equal to k. By the exponential formula (see [12, p. 166℄)

q

k�1

(x)=q

k

(x) = exp (p

k

(x)� p

k�1

(x)) is the exponential generating funtion for the numbers

of grounded solid forests of height less than or equal to k. The lemma obviously follows from

Proposition 9.4. �

All previous formulae and onstrutions are valid for arbitrary a and b. Now we will take

advantage of the ondition a; b � 0. Let

q(x; y) =

X

k�0

q

k

(x)y

k

:

By (9.6), we obtain the following di�erential equation for q(x; y):

�

�x

q(x; y) = � (a

y

+ y

a

q(x; y)) �

�

b

y

+ y

b

q(x; y)

�

;

q(0; y) = (1� y)

�1

;

where a

y

:= (1� y

a

)=(1� y).

This di�erential equation has the following solution:

q(x; y) =

b

y

exp(�x � b

y

)� a

y

exp(�x � a

y

)

y

a

exp(�x � a

y

)� y

b

exp(�x � b

y

)

: (9.7)

Let us �x some small x. Sine Q(y) := q(x; y) is an analyti funtion of y, then  = (x) =

lim

k!1

q

k�1

=q

k

is the pole of Q(y) losest to 0 ( is the radius of onvergene of Q(y) if x is a

small positive number). By (9.7), 

a

exp(�x � a



) � 

b

exp(�x � b



) = 0. Thus, by Lemma 9.6,

f(x) =

P

n�0

f

n

x

n

n!

= (x) is the solution of the funtional equation

f

a

e

�x�

1�f

a

1�f

= f

b

e

�x�

1�f

b

1�f

;

whih is equivalent to (9.3).

This ompletes the proof of Theorem 9.1. �

9.2 Formulae for the harateristi polynomial

Let A = A

ab

n�1

be the trunated aÆne arrangement given by (9.1). Consider the harateristi

polynomial �

ab

n

(q) of the arrangement A

ab

n�1

. Reall that �

ab

n

(q) = q

n�1

Poin

A

ab

n�1

(�q

�1

).
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Let �

ab

(x; q) be the exponential generating funtion

�

ab

(x; q) = 1 +

X

n>0

�

ab

n�1

(q)

x

n

n!

:

Aording to [29, Theorem 1.2℄, we have

�

ab

(x; q) = f(�x)

�q

; (9.8)

where f(x) = �

ab

(�x;�1) is the exponential generating funtion (9.2) for numbers of regions

of A

ab

n�1

.

Let S be the shift operator S : f(q) 7! f(q � 1).

Theorem 9.7 Assume that 0 � a < b. Then

�

ab

n

(q) = (b� a)

�n

(S

a

+ S

a+1

+ � � �+ S

b�1

)

n

� q

n�1

:

Proof The theorem an be easily dedued from Theorem 9.1 and (9.8) (using, e.g., the Lagrange

inversion formula). �

In the limit b! a, using l'Hôpital's rule, we obtain

�

aa

n

(q) =

�

S

a

logS

1� S

�

n

� q

n�1

:

In fat, there is an expliit formula for �

aa

(q). The following statement easily follows from

Corollary 9.2 and appears in [10, proof of Prop. 3.1℄.

Theorem 9.8 We have

�

aa

n

(q) = (q + 1� an)(q + 2� an) � � � (q + n� 1� an):

There are several equivalent ways to reformulate Theorem 9.7, as follows:

Corollary 9.9 Let r = b� a.

1. We have

�

ab

n

(q) = r

�n

X

(q � �(1)� � � � � �(n))

n�1

;

where the sum is over all funtions � : f1; : : : ; ng ! fa; : : : ; b� 1g.

2. We have

�

ab

n

(q) = r

�n

X

s; l�0

(�1)

l

(q � s� an)

n�1

�

n

l

��

s+ n� rl � 1

n� 1

�

:

3. We have

�

ab

n

(q) = r

�n

X

�

n

n

1

; : : : ; n

r

�

(q � an

1

� � � � � (b� 1)n

r

)

n�1

;

where the sum is over all nonnegative integers n

1

; n

2

; : : : ; n

r

suh that n

1

+ n

2

+ � � �+ n

r

= n.

Examples 9.10 1. (a = 1 and b = 2) The Shi arrangement S

n�1

given by (3.6) is the ar-

rangement A

12

n�1

. By Corollary 9.9.1, we get the following formula of Headley [14, Thm. 2.4℄

(generalizing the formula r(S

n�1

) = (n+ 1)

n�1

due to Shi [25, Cor. 7.3.10℄[26℄):

�

12

n

(q) = (q � n)

n�1

: (9.9)
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2. (a � 1 and b = a+1) More generally, for the extended Shi arrangement S

n�1; k

given by (3.7),

we have (f. Corollary 9.3)

�

a; a+1

n

(q) = (q � an)

n�1

:

3. (a = 0 and b = 2) In this ase we get the Linial arrangement L

n�1

= A

02

n�1

(see Setion 8). By

Corollary 9.9.3, we have (f. Theorem 8.2)

�

02

n

(q) = 2

�n

n

X

k=0

�

n

k

�

(q � k)

n�1

; (9.10)

4. (a � 0 and b = a+ 2) More generally, for the arrangement A

a; a+2

n�1

, we have

�

a; a+2

n

(q) = 2

�n

n

X

k=0

�

n

k

�

(q � an� k)

n�1

: (9.11)

We will all this arrangement the extended Linial arrangement.

Formula (9.10) for the harateristi polynomial �

02

n

(q) was earlier obtained by C. Athanasiadis

[3, Theorem 5.2℄ (see also [4, x3℄). He used a di�erent approah based on a ombinatorial inter-

pretation of the value of �

n

(q) for suÆiently large primes q.

9.3 Roots of the harateristi polynomial

Theorem 9.7 has one surprising appliation onerning the loation of roots of the harateristi

polynomial �

ab

n

(q).

We start with the balaned ase (a = b). One an reformulate Theorem 9.8 in the following

way:

Corollary 9.11 Let a � 1. The roots of the polynomial �

aa

n

(q) are the numbers an � 1; an �

2; : : : ; an � n + 1 (eah with multipliity 1). In partiular, the roots are symmetri to eah other

with respet to the point (2a� 1)n=2.

Now assume that a 6= b, with a � 0 and b � 0 as before (unbalaned ase). The harateristi

polynomial �

ab

n

(q) satis�es the following \Riemann hypothesis":

Theorem 9.12 Let a+b � 2. All the roots of the harateristi polynomial �

ab

n

(q) of the trunated

aÆne arrangement A

ab

n�1

, a 6= b, have real part equal to (a + b � 1)n=2. They are symmetri to

eah other with respet to the point (a+ b� 1)n=2.

Thus in both ases the roots of the polynomial �

ab

n

(n) are symmetri to eah other with respet

to the point (a+ b� 1)n=2, but in the ase a = b all roots are real, whereas in the ase a 6= b the

roots are on the same vertial line in the omplex plane C . Note that in the ase a = b � 1 the

polynomial �

ab

n

(q) has only one root an = (a+ b� 1)n=2 of multipliity n� 1.

The following lemma is impliit in a paper of Auri [5℄ and also follows from a problem posed

by P�olya [18℄ and solved by Obreshko� [15℄ (repeated in [19, Problem V.196.1, pp. 70 and 251℄).

For the sake of ompleteness we give a simple proof.

Lemma 9.13 Let P (q) 2 C [q℄ have the property that every root has real part a. Let z be a omplex

number satisfying jzj = 1. Then every root of the polynomial R(q) = (S+z)P (q) = P (q�1)+zP (q)

has real part a+

1

2

.
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Proof We may assume that P (q) is moni. Let

P (q) =

Y

j

(q � a� b

j

i); b

j

2 R;

where i

2

= �1. If R(w) = 0, then jP (w)j = jP (w � 1)j. Suppose that w = a+

1

2

+  + di, where

; d 2 R. Thus

�

�

�

�

�

�

Y

j

�

1

2

+ + (d� b

j

)i

�

�

�

�

�

�

�

=

�

�

�

�

�

�

Y

j

�

�

1

2

+ + (d� b

j

)i

�

�

�

�

�

�

�

:

If  > 0 then

�

�

1

2

+ + (d� b

j

)i

�

�

>

�

�

�

1

2

+ + (d� b

j

)i

�

�

. If  < 0 then we have strit inequality in

the opposite diretion. Hene  = 0, so w has real part a+

1

2

. �

Proof of Theorem 9.12 All the roots of the polynomial q

n�1

have real part 0. The operator

T = (S

a

+ S

a+1

+ � � �+ S

b�1

)

n

an be written as

T = S

an

b�1�a

Y

j=1

(S � z

j

)

n

;

where eah z

j

is a omplex number of absolute value one (in fat, a root of unity). The proof now

follows from Theorem 9.7 and Lemma 9.13. �

Note. We have been onsidering the trunated aÆne arrangement A

ab

n�1

only in the ase a � 0

and b � 0. We don't have any interesting results otherwise. For instane, the arrangement A

�1;4

3

(with hyperplanes x

i

� x

j

= 2; 3 for 1 � i < j � 4) has harateristi polynomial q

4

� 12q

3

+

60q

2

� 116. The roots of this polynomial are given approximately by 0, 4:33, and 3:83� 3:48i, so

the Riemann hypothesis fails.

9.4 Other root systems.

The results of Subsetions 9.1{9.3 extend, partly onjeturally, to all the other root systems, as

well as to the nonredued root system BC

n

(the union of B

n

and C

n

, whih satis�es all the root

system axioms exept the axiom stating that if � and � are roots satisfying � = �, then  = �1).

Heneforth in this setion when we use the term \root system," we also inlude the ase BC

n

.

Given a root system R in R

n

and integers a � 0 and b � 0 satisfying a+ b � 2, we de�ne the

trunated R-aÆne arrangement A

ab

(R) to be the olletion of hyperplanes

h�; xi = �a+ 1;�a+ 2; : : : ; b� 1;

where � ranges over all positive roots of R (with respet to some �xed hoie of simple roots).

Here h ; i denotes the usual salar produt on R

n

, and x = (x

1

; : : : ; x

n

). As in the ase R = A

n�1

we refer to the balaned ase (a = b) and unbalaned ase (a 6= b).

The harateristi polynomial for the balaned ase was found by Edelman and Reiner [10,

proof of Prop. 3.1℄ for the root system A

n�1

(see Theorem 9.8), and onjetured (Conjeture 3.3)

by them for other root systems. This onjeture was proved by Athanasiadis [2, Cor. 7.2.3 and

Thm. 7.7.6℄[4, Prop. 5.3℄ for types A; B; C; BC, and D. For types A; B; C and D the result is

also stated in [3, Thm. 5.5℄. We will not say anything more about the balaned ase here.

For the unbalaned ase, we have onsiderable evidene (disussed below) to support the fol-

lowing onjeture.
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Conjeture 9.14 Let R be an irreduible root system in R

n

. Suppose that the unbalaned trun-

ated aÆne arrangement A = A

ab

(R) has h(A) hyperplanes. Then all the roots of the harateristi

polynomial �

A

(q) have real part equal to h(A)=n.

Note. (a) If all the roots of �

A

(q) have the same real part, then this real part must equal

h(A)=n, sine for any arrangement A in R

n

the sum of the roots of �

A

(q) is equal to h(A).

(b) Conjeture 9.14 implies the \funtional equation"

�

A

(q) = (�1)

n

�

A

(�q + 2h(A)=n): (9.12)

Thus �

A

(q) is determined by around half of its oeÆients (or values).

() Let a+ b � 2 and R = A

n

; B

n

; C

n

, BC

n

, or D

n

. Athanasiadis [4, xx3{5℄ has shown that

�

ab

R

(q) = �

0;b�a

R

(q � ak); (9.13)

where k denotes the Coxeter number of R (suitably de�ned for R = BC

n

). These results and

onjetures redue Conjeture 9.14 to the ase a = 0 when R is a lassial root system. A similar

redution is likely to hold for the exeptional root systems.

(d) Conjeture 9.14 is true for all the lassial root systems (A

n

; B

n

; C

n

; BC

n

; D

n

). This

follows from expliit formulas found for �

ab

R

(q) by Athanasiadis [4℄ together with Lemma 9.13. The

result of Athanasiadis is the following.

Theorem 9.15 Up to a onstant fator, we have the following harateristi polynomials of the

indiated arrangements. (If the formula has the form F (S)q

n

or F (S)(q � 1)

n

, then the fator is

1=F (1).)

A

0;2k+2

(B

n

) : (1 + S

2

+ � � �+ S

2k

)

2

(1 + S

2

+ � � �+ S

4k+2

)

n�1

(q � 1)

n

A

0;2k+2

(C

n

) : same as for A

0;2k+2

(B

n

)

A

0;2k+1

(B

n

) : (1 + S + � � �+ S

2k

)

2

(1 + S

2

+ � � �+ S

4k

)

n�1

q

n

A

0;2k+1

(C

n

) : same as for A

0;2k+1

(B

n

)

A

0;2k+2

(D

n

) : (1 + S

2

)(1 + S

2

+ � � �+ S

2k

)

4

(1 + S

2

+ � � �+ S

4k+2

)

n�3

(q � 1)

n

A

0;2k+1

(D

n

) : (1 + S + � � �+ S

2k

)

4

(1 + S

2

+ � � �+ S

4k

)

n�3

q

n

A

0;2k+2

(BC

n

) : (1 + S

2

+ � � �+ S

2k

)(1 + S

2

+ � � �+ S

4k+2

)

n

(q � 1)

n

A

0;2k+1

(BC

n

) : (1 + S + � � �+ S

2k

)(1 + S

2

+ � � �+ S

4k

)

n

q

n

:

We also heked Conjeture 9.14 for the arrangements A

02

(F

4

) and A

02

(E

6

) (as well as the

almost trivial ase A

ab

(G

2

); a 6= b). The harateristi polynomials are

A

02

(F

4

) : q

4

� 24q

3

+ 258q

2

� 1368q + 2917

A

02

(E

6

) : q

6

� 36q

5

+ 630q

4

� 6480q

3

+ 40185q

2

� 140076q+ 212002:

The formula for �

02

F

4

(q) has the remarkable alternative form:

A

02

(F

4

) :

1

8

((q � 1)

4

+ 3(q � 5)

4

+ 3(q � 7)

4

+ (q � 11)

4

)� 48:

Note that the numbers 1; 5; 7; 11 are the exponents of the root system F

4

. For E

6

the analogous

formula is given by

A

02

(E

6

) :

1

1008

P (q)� 210;
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where

P (q) = 61(q � 1)

6

+ 352(q � 4)

6

+ 91(q � 5)

6

+ 91(q � 7)

6

+ 352(q � 8)

6

+ 61(q � 11)

6

;

whih is not as intriguing as the F

4

ase. It is not hard to see that the symmetry of the oeÆient

sequenes (1; 3; 3; 1) and (61; 352; 91; 91; 352; 61) is a onsequene of equation (9.12) and the fat

that if e

1

< e

2

< � � � < e

n

are the exponents of an irreduible root system R, then e

i

+ e

n+1�i

is

independent of i.

10 Charateristi Polynomials and Weighted Trees

In this setion we present an interpretation of the harateristi polynomial �

ab

n

(q) of a trunated

aÆne arrangement as a weight enumerator of trees.

10.1 Weighted trees

The di�erentiation operator D : f(q) 7! df=dq is related to the shift operator S : f(q) 7! f(q � 1)

via Taylor's formula exp(�D) = S. By Theorem 9.7 we an express the harateristi polynomial

�

ab

n

(q), for 0 � a < b, as

(�1)

n�1

(b� a)

n

�

ab

n

(�q) = (e

aD

+ e

(a+1)D

+ � � �+ e

(b�1)D

)

n

� q

n�1

:

We an generalize this expression as follows.

Let s(t) be a formal exponential power series

s(t) = s

0

+ s

1

t+ s

2

t

2

=2! + � � �+ s

k

t

k

=k! + � � � ;

where the s

i

are arbitrary numbers and s

0

is nonzero.

We de�ne the polynomials f

n

(q), n > 0, by the formula

f

n

(q) = (s(D))

n

q

n�1

; (10.1)

where D = d=dq. The polynomials f

n

(q) are orretly de�ned even if the series s(t) does not

onverge, sine the expression for f

n

(q) involves only a �nite sum of nonzero terms.

Let T

n

be the set of all trees on the verties 0; 1; 2; : : : ; n. We will regard the vertex 0 as the

root of a tree and orient the edges away from the root. By d

i

= d

i

(T ) we denote the outdegree of

the vertex i in a tree T 2 T

n

. For i 6= 0, d

i

is the degree of the vertex i minus 1. De�ne the weight

w

q

(T ) of a tree T by

w

q

(T ) = q

d

0

�1

s

d

1

s

d

2

� � � s

d

n

:

Let us also de�ne the weighting ew on trees T 2 T

n

by ew(T ) = s

d

0

s

d

1

� � � s

d

n

. And let g

n

=

P

T2T

n

ew(T ) be the weighted sum of all trees in T

n

.

Theorem 10.1 1. The polynomial f

n

(q) is the w

q

-weight enumerator for trees on n+1 verties,

i.e.,

f

n

(q) =

X

T2T

n

w

q

(T ):

In partiular, g

n

= f

n+1

(0)=(n+ 1).

2. The oeÆient of q

k

in f

n

(q) is equal to

X

s

k

1

� � � s

k

n

�

n� 1

k; k

1

; : : : ; k

n

�

;
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where the sum is over all k

1

; : : : ; k

n

� 0 suh that k + k

1

+ � � �+ k

n

= n� 1.

3. Let f(x; q) and g(x) be the exponential generating funtions:

f(x; q) = 1 + q

X

n�1

f

n

(q)

x

n

n!

and g(x) =

X

n�0

g

n

x

n+1

n!

:

Then f(x; q) = exp(q g(x)) and the series g = g(x) satis�es the funtional equation

g = x s(g): (10.2)

Proof By (10.1), we have

f

n

(q) = s(D)

n

q

n�1

= s(D)

n�1

X

k

1

�0

s

k

1

D

k

1

k

1

!

q

n�1

=

= s(D)

n�1

X

k

1

�0

s

k

1

�

n� 1

k

1

�

q

n�1�k

1

= � � � =

=

X

k

1

;:::;k

n

�0

s

k

1

� � � s

k

n

�

n� 1

k; k

1

; k

2

; : : : ; k

n

�

q

k

;

where k = n� 1� k

1

� � � �� k

n

. This proves 2. Using Pr�ufer's oding of trees [22℄[28, Thm. 5.3.4℄,

we obtain the statement 1. A standard exponential formula argument yields the statement 3. �

Now we give several examples for Theorem 10.1.

Example 10.2 (f. Example 9.10.1) For the Shi arrangement (a = 1 and b = 2), we have s(t) = e

t

and w

q

(T ) = q

d

0

�1

. Theorem 10.1 laims that (�1)

n�1

�

12

n

(�q) = (q + n)

n�1

is the q-enumerator

for all trees in T

n

aording to the degree of the root. Of ourse, this is a well-known statement.

Example 10.3 (f. Example 9.10.3) For the Linial arrangement (a = 0 and b = 2) we have

s(t) = 1 + e

t

, i.e., s

0

= 2 and s

i

= 1 for i � 1. Thus w

q

(T ) = 2

ep(T )

q

d

0

�1

, where ep(T ) is the

number of endpoints i, i 6= 0, of T . In this ase we obtain the following statement.

Corollary 10.4 For the Linial arrangement L

n�1

, we have

(�1)

n�1

�

02

n

(�q) =

X

T2T

n

2

ep(T )�n

q

d

0

�1

:

In partiular, the number of regions of the Linial arrangement L

n�1

is equal to

P

T2T

n

2

ep(T )�n

.

10.2 Odd degree trees

Let us introdue the following shift of the harateristi polynomial of the Linial arrangement:

b

n

(q) = 2

n�1

�

02

n

((q + n)=2) : (10.3)

The Riemann hypothesis (Theorem 9.12) implies that all roots of b

n

(q) are purely imaginary. By

Theorem 9.7, we have

b

n

(q) =

�

S + S

�1

2

�

n

q

n�1

= 2

�n

n

X

k=0

�

n

k

�

(q + n� 2k)

n�1

: (10.4)
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The �rst ten polynomials b

n

(q) are given below:

b

1

(q) = 1

b

2

(q) = q

b

3

(q) = q

2

+ 3

b

4

(q) = q

3

+ 12q

b

5

(q) = q

4

+ 30q

2

+ 65

b

6

(q) = q

5

+ 60q

3

+ 480q

b

7

(q) = q

6

+ 105q

4

+ 1995q

2

+ 3787

b

8

(q) = q

7

+ 168q

5

+ 6160q

3

+ 41216q

b

9

(q) = q

8

+ 252q

6

+ 15750q

4

+ 242172q

2

+ 427905

b

10

(q) = q

9

+ 360q

7

+ 35280q

5

+ 1021440q

3

+ 6174720q

We an express b

n

(q) via the di�erentiation operator D = d=dq as

b

n

(q) = osh(D)

n

q

n�1

: (10.5)

Thus the sequene of polynomials b

n

(q) is a speial ase of (10.1) for s(t) = osh(t). Equivalently,

s

i

= 1 for even i's and s

i

= 0 for odd i's.

We say that a tree T on the verties 0; 1; : : : ; n is an odd degree tree if the degrees of the verties

1; : : : ; n in T are odd. Let d

0

(T ) denote the degree of the root 0 in a tree T . Note that, for an odd

degree tree, d

0

(T ) has the same parity as n.

Theorem 10.1 implies the following statement.

Corollary 10.5 1. For n � 1, we have

b

n

(q) =

X

T

q

d

0

(T )�1

;

where the sum is over all odd degree trees on the verties 0; 1; : : : ; n.

2. The oeÆient of q

k

in b

n

(q) is equal to the sum of multinomial oeÆients

�

n�1

k;k

1

;:::;k

n

�

over all

nonnegative even k

1

; : : : ; k

n

suh that k + k

1

+ � � �+ k

n

= n� 1.

Let odd

n

be the number of all odd degree trees on the verties 0; 1; : : : ; n. By Corollary 10.5,

odd

n

= b

n

(1). We have,

n : 0 1 2 3 4 5 6 7 8 9 10

odd

n

: 1 1 1 4 13 96 541 5888 47545 686080 7231801

If n is odd then the degrees of all verties (inluding the root) of an odd degree tree are odd.

The �rst ten numbers odd

1

; odd

3

; odd

5

; : : : appear in [23℄ without further referenes.

Note that odd

2m

= b

2m+1

(0)=(2m + 1) and odd

2m�1

= b

0

2m

(0)=(2m � 1) for m � 1. Indeed,

by Corollary 10.5, b

2m+1

(0) is the number of odd degree trees on the verties 0; 1; : : : ; 2m+1 suh

that the degree of the root 0 is one. Removing the only edge inident to 0, we obtain an odd degree

tree on the verties 1; : : : ; 2m+ 1 with the root at any of its 2m+ 1 verties. The number of suh

trees is (2m+ 1) odd

2m

.

Also b

0

2m

(0) is the number of of odd degree trees on the verties 0; 1; : : : ; 2m suh that the

degree of the root 0 is two. Let e be the edge of suh tree that onnets the root 0 with the
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omponent whih does not ontain the vertex 1. Contrating the edge e we obtain an odd degree

tree on the verties 1; : : : ; 2m with the root at any vertex exept 1. The number of suh trees is

(2m� 1) odd

2m�1

.

Theorem 10.1.3 gives a funtional equation for the generating funtions.

Corollary 10.6 Let f(x; q) and g(x) be the exponential generating funtions:

f(x; q) = 1 + q

X

n�1

b

n

(q)

x

n

n!

and g(x) =

X

m�0

odd

2m

x

2m+1

(2m)!

:

Then f(x; q) = exp(q g(x)) and g = g(x) satis�es the funtional equation

g = x osh(g):

11 Asymptotis

11.1 Asymptotis of the harateristi polynomial

In this setion we �nd the asymptotis of the harateristi polynomial �

a; a+2

n

(q) of the extended

Linial arrangement. By (9.11), we have

(�1)

n�1

�

a; a+2

n

(q) = 2

�n

n

X

k=0

�

n

k

�

(an+ k � q)

n�1

: (11.1)

We will use this formula to de�ne the polynomial �

a; a+2

n

(q) for an arbitrary real a.

Reall that two sequenes a

n

and b

n

are said to be asymptotially equal (in symbols, a

n

� b

n

)

if lim

n!1

a

n

=b

n

= 1.

Theorem 11.1 For any a 2 R, a � 0, and q 2 C , the value of the polynomial (�1)

n�1

�

a; a+2

n

(q)

is asymptotially equal to

(�1)

n�1

�

a; a+2

n

(q) � A � B

q+a+�

� C

n

� (n+ 1)

n�1

; (11.2)

where � is the unique solution to the equation

�=(1� �) = e

1=(�+a)

; 0 < � < 1 : (11.3)

and

A = (� + 2a� + a

2

)

�1=2

; B = �

�1

(1� �) ; C = 2

�1

�

��

(1� �)

��1

(� + a) :

Moreover, the asymptotial equality remains valid for the mth derivatives of both sides with respet

to q.

Corollary 11.2 For any a 2 R, a � 0, and q 2 C , we have

lim

n!1

�

a; a+2

n

(q)

�

a; a+2

n

(0)

=

�

1� �

�

�

q

;

where � is given by (11.3). Moreover, for any q

0

2 C the Taylor expansion of �

a; a+2

n

(q)=�

a; a+2

n

(0)

at q = q

0

onverges termwise to the Taylor expansion of the right-hand side at q = q

0

.
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Example 11.3 For the harateristi polynomial of the Linial arrangement (ase a = 0) we have

� � 0:7821882;

A = �

�1=2

� 1:1306920;

B = �

�1

(1� �) � 0:2784645;

C = 2

�1

�

��+1

(1� �)

��1

� 0:6605498;

D = A �B

��1

� 1:4937570:

The number f

n

of regions of the Linial arrangement L

n�1

is asymptotially equal to

f

n

= (�1)

n�1

�

02

n

(�1) � D � C

n

(n+ 1)

n�1

:

Reall that f

n

is the number of alternating trees on n+ 1 verties (see Setion 8.1). The total

number of trees on n+ 1 labelled verties is (n+ 1)

n�1

.

Corollary 11.4 The probability that a uniformly hosen tree on n+1 labelled verties is an alter-

nating tree is asymptotially equal to

D � C

n

� 1:4937570 � 0:6605498

n

:

Compare the result that the probability that a uniformly hosen permutation w

1

; w

2

; : : : ; w

n

of 1; 2; : : : ; n is alternating (i.e., a

1

> a

2

< a

3

> a

4

< � � �) is asymptotially equal to

�

2

�

�

n+1

� 0:6366198

n+1

:

By Theorem 2.1, the number of bounded regions of the arrangement A

a ;a+2

n�1

is equal to

(�1)

n�1

�

a ;a+2

n

(1). By (11.2) this number is asymptotially equal to B

2

� (�1)

n�1

�

a ;a+2

n

(�1).

Corollary 11.5 The probability that a uniformly hosen region in the extended Linial arrangement

A

a a+2

n�1

is bounded tends to B

2

as n!1. For the Linial arrangement, B

2

� 0:0775425. Thus, for

large n, approximately 7:75425% of the regions of the Linial arrangement L

n�1

are bounded.

Note that by (9.9) the portion of the bounded regions in the Shi arrangement S

n�1

is equal to

(n�1)

n�1

(n+1)

n�1

and tends to e

�2

� 0:1353353.

In the proof of Theorem 11.1 we use methods desribed in [9℄. The general outline of the proof

is the following: (a) use the Stirling formula for the �-funtion to approximate the summands

in (11.1); (b) approximate the summation by integration; () use the Laplae method to approxi-

mate the integral. The Laplae method amounts to the following statement; see [9, Set. 4.2℄.

Proposition 11.6 Suppose that g(x) and h(x) are real smooth funtions on the interval [a; b℄.

Suppose that �, a < � < b, is the absolute maximum of h(x). We also require that h(x) < h(�) for

x 6= �. Moreover, there exist positive numbers b and  suh that h(x) � h(�) � b for jx � �j � .

Also suppose that h

00

(�) exists and h

00

(�) < 0 and that b(�) 6= 0. Then

Z

b

a

g(x) e

n h(x)

dx � (2�)

1=2

g(�) (�nh

00

(�))

�1=2

e

nh(�)

(as n!1):

Now we give more details.

Proof of Theorem 11.1 Let us express the kth summand a

n

(k) in (11.1) via the �-funtion as

a

n

(k) =

�(n+ 1) (k + an� q)

n�1

2

n

�(k + 1)�(n� k + 1)
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and view it as a ontinuous funtion of k on the interval [0; n℄. Elementary alulations show that

ja

n

(k)j has a unique absolute maximum k = m

n

on the interval [0; n℄. And, for suÆiently large n,

we have 1=2 < m

n

=n < (1 + e

�2=(1+2a)

)

�1

. Atually, m

n

=n approahes � as given by (11.3).

Let us �x " suh that 0 < " < 1�

�

1 + e

�2=(1+2a)

�

�1

. Then we an write

n

X

k=0

a

n

(k) = (1 + r

n

(")) �

b(1�")n

X

k=d"ne

a

n

(k) ; (11.4)

where jr

n

(")j � 2" for suÆiently large n. The Stirling formula laims that

�(z) = z

z�1=2

e

�z

(2�)

1=2

(1 +O(1=z)):

Therefore, the a

n

(k) an be written as

a

n

(k) =

�(n+ 1) (k + an� q)

n�1

2

n

�(k + 1)�(n� k + 1)

=

e (n+ 1)

n+1=2

2

n

(2�)

1=2

�

(an+ k � q)

n�1

(k + 1)

k+1=2

(n� k + 1)

n�k+1=2

(1 +O

nk

) ;

where O

nk

is an abbreviation for O((k + 1)

�1

+ (n � k + 1)

�1

). For "n � k � (1� ")n, we have

O

nk

= O(1=n). Let x =

k+1=2

n+1

. Making transformations, we an write, for " � x � 1� ",

(an+ k � q)

n�1

(k + 1)

k+1=2

(n� k + 1)

n�k+1=2

=

(x+ a)

n�1

(x

x

(1� x)

1�x

)

n+1

�

�

1

(n+ 1)

2

�

(1�

q+a+1=2

x+a

1

n+1

)

n�1

(1 +

1=2

k+1=2

)

k+1=2

(1 +

1=2

n�k+1=2

)

n�k+1=2

=

=

(x+ a)

n�1

(x

x

(1� x)

1�x

)

n+1

�

1

(n+ 1)

2

�

e

�(q+a+1=2)=(x+a)

e

1=2

e

1=2

(1 +O(1=n)):

Let us introdue two funtions

g(x) = e

�(q+a+1=2)=(x+a)

(x+ a)

�1

x

�x

(1� x)

x�1

;

h(x) = log(x+ a)� x log(x) � (1� x) log(1� x)

on the interval ["; 1� "℄. The funtion h(x) has a unique maximum � 2 ℄"; 1� "[ given by h

0

(�) =

1=(�+a)� log(�)+ log(1��) = 0. This equation is equivalent to (11:3). We have g(�) 6= 0. Thus

the funtions g(x) and h(x) satisfy the onditions of Proposition 11.6.

Then, for k 2 ["n; (1� ")n℄, the funtion a

n

(k) an be written as

a

n

(k) = A

n

(x) =

(n+ 1)

n�3=2

2

n

(2�)

1=2

� g(x) e

n h(x)

(1 +O(1=n)) : (11.5)

Sine the funtion ja

n

(k)j has a unique maximum, we have

�

�

�

�

�

�

b(1�")n

X

k=d"ne

a

n

(k)�

Z

(1�")n

"n

a

n

(k) dk

�

�

�

�

�

�

� max

k2[0;n℄

ja

n

(k)j : (11.6)
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We have

Z

(1�")n

"n

a

n

(k) dk � (n+ 1)

Z

1�"

"

A

n

(x) dx �

(n+ 1)

n�1=2

2

n

(2�)

1=2

�

Z

1�"

"

g(x) e

n h(x)

dx :

By Proposition 11.6, this expression is asymptotially equal to

(n+ 1)

n�1=2

2

n

(2�)

1=2

� (2�)

1=2

g(�) (�nh

00

(�))

�1=2

e

nh(�)

: (11.7)

This expression shows that

max

k2[0;n℄

ja

n

(k)j � A

n

(�) � Constant � n

�1=2

Z

(1�")n

"n

a

n

(k) dk : (11.8)

Using (11.6) and simplifying (11.7), we obtain

b(1�")n

X

k=d"ne

a

n

(k) �

Z

(1�")n

"n

a

n

(k) dk �

(n+ 1)

n�1

2

n

g(�) (�h

00

(�))

�1=2

e

nh(�)

: (11.9)

Sine " an be arbitrary small, from (11.4) we onlude that

P

n

k=0

a

n

(k) is asymptotially equal

to the right-hand side of (11.9). Finally, the expliit alulation of g(�), h(�), and h

00

(�), left as

an exerise for the reader, produes the formula (11.2).

To prove the statement about derivatives of the harateristi polynomial, we remark that

the mth derivative of a

n

(k) with respet to q is obtained by multiplying the expression (11.5) by

(�1=(x + a))

m

. Exatly the same argument as above shows that the asymptoti behavior of the

sum of the mth derivatives of a

n

(k) is given by the expression (11.9) times (�1=(� + a))

m

, whih

is equal to the mth derivative of the right-hand side of (11.9). �

11.2 Asymptotis of odd degree trees

In this setion we �nd the asymptotis of the shifted harateristi polynomial b

n

(q) = 2

n�1

�

02

n

(

q+n

2

)

introdued in Setion 10.2. Reall that b

n

(q) is given by the sum (10.4), and it is also the enumer-

ator for the odd degree trees aording to the degree of the root. The behavior of the polynomials

b

n

(q) depends on the parity of n. For example, b

n

(q) is an even funtion for odd n and is an odd

funtion for even n.

Theorem 11.7 Let � � 1:1996786 be the unique positive solution of the equation

osh(�) = � sinh(�) or, equivalently, (�� 1) e

2�

= (� + 1) : (11.10)

And let C = sinh(�)=e � 0:5550857. Then we have two asymptoti equalities

b

n

(q) � 2 e

�1

� osh(�q) � C

n

� (n+ 1)

n�1

; n is odd, n!1 ;

b

n

(q) � 2 e

�1

� sinh(�q) � C

n

� (n+ 1)

n�1

; n is even, n!1 ;

(11.11)

for any q 2 C suh that the right-hand side is non-zero. Moreover, the asymptoti equalities remain

valid for the mth derivatives of both sides with respet to q provided that the mth derivative of the

right-hand side is non-zero.
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Note that we an simplify the right-hand sides in (11.11) and replae them by asymptotially

equal expressions 2 osh(�q)C

n

n

n�1

and 2 sinh(�q)C

n

n

n�1

, respetively. Numerial alulation,

however, shows that these expressions are worse approximations for b

n

(q) than (11.11).

Corollary 11.8 For any q 2 C , we have

lim

n is odd, n!1

b

n

(q)=b

n

(0) = osh(� q) ;

lim

n is even, n!1

b

n

(q)=b

0

n

(0) = �

�1

sinh(� q) ;

where � is given by (11.10). Moreover, for any q

0

2 C the Taylor expansions at q = q

0

of the terms

in the left-hand side onverge termwise to the Taylor expansion of the right-hand side at q = q

0

.

Reall that the roots of the polynomials b

n

(q) are loated on the purely imaginary axis in C .

Theorem 11.7 gives an approximation for the roots of b

n

(q).

Corollary 11.9 Let us �x a positive number R. Then the roots of the polynomials b

n

(q) loated

in the interval I =℄� i R; iR[

(a) approah the points f�� (1=2 +m) i j m 2 Zg\ I as n!1 (n is odd),

(b) approah the points f��m i j m 2 Zg\ I as n!1 (n is even),

where � is given by (11.10) and i =

p

�1.

Remark 11.10 Clearly, we also obtain an approximation for the roots of the harateristi poly-

nomials �

02

n

(q) of Linial arrangements by the numbers 2

�1

(n+ �� (1=2 +m) i) for odd n, and by

the numbers 2

�1

(n+ � �m i) for even n, where m 2 Z.

Proof of Theorem 11.7 We will follow proof of Theorem 11.1. If n is odd then by (10.4) we

an write b

n

(q) as

b

n

(q) =

(n�1)=2

X

k=0

2

�n

�

n

k

�

((n� 2k + q)

n�1

+ (n� 2k � q)

n�1

) :

Let us express the kth summand a

n

(k) in the above sum via the �-funtion as

a

n

(k) =

�(n+ 1) ((n� 2k + q)

n�1

+ (n� 2k � q)

n�1

)

2

n

�(k + 1)�(n� k + 1)

:

and view it as a ontinuous funtion of k on the interval [0; (n� 1)=2℄. Again, ja

n

(k)j has a unique

absolute maximum m

n

on [0; (n� 1)=2℄. Calulations shows that, for suÆiently large n, we have

0:08 < m

n

=n < 0:09.

Let us �x " suh that 0 < " < 0:08. Then

(n�1)=2

X

k=0

a

n

(k) = (1 + r

n

(")) �

b(1=2�")n

X

k=d"ne

a

n

(k) ; (11.12)
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where jr

n

(")j � 4" for suÆiently large n. We an approximate a

n

(k), for k 2 ["n; (1=2� ")n℄, via

the Stirling formula as

a

n

(k) =

=

e (n+ 1)

n�3=2

2

n

(2�)

1=2

�

(1� 2x)

n�1

(x

x

(1� x)

1�x

)

n+1

�

(1 +

q

1�2x

1

n+1

)

n�1

+ (1�

q

1�2x

1

n+1

)

n�1

(1 +

1=2

k+1=2

)

k+1=2

(1 +

1=2

n�k+1=2

)

n�k+1=2

(1 +O(n

�1

)) =

=

e (n+ 1)

n�3=2

2

n

(2�)

1=2

�

(1� 2x)

n�1

(x

x

(1� x)

1�x

)

n+1

�

e

q=(1�2x)

+ e

�q=(1�2x)

e

1=2

e

1=2

(1 +O(n

�1

)) ;

where, as before, x = (k + 1=2)=(n+ 1). Let us de�ne two funtions

g(x) =

�

e

q=(1�2x)

+ e

�q=(1�2x)

�

(1� 2x)

�1

x

�x

(1� x)

x�1

;

h(x) = log(1� 2x)� x log(x)� (1� x) log(1� x)

on the interval ["; 1=2� "℄. Then we an write a

n

(k) as

a

n

(k) = A

n

(x) =

(n+ 1)

n�3=2

2

n

(2�)

1=2

� g(x) e

n h(x)

(1 +O(1=n)) :

Let � � 0:0832217 be the unique maximum of h(x) on the interval ["; 1=2 � "℄ given by the

equation h

0

(�) = �2=(1� 2�) � log(�) + log(1� �) = 0. And let � = 1=(1� 2�). The equation

for � transforms into the de�ning equation (11.10) for �.

If g(�) 6= 0 or, equivalently, osh(� q) 6= 0, then the funtions g(x) and f(x) satisfy the

onditions of Proposition 11.6. Using exatly the same argument as in proof of Theorem 11.1, we

an write

b(1=2�")n

X

k=e"ne

a

n

(k) �

Z

(1=2�")n

"n

a

n

(k) dk = (n+ 1)

Z

1=2�"

"

A

n

(x) dx

�

(n+ 1)

n�1

2

n

g(�) (�h

00

(�))

�1=2

e

nh(�)

= 2e

�1

osh(� q)C

n

(n+ 1)

n�1

:

Sine " an be hosen arbitrary small, from (11.12) we onlude that b

n

(q) is asymptotially equal

to 2e

�1

osh(� q)C

n

(n+ 1)

n�1

.

For asymptotis of the mth derivative of the polynomials b

n

(q) we need to replae the fun-

tion g(x) = osh

�

q

1�2x

�

� hterms that do not depend on qi by its mth derivative with respet

to q. If the value of this derivative for x = � and ertain q 2 C is nonzero, then we an apply

Proposition 11.6 and obtain the required statement.

If n is even then by (10.4) we an write b

n

(q) as

b

n

(q) =

n=2�1

X

k=0

�

n

k

�

((n� 2k + q)

n�1

� (n� 2k � q)

n�1

) +

�

n

n=2

�

q

n�1

:

The proof in this ase goes exatly along the same lines. The additional term

�

n

n=2

�

q

n�1

is in-

�nitesimally small with respet to b

n

(q); f. (11.8). In this ase we obtain an analogous expression

for the asymptotis of b

n

(q) with g(x) =

�

e

q=(1�2x)

� e

�q=(1�2x)

�

(1 � 2x)

�1

x

�x

(1 � x)

x�1

and

exatly the same h(x). This means that in the resulting expression we just replae osh(� q) by

sinh(� q). The argument about q-derivatives is the same. �
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11.3 Distribution of degrees of random trees

In this setion we study a probability distribution on labelled trees inspired by Setion 10.1.

Reall that in Setion 10.1, for an arbitrary power series s(t) = s

0

+s

1

t+s

2

t

2

=2!+s

3

t

3

=3!+ � � �,

s

0

6= 0, we introdued the weighting ew(T ) = s

d

0

s

d

1

� � � s

d

n

on the set T

n

of trees on the verties

0; 1; : : : ; n, where d

0

; d

1

; : : : ; d

n

are the outdegrees of the verties of a tree T 2 T

n

. We also de�ned

the numbers g

n

=

P

T2T

n

ew(T ).

Let us assume that the s

i

are nonnegative. Let I be the set of indies n for whih g

n

> 0.

For n 2 I , onsider the probability distribution on the set T

n

given by P

T

= ew(T )=g

n

for T 2 T

n

.

Let P

n

(k) be the probability that a uniformly hosen random vertex of a random tree in T

n

has

outdegree k, i.e.,

P

n

(k) =

X

T2T

n

ew(T )

g

n

m

k

(T )

n+ 1

;

where m

k

(T ) is the number of verties in T with outdegree k.

Theorem 11.11 Assume that the series s(t) onverges to a holomorphi nonlinear funtion on C .

Let us �x k � 0 and assume that there exists the limit P (k) = lim

n!1

P

n

(k) over n 2 I. Then

P (k) =

s

k

�

k

s(�) k!

;

where � is the unique positive solution of the equation

s(�) = � s

0

(�) : (11.13)

We an interpret P (k) as the probability that a \random vertex" of an \in�nite random tree"

has outdegree k.

Remark 11.12 It is interesting to �nd onditions on the funtion s(t) that would guarantee that

the sequene P

n

(k), n 2 I , onverges to a limit.

Example 11.13 Suppose that s

0

= s

1

= s

2

= � � � = 1. In this ase we have the uniform

distribution on trees in T

n

. We have s(t) = e

t

and � = 1. Theorem 11.11 predits the Poisson

distribution for outdegrees of an in�nite random tree:

P (k) = e

�1

=k! :

In this ase it is not hard to alulate P

n

(k) expliitly. For example, P

n

(0) =

nn

n�2

(n+1)

n�1

tends to

1=e as n!1.

Example 11.14 Suppose that s

0

= s

2

= 1 and s

i

= 0 for i = 1; 3; 4; 5; : : :. In this ase we have

the uniform distribution on trees suh that eah vertex has outdegree 0 (endpoint) or 2. We have

s(t) = 1 + t

2

=2 and � =

p

2. Theorem 11.11 predits the following distribution of outdegrees:

P (0) = P (2) = 1=2 :

Atually, any tree in T

2m

with outdegrees 0 or 2 has m+ 1 endpoints. Thus the probability that

a random vertex is an endpoint tends to 1=2 as m!1.

Example 11.15 Assume that s

2m

= 1 and s

2m+1

= 0, m � 0. Then s(t) = osh(t). In this ase I

is the set of nonnegative even numbers. We have the uniform distribution on the trees in T

n

with

even outdegrees. These are exatly odd degree trees if n is even. Thus g

n

= odd

n

for even n and
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g

n

= 0 for odd n. Theorem 11.11 predits the following distribution of outdegrees of an in�nite

random odd degree tree:

P (2m) =

�

2m

osh(�) (2m)!

;

where � � 1:1996786 is the unique positive solution of the equation

sinh(�)� = osh(�) :

Note that we have exatly the same � as in Theorem 11.7.

Theorem 11.11 does not guarantee that the limit P (2m) exists. We an prove that the sequene

P

n

(2m), n = 0; 2; 4; : : : onverges to a limit using the results of Setion 11.2. For example, the

argument with removing an edge inident to an endpoint shows that, for even n,

P

n

(0) �

(n+ 1) odd

n

odd

n+1

=

(n+ 1) b

n

(1)

b

n+1

(1)

:

By Theorem 11.7, we have, for even n,

(n+ 1) b

n

(1)

b

n+1

(1)

�

sinh(�)

osh(�)C

�

(n+ 1)

n

(n+ 2)

n

�

sinh(�)

osh(�)C e

=

1

osh(�)

:

Thus the sequene P

n

(0) onverges to 1= osh(�) � 0:5524341. In other words, for large n, around

55:24341% of the verties of a uniformly hosen random odd degree tree are endpoints.

In order to prove Theorem 11.11, we need the following trivial statement.

Lemma 11.16 Let I be an in�nite subset of nonnegative integers. Also let a(x) =

P

n2I

a

n

x

n

and b(x) =

P

n2I

b

n

x

n

be two power series and x



> 0 suh that

(a) Both series a(x) and b(x) onverge for 0 < x < x



and diverge at x = x



.

(b) We have a

n

; b

n

> 0, n 2 I, and there exists the limit � = lim

n!1; n2I

a

n

=b

n

.

Then there exists the limit lim

x!x



�0

a(x)=b(x) and it is equal to �.

Proof of Theorem 11.11 Note that I = fn � 0 j g

n

> 0g is an in�nite set unless s

i

= 0 for all

i � 1. Let

a(x) =

X

n2I

(n+ 1)P

n

(k) g

n

x

n

=n! ;

b(x) =

X

n2I

(n+ 1) g

n

x

n

=n! :

Then P

n

(k) is the ratio of the oeÆients of x

n

in a(x) and b(x). By our assumption P

n

(k)

onverges to the limit P (k). Thus the series a(x) and b(x) satisfy ondition (b) of Lemma 11.16.

We have b(x) = g

0

(x). Reall that g = g(x) satis�es g = x s(g), see (10.2). Thus

b(x) = s(g) + xs

0

(g)d(x) ;

b(x) =

s(g)

1� xs

0

(g)

: (11.14)
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Let g

(k)

(x; y) be the following exponential generating funtion

g

(k)

(x; y) =

X

n�0

X

T2T

n

ew(T )y

m

k

(T )

x

n+1

=n!:

Clearly,

a(x) = x

�1

�g

(k)

�y

�

�

�

�

y=1

(x):

The funtion g

(k)

= g

(k)

(x; y) satis�es the equation:

g

(k)

= x (s(g

(k)

) + (y � 1)s

k

g

k

(k)

=k!):

Then

a(x) = x s

0

(g) a(x) + s

k

g

k

=k! ;

a(x) =

s

k

g

k

k! (1� xs

0

(g))

: (11.15)

Let 0 < R � 1 be the radius of onvergene of g(x). All oeÆients of the expansion of s

0

(g(x))

are nonnegative and at least one of them nonzero. Thus r(x) = 1 � x s

0

(g(x)) is dereasing for

positive x, r(0) = 1, and r(x) < 0 for suÆiently large x. This implies that there exists a unique

x



2℄0; R[ suh that

1� x



s

0

(g(x



)) = 0: (11.16)

Then (11.14) and (11.15) imply that a(x) and b(x) onverge for 0 < x < x



and diverge for x = x



.

This shows that the series a(x) and b(x) satisfy the ondition (a) of Lemma 11.16.

Now we show that the equation (11.13) orretly de�nes �. All oeÆients of the expansion

of p(t) = s(t) � ts

0

(t) are nonpositive exept the onstant term s

0

> 0. Then, as before, p(t) is

dereasing for positive t, p(0) > 0, and p(t) < 0 for suÆiently large t. Thus p(t) = 0 has a unique

positive solution t = �. Moreover, � = g(x



). Indeed, by (10.2), x = g=s(g). Thus (11.16) is

equivalent to (11.13).

Therefore, by Lemma 11.16, we have

P (k) = lim

x!x



�0

a(x)

b(x)

=

s

k

g(x



)

k

s(g(x



)) k!

=

s

k

�

k

s(�) k!

:

�
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