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Abstract. A beautiful recent conjecture of D. Armstrong predicts the average size of a

partition that is simultaneously an s- and a t-core, where s and t are coprime. Our goal in

this note is to prove this conjecture when t = s + 1. These cores, which are enumerated by

Catalan numbers, have average size
(

s+1

3

)

/2.

1. Introduction and some simple cases

Let λ = (λ1, λ2, . . . , λm) be a partition of size n, i.e., the λi are weakly decreasing postitive

integers summing to n. We can represent λ by means of its Young (or Ferrers) diagram,

which consists of a collection of left-justified rows where row i contains λi cells. To each of

these cells B one associates its hook length, that is, the number of cells in the Young diagram

of λ that are directly to the right or below B (including B itself). Figure 1 represents

the Young diagram of the partition λ = (5, 3, 3, 2) of size 13; the numbers inside each cell

represent the hook lengths.

Let s be a positive integer. We say that λ is an s-core if λ has no hook of length equal

to s (or equivalently, equal to a multiple of s). For instance, from Figure 1 we can see that

λ = (5, 3, 3, 2) is an s-core for s = 6 and for all s ≥ 9. Finally, λ is an (s, t)-core if it is

simultaneously an s- and a t-core.

The theory of (s, t)-cores has been the focus of much interesting research in recent years

(see [3, 4, 5] for some of the main results). In particular, when s and t are coprime, there

exists only a finite number of (s, t)-core partitions. In fact, there are exactly
(

s+t

s

)

/(s + t)

such cores (see [5]), the largest of which has size (s2−1)(t2−1)/24 [3]. More generally, a nice

result of J. Anderson [3] provides a bijective correspondence between (s, t)-cores and order

ideals of the poset, say P(s,t), of the positive integers that are not contained in the numerical

semigroup generated by s and t. (Our poset terminology follows [6, Chap. 3].) The partial

order on P(s,t) is determined by specifying that a covers b whenever a − b equals either s or

t.

For instance, let s = 3 and t = 5. Then P(3,5) = {1, 2, 4, 7}, where 7 > 4 > 1 and 7 > 2.

Thus the order ideals of P(3,5) are the following 1
3+5

(

3+5
3

)

= 7 subsets: ∅, {1}, {2}, {2, 1},

{4, 1}, {4, 2, 1}, and {7, 4, 2, 1}. Figure 2 represents the Hasse diagram of the poset P(3,5),
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Figure 1. The Young diagram of λ = (5, 3, 3, 2). The numbers inside each

box indicate the hook lengths.
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Figure 2. The Hasse diagram of the poset P(3,5).

rotated 45◦ counterclockwise from the usual convention. Notice that from this diagram it

is clear that if an element a of P(3,5) belongs to a given order ideal I, then all elements

immediately to the right or below a also belong to I.

Anderson’s result then gives that (s, t)-cores correspond bijectively to the order ideals of

P(s,t) by associating the ideal {a1, . . . , aj}, where a1 > · · · > aj , to the (s, t)-core partition

(a1 − (j − 1), a2 − (j − 2), . . . , aj−1 − 1, aj). For instance, the (3, 5)-cores are the following

seven partitions: ∅ (corresponding to the order ideal ∅ of P(3,5)), (1) (corresponding to {1}),

(2) (corresponding to {2}), (1, 1) (corresponding to {2, 1}), (3, 1) (corresponding to {4, 1}),

(2, 1, 1) (corresponding to {4, 2, 1}), and (4, 2, 1, 1) (corresponding to {7, 4, 2, 1}).

The following conjecture of D. Armstrong, informally stated sometime in year 2011 and

then recently published in [4], predicts, for any s and t coprime, a surprisingly simple formula

for the average size of an (s, t)-core.

Conjecture 1.1. For any coprime positive integers s and t, the average size of an (s, t)-core

is (s + t + 1)(s − 1)(t − 1)/24. Equivalently, the sum of the sizes of all (s, t)-cores is

(s + t + 1)(s − 1)(t − 1)

24(s + t)

(

s + t

s

)

.

For instance, the seven (3, 5)-cores computed above are of size 0, 1, 2, 2, 4, 4, and 8, which

have average 3, as predicted by Armstrong’s conjecture.

One of the interesting aspects of this conjecture, besides the partition-theoretic result

that it predicts, is the deep combinatorial information that it would imply on numerical

semigroups generated by two elements. In fact, even though one would generally expect
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these semigroups to be very well understood, Armstrong’s conjecture had until now resisted

all attempts to a significant progress.

The main goal of this paper is to show the conjecture in what is probably its most inter-

esting case, namely that of (s, s+1)-cores. The number of these cores is the Catalan number

Cs := 1
s+1

(

2s

s

)

, and the corresponding posets P(s,s+1) present a particularly nice structure,

which will allow us to use induction in the proof.

We now wrap up this first section by briefly discussing Armstrong’s conjecture in a few

initial cases. For any given s, in principle the conjecture can be verified computationally for

all (s, t)-cores, given how explicitly one can determine these cores by means of Anderson’s

bijection. In fact, the authors of [4] indicate that C. Hanusa has verified the conjecture for

small values of s, though they provide no details. Here, we will just present a short proof of

the case s = 3 (the case s = 2 being trivial), which also gives us the opportunity to state a

simple but useful fact on arbitrary (s, t)-cores that seems to have not yet been recorded in

the literature. We will provide this lemma without proof, since the argument is analogous

to the classical proof that if λ is an s-core, then it is also an ms-core, for all m ≥ 1 (see e.g.

the first author’s [7], Exercise 7.60 and its solution on pp. 518–519). In principle, the use

of this lemma would considerably simplify a “brute-force” proof for any given s, and indeed

the case s = 4 is still relatively quick to prove along the same lines; nonetheless, for higher

values of s the computations remain extremely unpleasant.

Lemma 1.2. If a partition λ is an (s, t)-core, then it is also an (s, s + t)-core.

Proposition 1.3. Armstrong’s conjecture holds for all (3, t)-cores.

Proof. We will show the result for t = 3n − 2, the case t = 3n − 1 being entirely similar.

Notice that by Lemma 1.2 all (3, 3n − 2)-cores are (3, 3n + 1)-cores. Thus by induction,

proving the result is now equivalent to showing that the sum of the sizes of the (3, 3n + 1)-

cores that are not also (3, 3n−2)-cores is the difference between the two total sums predicted

by Armstrong’s conjecture, namely

∆(n) =
(3n + 5) · 2 · 3n

24(3n + 4)

(

3n + 4

3

)

−
(3n + 2) · 2 · (3n − 3)

24(3n + 1)

(

3n + 1

3

)

=

(

3n + 2

3

)

.

Figure 3 represents the Hasse diagrams of P(3,10) and P(3,13). From these diagrams, it is

easy to see that the order ideals of P(3,13) that are not also in P(3,10) are exactly the six

principal ideals generated by 11, 14, 17, 20, 23, and 10, plus the seven ideals generated by

{2, 10}, {5, 10}, {8, 10}, {11, 10}, {14, 10}, {17, 10}, and {20, 10}.

In a similar fashion, it can be seen that the order ideals of P(3,3n+1) but not of P(3,3n−2)

are exactly the n + 2 principal ideals generated by 3n − 1, 3n + 2, ..., 6n − 1, and 3n − 2,

and the 2n − 1 ideals generated by {2, 3n − 2}, {5, 3n − 2}, ..., {6n − 4, 3n − 2}.
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Figure 3. The Hasse diagrams of P(3,10) (on the left) and P(3,13).

A standard computation now gives that ∆(n), i.e., the sum of the elements of the above

order ideals I minus
(

#I

2

)

, where #I denotes the cardinality of I, is given by

∆(n) = (2 + 5 + · · ·+ (3n − 1)) +

2n−1
∑

i=n

[(2 + 5 + · · ·+ (3i + 2)) + (1 + 4 + · · ·+ 3(i− n) + 1)]

+2n(1 + 4 + · · ·+ (3n − 2)) +

2n−2
∑

i=0

(2 + 5 + · · ·+ (3i + 2))

−

[

(

n

2

)

+

2n−1
∑

i=n

(

2i − n + 2

2

)

+

2n−1
∑

i=0

(

n + i

2

)

]

.

Showing now that the right-hand-side is equal to
(

3n+2
3

)

is a routine task that we omit.

This completes the proof. �

We only remark here that using Lemma 1.2, Armstrong’s conjecture can also be verified

relatively quickly for s = 4, i.e., for all (4, 2n + 1)-cores (though the computations are of

course already much more tedious than for s = 3). In fact, in this case one has to show that

the sum of the sizes of all (4, 2n + 1)-cores equals S(n) := (4n + 6)
(

n+3
4

)

. It is easy to check

(see also [1]) that, for all n ≥ 7, the sequence S(n) satisfies the following curious recursive

relation:

6
∑

i=0

(−1)i+1

(

6

i

)

S(n − i) = 0.
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Figure 4. The Hasse diagram of T5.

It would be very interesting to combinatorially explain this identity in the context of

(4, 2n + 1)-cores, and thus give an elegant proof of Armstrong’s conjecture for s = 4.

2. The Catalan case

The goal of this section is to show Armstrong’s conjecture for (s, s+1)-cores. We denote by

Ts := P(s,s+1) the corresponding poset according to Anderson’s bijection [3]. For simplicity,

we will draw the Hasse diagram of Ts from top to bottom; thus, each element of Ts covers

the two elements immediately below, and the elements increase by s at each step up and to

the left, and by s + 1 at each step up and to the right. (See Figure 4 for the Hasse diagram

of T5.)

Let us define the functions

gj :=
j(j − 1)

12

(

2j

j

)

fj :=
j2 + 5j + 2

8j + 4

(

2j + 2

j + 1

)

− 4j

hj := 22j−1 −

(

2j + 1

j

)

+

(

2j − 1

j − 1

)

,

where by convention we set h0 := 0. We need the following two identities. We thank Henry

Cohn for verifying them for us on Maple.

Lemma 2.1.

fs =

s
∑

i=1

Cs−i(2fi−1 + hi−1).

Proof. This is the Maple code that verifies the identity (it gives 0 as output):

g := j -> binomial(2*j,j)*j*(j-1)/12;

f := j -> binomial(2*j+2,j+1)*(ĵ 2+5*j+2)/(8*j+4)-4̂ j;

h := j -> 2̂ (2*j-1)-binomial(2*j+1,j)+binomial(2*j-1,j-1);

C := j -> binomial(2*j,j)/(j+1);

simplify(sum(C(s-i)*(2*f(i-1)+h(i-1)),i=2..s)-f(s)); �
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Figure 5. The poset T5 with weights ρ(a) on the left and τ(a) on the right.

Lemma 2.2.

gs =

s
∑

i=1

2Cs−igi−1 + 2(s− i + 1)Cs−ifi−1 + (s− i + 3)Cs−ihi−1 + (i− 1)Cs−iCi−1 − hs−ihi−1.

Proof. This is the Maple code that verifies the identity (it gives 0 as output):

g := j -> binomial(2*j,j)*j*(j-1)/12;

f := j -> binomial(2*j+2,j+1)*(ĵ 2+5*j+2)/(8*j+4)-4̂ j;

h := j -> 2̂ (2*j-1)-binomial(2*j+1,j)+binomial(2*j-1,j-1);

C := j -> binomial(2*j,j)/(j+1);

simplify(sum(2*C(s-i)*g(i-1)+2*(s-i+1)*C(s-i)*f(i-1)+(s-i+3)*C(s-i)*h(i-1) + (i-1)*C(s-i)*C(i-

1)-h(s-i)*h(i-1),i=2..s-1) + 2*C(0)*g(s-1)+2*(1)*C(0)*f(s-1)+(3)*C(0)*h(s-1) + (s-1)*C(0)*C(s-

1) - g(s)); �

Theorem 2.3. Armstrong’s conjecture holds for all (s, s + 1)-cores.

Proof. For any given s, and for any weight function w : Ts → Z, define the two functions

fs(w) :=
∑

I∈J(Ts)

∑

a∈I

w(a),

gs(w) :=
∑

I∈J(Ts)

(

∑

a∈I

w(a) −

(

#I

2

)

)

= fs(w) −
∑

I∈J(Ts)

(

#I

2

)

,

where as usual J(P ) denotes the set of order ideals of a poset P .

We consider three weight functions on Ts. The weight σ is the “standard weight” that

associates, to each element of Ts, itself as a weight; i.e., σ(a) = a, for all a ∈ Ts. The weight

τ is identically 1; i.e., τ(a) = 1, for all a ∈ Ts. Finally, ρ records the ranks of the elements of

Ts, when we see this latter as a ranked poset whose minimal elements have rank 0. Figure 5

represents the Hasse diagrams of T5, where the elements are being weighted according to τ

and ρ.

A straightforward computation gives that showing the theorem is tantamount to proving

that

gs(σ) = gs =
s(s − 1)

12

(

2s

s

)

.
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Figure 6. The possible elements of the order ideals I ∈ J5(T10). Elements

that must appear in I are indicated by squares, that cannot appear by open

circles, and that may or may not appear by solid circles.

Notice that the elements of rank 0 of Ts are 1, 2, . . . , s − 1. We can partition J(Ts) as

J(Ts) =
⋃

i Ji(Ts), where Ji(Ts) is the set of those order ideals of Ts whose least element that

they do not contain is i. Notice that either 1 ≤ i ≤ s− 1, or we are considering order ideals

whose least missing element i (if any) has positive rank. With some abuse of notation, in

this latter case we set by convention i := s, so that we can write

J(Ts) =
s
⋃

i=1

Ji(Ts).

Notice that, given i, the elements I of Ji(Ts) must contain all of 1, 2, . . . , i − 1, cannot

contain any element covering i (this is an empty condition for i = s), and may or may not

contain any other element. Figure 6 gives the Hasse diagram of T10; for i = 5, it indicates by

squares the elements of T10 that must belong to any given order ideal I ∈ J5(T10), by open

circles the elements that cannot be in I, and by solid circles the elements that may or may

not be in I.

It easily follows that any given order ideal I ∈ Ji(Ts) can be partitioned into the disjoint

union of two order ideals, say I1 and I2, plus the elements 1, 2, . . . , i− 1. Notice that, in the

Hasse diagram of Ts, I1 belongs to a poset that is isomorphic to Ti−1 and sits to the left of

i (starting in rank one), and similarly for I2, which belongs to a copy of Ts−i and sits to the
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right of i. Of course, the posets T1 and T0, corresponding respectively to i = s−1 and i = s,

are empty. (See again Figure 6 for the case n = 10 and i = 5.)

Given this, it is a simple exercise to show that the sum of the elements of Ts that belong

to a given order ideal I = I1 ∪ I2 ∪ {1, 2, . . . , i − 1} ∈ J(Ts) is given by:

∑

a∈I1

w(a) +
∑

a∈I2

w(a) +

(

i

2

)

,

where the weight function w is defined as

w := σ + (s + 1)τ + (s + 1 − i)ρ

over I1, and by

w := σ + iτ + iρ

over I2. Further, notice that, given i, we can clearly choose the order ideals I1 ∈ J(Ti−1)

and I2 ∈ J(Ts−i) independently. Therefore, the elements a ∈ I1 will appear a total of Cs−i

times in the order ideals I of Ts, and similarly, the elements a ∈ I2 will appear a total of

Ci−1 times in the order ideals I of Ts.

It is therefore now easy to see that the contribution of any given i to the desired function

gs(σ) is given by

∑

I1∈J(Ti−1)

Cs−i

(

∑

a∈I1

w(a) +

(

i

2

)

)

+
∑

I2∈J(Ts−i)

Ci−1

∑

a∈I2

w(a)

−
∑

I1∈J(Ti−1),I2∈J(Ts−i)

(

#I1 + #I2 + i − 1

2

)

= Cs−i(fi−1(σ) + (s + 1)fi−1(τ) + (s − i + 1)fi−1(ρ)) + Cs−iCi−1

(

i

2

)

+Ci−1(fs−i(σ) + ifs−i(τ) + ifs−i(ρ)) −
∑

I1∈J(Ti−1),I2∈J(Ts−i)

(

#I1 + #I2 + i − 1

2

)

.

Let us now consider, always for a fixed i, the sum
∑

I1∈J(Ti−1),I2∈J(Tn−i)

(

#I1+#I2+i−1
2

)

. It is

clear that
(

#I1 + #I2 + i − 1

2

)

=

(

#I1

2

)

+

(

#I2

2

)

+(i−1)#I1 +(i−1)#I2 +(#I1)(#I2)+

(

i − 1

2

)

.

Thus, once we sum over all I1 and I2, similar considerations to the above on the number of

such order ideals easily give us that

∑

I1∈J(Ti−1),I2∈J(Ts−i)

(

#I1 + #I2 + i − 1

2

)

=
∑

I1∈J(Ti−1)

Cs−i

((

#I1

2

)

+ (i − 1)#I1

)
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+
∑

I2∈J(Ts−i)

Ci−1

((

#I2

2

)

+ (i − 1)#I2

)

+





∑

I1∈J(Ti−1)

#I1









∑

I2∈J(Ts−i)

#I2



+Cs−iCi−1

(

i − 1

2

)

.

Notice that, essentially by definition,
∑

I1∈J(Ti−1) #I1 = fi−1(τ), and likewise,
∑

I2∈J(Ts−i)
#I2 =

fs−i(τ). It is a known fact (see e.g. [2]) that

fj(τ) = 22j−1 −

(

2j + 1

j

)

+

(

2j − 1

j − 1

)

.

As for determining fj(ρ), by employing the above decomposition of the order ideals I and

summing over all i, with a similar argument we can see that:

fs(ρ) =

s
∑

i=1

Cs−i(fi−1(ρ) + fi−1(τ)) + Ci−1fs−i(ρ),

which, by rearranging the indices, easily yields:

fs(ρ) =

s
∑

i=1

Cs−i(2fi−1(ρ) + fi−1(τ)).

Therefore, by induction, if we apply Lemma 2.1 with fj = fj(ρ) and hj = fj(τ), we

promptly get the following formula for fj(ρ):

fj(ρ) =
j2 + 5j + 2

8j + 4

(

2j + 2

j + 1

)

− 4j .

Recall now that gi−1(σ) = fi−1(σ) −
∑

I1∈J(Ti−1)

(

#I1
2

)

, and similarly for gs−i(σ). Using

this, and summing over i = 1, 2, . . . , s, after some tedious but routine computations (that

include rearranging the indices where necessary), from the above formula for the ith term of

gs(σ) we finally obtain:

gs(σ) =

s
∑

i=1

[2Cs−igi−1(σ) + 2(s − i + 1)Cs−ifi−1(ρ)

+(s − i + 3)Cs−ifi−1(τ) + (i − 1)Cs−iCi−1 − fi−1(τ)fs−i(τ)].

The theorem now follows by induction on s, if we apply Lemma 2.2 with fj = fj(ρ), gj =

gj(σ), and hj = fj(τ). �
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