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Abstract

We use the theory of symmetric functions to enumerate
various classes of alternating permutations w of {1, 2, . . . , n}.
These classes include the following: (1) both w and w−1

are alternating, (2) w has certain special shapes, such as
(m − 1,m − 2, . . . , 1), under the RSK algorithm, (3) w has
a specified cycle type, and (4) w has a specified number of
fixed points. We also enumerate alternating permutations of
a multiset. Most of our formulas are umbral expressions where
after expanding the expression in powers of a variable E, Ek

is interpreted as the Euler number Ek. As a small corollary,
we obtain a combinatorial interpretation of the coefficients
of an asymptotic expansion appearing in Ramanujan’s Lost
Notebook.

1 Introduction.

This paper can be regarded as a sequel to the classic paper [6] of
H. O. Foulkes in which he relates the enumeration of alternating
permutations to the representation theory of the symmetric group
and the theory of symmetric functions. We assume familiarity with
symmetric functions as presented in [17, Ch. 7]. Let Sn denote the
symmetric group of all permutations of 1, 2, . . . , n. A permutation
w = a1a2 · · ·an ∈ Sn is alternating if a1 > a2 < a3 > a4 < · · · .
Equivalently, write [m] = {1, 2, . . . , m} and define the descent set
D(w) of w ∈ Sn by

D(w) = {i ∈ [n − 1] : ai > ai+1}.



Then w is alternating if D(w) = {1, 3, 5, . . .} ∩ [n − 1]. Similarly,
define w to be reverse alternating if a1 < a2 > a3 < a4 > · · · . Thus
w is reverse alternating if D(w) = {2, 4, 6, . . .} ∩ [n− 1]. Also define
the descent composition co(w) by

co(w) = (α1, α2, . . . , αk), (1)

where D(w) = {α1, α1 +α2, . . . , α1 + · · ·+αk−1} and
∑

αi = n. Thus
α ∈ Comp(n), where Comp(n) denotes the set of compositions of n.

Let En denote the number of alternating permutations in Sn. Then
En is called an Euler number and was shown by D. André [1] to satisfy

∑

n≥0

En
xn

n!
= sec x + tanx. (2)

(Sometimes one defines
∑

(−1)nEnx2n/(2n)! = sec x, but we will
adhere to (2).) Thus E2m is also called a secant number and E2m+1

a tangent number. The bijection w 7→ w′ on Sn defined by w′(i) =
n + 1−w(i) shows that En is also the number of reverse alternating
permutations in Sn. However, for some of the classes of permutations
considered below, alternating and reverse alternating permutations
are not equinumerous.

Foulkes defines a certain (reducible) representation of Sn whose
dimension is En. He shows how this result can be used to compute
En and other numbers related to alternating permutations, notably
the number of w ∈ Sn such that both w and w−1 are alternating.
Foulkes’ formulas do not give a “useful” computational method since
they involve sums over partitions whose terms involve Littlewood-
Richardson coefficients. We show how Foulkes’ results can actually be
converted into useful generating functions for computing such num-
bers as (a) the number of alternating permutations w ∈ Sn with
conditions on their cycle type (or conjugacy class). The special case
of enumerating alternating involutions was first raised by Ehrenborg
and Readdy and discussed further by Zeilberger [18]. Another special
case is that of alternating permutations with a specified number of
fixed points. Our proofs use, in addition to Foulkes’ representation,
a result of Gessel and Reutenauer [9] on permutations with given
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descent set and cycle type. (b) The number of w ∈ Sn such that
both w and w−1 are alternating, or such that w is alternating and
w−1 is reverse alternating. (c) The number of alternating permuta-
tions of certain shapes (under the RSK algorithm). (d) The number
of alternating permutations of a multiset of integers, under various
interpretations of the term “alternating.”

Acknowledgment. I am grateful to Ira Gessel for providing
some useful background information and references and to an anony-
mous referee for several helpful comments, in particular, pointing out
a gap in the proof of Corollary 6.4.

2 The work of Foulkes.

We now review the results of Foulkes that will be the basis for our
work. Given a composition α of n, let Bα denote the correspond-
ing border strip (or ribbon or skew hook) shape as defined e.g. in
[5][17, p. 383]. Let sBα denote the skew Schur function of shape Bα.
The following result of Foulkes [5, Thm. 6.2] also appears in [17,
Cor. 7.23.8].

Theorem 2.1. Let α and β be compositions of n. Then

〈sBα, sBβ
〉 = #{w ∈ Sn : co(w) = β, co(w−1) = α}.

We let τn = Bα where α = (1, 2, 2, . . . , 2, j) ∈ Comp(n), where
j = 1 if n is even and j = 2 if n is odd. Thus if ′ indicates conjugation
(reflection of the shape about the main diagonal), then τ ′

2k+1 = τ2k+1,
while τ ′

2k = (2, 2, . . . , 2). We want to expand the skew Schur functions
sτn and sτ ′

n
in terms of power sum symmetric functions. For any

skew shape λ/µ with n squares, let χλ/µ denote the character of Sn

satisfying ch(χλ/µ) = sλ/µ. Thus by the definition [17, p. 351] of ch
we have

sλ/µ =
∑

ρ⊢n

z−1
ρ χλ/µ(ρ)pρ,

where χλ/µ(ρ) denotes the value of χλ/ρ at any permutation w ∈ Sn

of cycle type ρ.

3



The main result [6, Thm. 6.1][17, Exer. 7.64] of Foulkes on the con-
nection between alternating permutations and representation theory
is the following.

Theorem 2.2. (a) Let µ ⊢ n, where n = 2k + 1. Then

χτn(µ) = χτ ′
n(µ) =







0, if µ has an even part

(−1)k+rE2r+1, if µ has 2r + 1 odd parts and
no even parts.

(b) Let µ ⊢ n, where n = 2k. Suppose that µ has 2r odd parts and e
even parts. Then

χτn(µ) = (−1)k+r+eE2r

χτ ′
n(µ) = (−1)k+rE2r.

Note. Foulkes obtains his result from the Murnaghan-Nakayama
rule. It can also be also be obtained from the formula

∑

n≥0

sτntn =
1

∑

n≥0(−1)nh2nt2n
+

∑

n≥0(−1)nh2n+1t
2n+1

∑

n≥0(−1)mh2nt2n
,

where sτn denotes a skew Schur function. This formula is due to
Carlitz [4] and is also stated at the bottom of page 520 of [17].

Foulkes’ result leads immediately to our main tool in what follows.
Throughout this paper we will use umbral notation [15] for Euler
numbers. In other words, any polynomial in E is to be expanded in
terms of powers of E, and then Ek is replaced by Ek. The replacement
of Ek by Ek is always the last step in the evaluation of an umbral
expression. For instance,

(E2 − 1)2 = E4 − 2E2 + 1 = E4 − 2E2 + 1 = 5 − 2 · 1 + 1 = 4.
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Similarly,

(1 + t)E = 1 + Et +

(

E

2

)

t2 +

(

E

3

)

t3 + · · ·

= 1 + Et +
1

2
(E2 − E)t2 +

1

6
(E3 − 3E2 + 2E)t3 + · · ·

= 1 + Et +
1

2
(E2 − E1)t

2 +
1

6
(E3 − 3E2 + 2E1)t

3 + · · ·

= 1 + 1 · t +
1

2
(1 − 1)t2 +

1

6
(2 − 3 · 1 + 2 · 1)t3 + · · ·

= 1 + t +
1

6
t3 + · · · .

If f = f(x1, x2, . . . ) is a symmetric function then we use the notation
f [p1, p2, . . . ] for f regarded as a polynomial in the power sums. For
instance, if f = e2 =

∑

i<j xixj = 1
2
(p2

1 − p2) then

e2[E,−E, . . . ] =
1

2
(E2 + E) = 1.

Theorem 2.3. Let f be a homogenous symmetric function of degree
n. If n is odd then

〈f, sτn〉 = 〈f, sτ ′
n
〉 = f [E, 0,−E, 0, E, 0,−E, . . . ] (3)

If n is even then

〈f, sτn〉 = f [E,−1,−E, 1, E,−1,−E, 1, . . . ]

〈f, sτ ′
n
〉 = f [E, 1,−E,−1, E, 1,−E,−1, . . . ].

Proof. Suppose that n = 2k + 1. Let OP(n) denote the set of all
partitions of n into odd parts. If µ ∈ OP(n) and µ has ℓ(µ) = 2r + 1
(odd) parts, then write r = r(µ). Let f =

∑

λ⊢n cλpλ. Then by
Theorem 2.2 we have

〈f, sτn〉 =

〈

∑

λ

cλpλ,
∑

µ∈OP(n)

z−1
µ (−1)k+r(µ)Eℓ(µ)pµ

〉

=
∑

µ∈OP(n)

cµ(−1)k+r(µ)Eℓ(µ).
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If µ ∈ OP(n) and we substitute (−1)jE for p2j+1 in pµ then we obtain

ℓ(µ)
∏

i=1

(−1)
1
2
(µi−1)E = (−1)

1
2
(2k+1−(2r(µ)+1))Eℓ(µ)

= (−1)k+r(µ)Eℓ(µ),

and equation (3) follows. The case of n even is analogous.

3 Inverses of alternating permutations.

In this section we derive generating functions for the number of alter-
nating permutations in Sn whose inverses are alternating or reverse
alternating. This problem was considered by Foulkes [6, §5], but
his answer does not lend itself to easy computation. Such “doubly
alternating” permutations were also considered by Ouchterlony [14]
in the setting of pattern avoidance. A special class of doubly alter-
nating permutations, viz., those that are Baxter permutations, were
enumerated by Guibert and Linusson [10].

Theorem 3.1. Let f(n) denote the number of permutations w ∈ Sn

such that both w and w−1 are alternating, and let f ∗(n) denote the
number of w ∈ Sn such that w is alternating and w−1 is reverse
alternating. Let

L(t) =
1

2
log

1 + t

1 − t

= t +
t3

3
+

t5

5
+ · · · .
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Then

∑

k≥0

f(2k + 1)t2k+1 =
∑

r≥0

E2
2r+1

L(t)2r+1

(2r + 1)!
(4)

f ∗(2k + 1) = f(2k + 1) (5)

∑

k≥0

f(2k)t2k =
1√

1 − t2

∑

r≥0

E2
2r

L(t)2r

(2r)!
(6)

f ∗(2k) = f(2k) − f(2k − 2). (7)

Proof. By Theorem 2.1 we have f(n) = 〈sτn, sτn〉. Let n = 2k+1.
Then it follows from Theorems 2.2 and 2.3 that (writing r = r(µ))

f(n) =
∑

µ∈OP(n)

z−1
µ (−1)k+rE2r+1(−1)k+rE2r+1

=
∑

µ∈OP(n)

z−1
µ E2

2r+1. (8)

Now by standard properties of exponential generating functions [17,
§5.1] or by specializing the basic identity

∑

λ

z−1
λ pλ = exp

∑

n≥1

1

n
pn,

we have

∑

k≥0

∑

µ∈OP(2k+1)

z−1
µ yℓ(µ)t2k+1 = exp

(

y

(

t +
t3

3
+

t5

5
+ · · ·

))

= exp(yL(t)).

The coefficient of y2r+1 in the above generating function is therefore
L(t)2r+1/(2r + 1)!, and the proof of (4) follows.

Since τn = τ ′
n for n odd we have

f ∗(n) = 〈sτn , sτ ′
n
〉 = 〈sτn , sτn〉 = f(n),
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so (5) follows.
The argument for n = 2k is similar. For µ ⊢ n let e = e(µ) denote

the number of even parts of µ and 2r = 2r(µ) the number of odd
parts. Now the relevant formulas for computing f(n) are

f(n) =
∑

µ⊢n

z−1
µ (−1)k+r+eE2r(−1)k+r+eE2r

=
∑

µ⊢n

z−1
µ E2

2r

and

∑

k≥0

∑

µ⊢n

z−1
µ y2r(µ)tn = exp

(

y

(

t +
t3

3
+

t5

5
+ · · ·

)

+

(

t2

2
+

t4

4
+ · · ·

))

= (1 − t2)−1/2(exp(yL(t)),

from which (6) follows.
For the case f ∗(n) when n is even we have

f ∗(n) =
∑

µ⊢n

z−1
µ (−1)k+r+eE2r(−1)k+rE2r

=
∑

µ⊢n

z−1
µ (−1)eE2

2r

and

∑

k≥0

∑

µ⊢2k

z−1
µ (−1)e(µ)y2r(µ)t2k = exp

(

y

(

t +
t3

3
+

t5

5
+ · · ·

)

−
(

t2

2
+

t4

4
+ · · ·

))

=
√

1 − t2 exp yL(t).

Hence
∑

k≥0

f ∗(2k)t2k = (1 − t2)
∑

k≥0

f(2k)t2k,

from which (7) follows.
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Whenever we have explicit formulas or generating functions for
combinatorial objects we can ask for combinatorial proofs of them.
Bruce Sagan has pointed out that equation (5) follows from reversing
the permutation, i.e., changing a1a2 · · ·an to an · · ·a2a1. We do not
know combinatorial proofs of equations (4), (6) and (7). To prove
equations (4) and (6) combinatorially, we probably need to interpret
them as exponential generating functions, e.g., write the left-hand
side of (4) as

∑

k≥0(2k + 1)!f(2k + 1)t2k+1/(2k + 1)!. Let us also
note that if g(n) denotes the number of reverse alternating w ∈ Sn

such that w−1 is also reverse alternating, then f(n) = g(n) for all
n. This fact can be easily shown using the proof method above, and
it is also a consequence of the RSK algorithm. For suppose that w

and w−1 are alternating, w
rsk→ (P, Q) and w′ rsk→ (P t, Qt) (where t

denotes transpose). Then by [17, Lemma 7.23.1] the map w 7→ w′

is a bijection between permutations w ∈ Sn such that both w and
w−1 are alternating, and permutations w′ ∈ Sn such that both w
and (w′)−1 are reverse alternating. Is there a simpler proof that
f(n) = g(n) avoiding RSK?

4 Alternating tableaux of fixed shape.

Let T be a standard Young tableau (SYT). The descent set D(T ) is
defined by [17, p. 351]

D(T ) = {i : i + 1 is in a lower row than i}.

For instance, if

T =
1 2 5
3 4
6,

then D(T ) = {2, 5}. We also define the descent composition co(T ) in
analogy with equation (1). A basic property of the RSK algorithm

asserts that D(w) = D(Q) if w
rsk→ (P, Q). An SYT T of size n

is called alternating if D(T ) = {1, 3, 5, . . .} ∩ [n − 1] and reverse
alternating if D(T ) = {2, 4, 6, . . .} ∩ [n − 1]. The following result is
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an immediate consequence of Theorem 7.19.7 and Corollary 7.23.6 of
[17].

Theorem 4.1. Let λ ⊢ n and α ∈ Comp(n). Then 〈sλ, sBα〉 is equal
to the number of SYT of shape λ and descent composition α.

Let alt(λ) (respectively, ralt(λ)) denote the number of alternating
(respectively, reverse alternating) SYT of shape λ. The following
result then follows from Theorems 2.3 and 4.1.

Theorem 4.2. Let λ ⊢ n and α ∈ Comp(n). If n is odd, then

alt(λ) = ralt(λ) = sλ[E, 0,−E, 0, E, 0,−E, . . . ].

If n is even then

alt(λ) = sλ[E,−1,−E, 1, E,−1,−E, 1, . . . ]

ralt(λ) = sλ[E, 1,−E,−1, E, 1,−E,−1, . . . ].

Theorem 4.2 “determines” the number of alternating SYT of any
shape λ, but the formula is not very enlightening. We can ask
whether there are special cases for which the formula can be made
more explicit. The simplest such case occurs when λ is the “stair-
case” δm = (m − 1, m − 2, . . . , 1). For any partition λ write Hλ for
the product of the hook lengths of λ [17, p. 373]. For instance,

Hδm = 1m−1 3m−2 5m−3 · · · (2m − 3).

Theorem 4.3. If m = 2k then

alt(δm) = ralt(δm) = Ek
m−2
∏

j=1

(E2 + j2)k−⌈j/2⌉.

If m = 2k + 1 then

alt(δm) = ralt(δm) = Ek
m−2
∏

j=1

(E2 + j2)k−⌊j/2⌋.
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Proof. By the Murnaghan-Nakayama rule, sδm is a polynomial in
the odd power sums p1, p3, . . . [17, Prop. 7.17.7]. Assume that m is
odd. Then by the hook-content formula [17, Cor. 7.21.4] we have

sδm [E, 0, E, 0, . . . ] = sδm [E, E, E, . . . ]

=
Ek
∏m−2

j=1 (E2 − j2)k−⌊j/2⌋

Hδm

. (9)

Let n =
(

m
2

)

, and suppose that n is odd, say n = 2r+1. Let λ ∈ OPn

and 2j + 1 = ℓ(λ). Thus

pλ[E, 0, E, 0, E, 0, . . . ] = E2j+1.

A simple parity argument shows that

pλ[E, 0,−E, 0, E, 0,−E, 0, . . . ] = (−1)r−jE2j+1.

It follows that we obtain sδm [E, 0,−E, 0, E, 0,−E, 0, . . . ] from the
polynomial expansion of sδm[E, 0, E, 0, E, 0, . . . ] by replacing each
power E2j+1 with (−1)r−jE2j+1. The proof for m odd and n odd
now follows from equation (9).

The argument for the remaining cases, viz., (a) m odd, n even, (b)
m even, n odd, and (c) m even, n even, is completely analogous.

There are some additional partitions λ for which alt(λ) and ralt(λ)
factor nicely as polynomials in E. One such case is the following.

Theorem 4.4. Let p be odd, and let p× p denote the partition of p2

whose shape is a p × p square. Then

alt(p × p) = ralt(p × p)

=
Ep(E2 + 22)p−1(E2 + 42)p−2 · · · (E2 + (2(p − 1))2)

Hp×p
.

Proof (sketch). Let hn denote the complete symmetric function of
degree n. From the identity

∑

n≥0

hntn = exp
∑

n≥1

pnt
n

n
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we obtain

∑

n≥0

hn[E, 0, E, 0, E, 0, . . . ]tn = exp
∑

n odd

Etn

n

=

(

1 + t

1 − t

)E/2

.

Write
(

1 + t

1 − t

)E/2

=
∑

n≥0

an(E)tn.

The Jacobi-Trudi identity [17, §7.16] implies that sp×p = det(hp−i+j)
p
i,j=1.

Hence
sp×p[E, 0, E, 0, E, 0, . . . ] = det(ap−i+j(E))p

i,j=1. (10)

I am grateful to Christian Krattenthaler and Dennis Stanton for
evaluating the above determinant. Krattenthaler’s argument is as
follows. Write

(

1 + t

1 − t

)E/2

=

(

1 +
2t

1 − t

)E/2

= 1 +
∑

n≥1

tn
n
∑

k=1

(

n − 1

k − 1

)(

E/2

k

)

2k.

After substituting k + 1 for k, we see that we want to compute the
Hankel determinant

det
0≤i,j≤n

(

i+j
∑

k=0

(

i + j

k

)(

E/2

k + 1

)

2k+1

)

.

Now by a folklore result [13, Lemma 15] we conclude that this deter-
minant is the same as

det
0≤i,j≤n

((

E/2

i + j + 1

)

2i+j+1

)

.

When this determinant is expanded all powers of 2 are the same, so
we are left with evaluating

det
0≤i,j≤n

((

E/2

i + j + 1

))

.
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This last determinant is well-known; see e.g. [13, (3.12)].
Stanton has pointed out that the determinant of (10) is a special

case of a Hankel determinant of Meixner polynomials Mn(x; b, c),
viz., ap(E) = 2EMp−1(E − 1; 2,−1). Since the Meixner polynomials
are moments of a Jacobi polynomial measure [12, Thm. 524] the
determinant will explicitly factor.

Neither of these two proofs of factorization is very enlightening.
Is there a more conceptual proof based on the theory of symmetric
functions?

Note. Permutations whose shape is a p× p square have an alter-
native description as a consequence of a basic property of the RSK
algorithm [17, Cor. 7.23.11, Thm. 7.23.17], viz., they are the per-
mutations in Sp2 whose longest increasing subsequence and longest
decreasing subsequence both have length p.

There are some other “special factorizations” of alt(λ) and ralt(λ)
that appear to hold, which undoubtedly can be proved in a manner
similar to the proof of Theorem 4.4. Some of these cases are the fol-
lowing, together with those arising from the identity alt(λ) = alt(λ′)
when |λ| is odd, and alt(λ) = ralt(λ′) when |λ| is even. We write
λ = 〈1m12m2 · · · 〉 to indicate that λ has mi parts equal to i.

• ralt(〈pp−1〉)
• alt(〈1, pp〉), p odd

• certain values of alt(b, b − 1, b − 2, . . . , a) or ralt(b, b − 1, b −
2, . . . , a).

There are numerous other values of λ for which alt(λ) or ralt(λ)
“partially factors.” Moreover, there are similar specializations of sλ

which factor nicely, although they don’t correspond to values of alt(λ)
or ralt(λ), e.g., s〈pp〉[E, 0,−E, 0, E, 0,−E, 0, . . . ] for p even.

5 Cycle type.

A permutation w ∈ Sn has cycle type ρ(w) = (ρ1, ρ2, . . . ) ⊢ n if the
cycle lengths of w are ρ1, ρ2, . . . . For instance, the identity permuta-
tion has cycle type 〈1n〉. In this section we give an umbral formula
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for the number of alternating and reverse alternating permutations
w ∈ Sn of a fixed cycle type.

Our results are based on a theorem of Gessel-Reutenauer [9], which
we now explain. Define a symmetric function

Ln =
1

n

∑

d|n

µ(d)p
n/d
d , (11)

where µ is the number-theoretic Möbius function. Next define L〈mr〉 =
hr[Lm] (plethysm). Equivalently, if f(x) = f(x1, x2, · · · ) then write
f(xr) = f(xr

1, x
r
2, · · · ). Then for fixed m we have

∑

r≥0

L〈mr〉(x)tr = exp
∑

r≥1

1

r
Lm(xr)tr. (12)

Finally, for any partition λ = 〈1m12m2 · · · 〉 set

Lλ = L〈1m1 〉L〈2m2 〉 · · · . (13)

For some properties of the symmetric functions Lλ see [17, Exer. 7.89].

Theorem 5.1 (Gessel-Reutenauer). Let ρ ⊢ n and α ∈ Comp(n).
Let f(ρ, α) denote the number of permutations w ∈ Sn satisfying
ρ = ρ(w) and α = co(w). Then

f(ρ, α) = 〈Lρ, sBα〉.

Now for ρ ⊢ n let b(ρ) (respectively, b∗(ρ)) denote the number of
alternating (respectively, reverse alternating) permutations w ∈ Sn

of cycle type ρ. The following corollary is then the special cases
Bα = τn and Bα = τ ′

n of Theorem 5.1.

Corollary 5.2. We have b(ρ) = 〈Lρ, sτn〉 and b∗(ρ) = 〈Lρ, sτ ′
n
〉.

We first consider the case when ρ = (n), i.e., w is an n-cycle. Write
b(n) and b∗(n) as short for b((n)) and b∗((n)). Theorem 5.3 below
is actually subsumed by subsequent results (Theorems 5.4 and 5.5),
but it seems worthwhile to state it separately.
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Theorem 5.3. (a) If n is odd then

b(n) = b∗(n) =
1

n

∑

d|n

µ(d)(−1)(d−1)/2En/d.

(b) If n = 2km where k ≥ 1, m is odd, and m ≥ 3, then

b(n) = b∗(n) =
1

n

∑

d|m

µ(d)En/d.

(c) If n = 2k and k ≥ 2 then

b(n) = b∗(n) =
1

n
(En − 1). (14)

(d) Finally, b(2) = 1, b∗(2) = 0.

Proof. (a) By Theorem 2.3 and Corollary 5.2 we have for odd n that

b(n) = b∗(n) = Ln[E, 0,−E, 0, E, 0,−E, 0, · · · ]
=

1

n

∑

d|n

µ(d)((−1)(d−1)/2E)n/d

=
1

n

∑

d|n

µ(d)(−1)(d−1)/2En/d,

since n/d is odd for each d | n.
(b) Split the sum (11) into two parts: d odd and d even. Since

µ(2d) = −µ(d) when d is odd and since µ(4d) = 0 for any d, we
obtain

b(n) = Ln[E,−1,−E, 1, E,−1,−E, 1, · · · ]

=
1

n





∑

d|m

µ(d)((−1)(d−1)/2E)n/d −
∑

d|m

µ(d)((−1)d)n/2d





=
1

n





∑

d|m

µ(d)En/d − (−1)n/2
∑

d|m

µ(d)



 .
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The latter sum is 0 since m > 1, and we obtain the desired formula
for b(n). The argument for b∗(n) is completely analogous; the factor
(−1)n/2 now becomes (−1)1+ n

2 .
(c) When n = 2k, k ≥ 2, we have

Ln =
1

n

(

pn
1 − p

n/2
2

)

.

Substituting p1 = E and p2 = ±1, and using that n/2 is even, yields
(14).

(d) Trivial. It is curious that only for n = 2 do we have b(n) 6=
b∗(n).

Note the special case of Theorem 5.3(a) when m = pk, where p is
an odd prime and k ≥ 1:

b(pk) =
1

pk

(

Epk − (−1)(p−1)/2Epk−1

)

.

Is there a simple combinatorial proof, at least when k = 1? The same
can be asked of equation (14).

We next turn to the case λ = 〈mr〉, i.e., all cycles of w have length
m. Write b(mr) as short for b(〈mr〉), and similarly for b∗(mr). Set

Fm(t) =
∑

r≥0

b(mr)tr

F ∗
m(t) =

∑

r≥0

b∗(mr)tr.

First we consider the case when m is odd.

Theorem 5.4. (a) Let m be odd and m ≥ 3. Then

Fm(t) = F ∗
m(t) = exp





1

m





∑

d|m

µ(d)(−1)(d−1)/2Em/d



 (tan−1 t)



 .

(b) We have

F1(t) = sinh(E tan−1 t) +
1√

1 + t2
cosh(E tan−1 t)

F ∗
1 (t) = sinh(E tan−1 t) +

√
1 + t2 cosh(E tan−1 t).
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Proof. (a) By equations (3) and (12) we have that the terms of Fm(t)
and F ∗

m(t) of odd degree (in t) are given by

1

2
(Fm(t) − Fm(−t)) =

1

2
(F ∗

m(t) − F ∗
m(−t))

=

(

sinh
∑

r odd

1

r
L(xr)tr

)

(

exp
∑

r even

1

r
L(xr)tr

)

[E, 0,−E, 0, . . . ]

=



sinh
∑

r odd

tr

mr

∑

d|m

µ(d)p
m/d
rd



 [E, 0,−E, 0, . . . ]

= sinh
∑

r odd

tr

mr

∑

d|m

µ(d)(−1)(rd−1)/2Em/d

= sinh
1

m

∑

d|m

µ(d)(−1)(d−1)/2Em/d

(

t − t3

3
+

t5

5
− · · ·

)

= sinh
1

m





∑

d|m

µ(d)(−1)(d−1)/2Em/d



 (tan−1 t). (15)
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Similarly the terms of Fm(t) of even degree are given by

1

2
(Fm(t) + Fm(−t)) =

(

cosh
∑

r odd

1

r
L(xr)tr

)

·
(

exp
∑

r even

1

r
L(xr)tr

)

[E,−1,−E, 1, . . . ]

=



cosh
∑

r odd

tr

mr

∑

d|m

µ(d)p
m/d
rd





·



exp
∑

r even

tr

mr

∑

d|m

µ(d)p
m/d
rd



 [E,−1,−E, 1, . . . ]

=



cosh
∑

r odd

tr

mr

∑

d|m

µ(d)((−1)(rd−1)/2)m/dEm/d





·



exp
∑

r even

tr

mr

∑

d|m

µ(d)((−1)rd/2)m/d





=



cosh
1

m

∑

d|m

µ(d)(−1)(d−1)/2Em/d tan−1 t





·



exp
∑

r even

tr

mr
(−1)r/2

∑

d|m

µ(d)





= cosh
1

m





∑

d|m

µ(d)(−1)(d−1)/2Em/d



 (tan−1 t). (16)

Adding equations (15) and (16) yields (a) for Fm(t).
The computation for F ∗

m(x) is identical, except that the factor
(−1)rd/2 is replaced by (−1)1+rd/2. This alteration does not affect
the final answer.

(b) The computation of the odd part of F1(t) and F ∗
1 (t) is the same
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as in (a), yielding

1

2
(F1(t) − F1(−t)) =

1

2
(F ∗

1 (t) − F ∗
1 (−t))

= sinh(E tan−1 t).

On the other hand,

1

2
(F1(t) + F1(−t)) = cosh(E tan−1 t) ·

(

exp
∑

r even

tr

r
µ(1)(−1)r/2

)

=
cosh(E tan−1 t)√

1 + t2
,

and the proof for F1(t) follows. For F ∗
1 (t) the factor (−1)r/2 becomes

(−1)1+r/2, so the factor
√

1 + t2 moves from the denominator to the
numerator.

Clearly the only alternating permutation of cycle type 〈1r〉 is 1
(when r = 1). Hence from Theorem 5.4(b) we obtain the umbral
identity

sinh(E tan−1 t) +
1√

1 + t2
cosh(E tan−1 t) = 1 + t. (17)

One may wonder what is the point of Theorem 5.4(b) since b(1r) is
trivial to compute directly. Its usefulness will be seen below (The-
orem 5.6), when we consider “mixed” cycle types, i.e., not all cycle
lengths are equal.

Theorem 5.4 can be restated “non-umbrally” analogously to Theo-
rem 3.1. For instance, if m = pk where p is prime and p ≡ 3 (mod4),
then

Fm(t) = F ∗
m(t) =

∑

i,j≥0

E(m/p)i+mj

(

1
p
tan−1 t

)i+j

i! j!
,

while if p ≡ 1 (mod 4), then

Fm(t) = F ∗
m(t) =

∑

i,j≥0

(−1)iE(m/p)i+mj

(

1
p
tan−1 t

)i+j

i! j!
.
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For general odd m, Fm(t) will be expressed as a 2ν(m)-fold sum, where
ν(m) is the number of distinct prime divisors of m.

Theorem 5.5. (a) Let m = 2kh, where k ≥ 1, h ≥ 3, and h is odd.
Then

Fm(t) = F ∗
m(t) =

(

1 + t

1 − t

)
1

2m

P

d|h µ(d)Em/d

.

(b) Let m = 2k where k ≥ 2. Then

Fm(t) = F ∗
m(t) =

(

1 + t

1 − t

)
1

2m
(Em−1)

.

(c) Let m = 2. Then

F2(t) =

(

1 + t

1 − t

)(E2+1)/4

F ∗
2 (t) =

F2(t)

1 + t
(compare (7)).

Proof. (a) The argument is analogous to the proof of Theorem 5.4.
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We have

Fm(t) =

(

exp
∑

r≥1

1

r
L(xr)tr

)

[E,−1,−E, 1, . . . ]

=



exp
∑

r≥1

tr

mr

∑

d|m

µ(d)p
m/d
rd



 [E,−1,−E, 1, . . . ]

= exp





∑

r odd

tr

rm

∑

d|h

((−1)(rd−1)/2)m/dµ(d)Em/d

+
∑

r even

tr

rm

∑

d|h

((−1)rd/2)m/d −
∑

r

tr

rm

∑

d|h

((−1)rd/2)m/d





= exp
∑

r odd

tr

rm

∑

d|h

µ(d)Em/d

= exp





1

m

∑

d|h

µ(d)Em/d





1

2
log

1 + t

1 − t
,

and the proof follows for Fm(t). The same argument holds for F ∗
m(t)

since −1 was always raised to an even power or was multiplied by a
factor

∑

d|h µ(d) = 0 in the proof.

(b) We now have

Fm(t) = exp
∑

r≥1

tr

rm

(

pm
r − p

m/2
2r

)

[E,−1,−E, 1, . . . ]

= exp
1

m

(

∑

r odd

tr

r

(

((−1)(r−1)/2E)m − (−1)rm/2
)

+
∑

r even

tr

r

(

(−1)rm/2 − (−1)rm/2
)

)

=

(

1 − t

1 + t

)1/2m

exp
Em

2m
log

1 + t

1 − t
,

etc. Again the computation for F ∗
m(t) is the same.
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(c) We have

F2(t) = exp
1

2

∑

r≥1

(

p2
r − p2r

) tr

r
[E,−1,−E, 1, . . . ]

= exp
1

2

[

∑

r odd

(

(

(−1)(r−1)/2E
)2 − (−1)r

) tr

r

+
∑

r even

((−1)r − (−1)r)

]

= exp
1

2

∑

r odd

(E2 + 1)
tr

r
.

etc. We leave the case F ∗
2 (t) to the reader.

The expansion of F2(t) begins

F2(t) = 1+t+t2 +2t3 +5t4 +17t5 +72t6 +367t7 +2179t8+ · · · . (18)

Ramanujan asserts in Entry 16 of his second notebook (see [3, p. 545])
that as t tends to 0+,

2
∑

n≥0

(−1)n

(

1 − t

1 + t

)n(n+1)

∼ 1 + t + t2 + 2t3 + 5t4 + 17t5 + · · · . (19)

Berndt [3, (16.6)] obtains a formula for the complete asymptotic ex-

pansion of 2
∑

n≥0(−1)n
(

1−t
1+t

)n(n+1)
as t → 0+. It is easy to see that

Berndt’s formula can be written as
(

1+t
1−t

)(E2+1)/4
and is thus equal

to F2(t). Theorem 5.5(c) therefore answers a question of Galway [7,
p. 111], who asks for a combinatorial interpretation of the coefficients
in Ramanujan’s asymptotic expansion.

Note. The following formula for F2(t) follows from equation (19)
and an identity of Ramanujan proved by Andrews [2, (6.3)R]:

F2(t) = 2
∑

n≥0

qn

∏n
j=1(1 − q2j−1)
∏2n+1

j=1 (1 + qj)
,

where q =
(

1−t
1+t

)2/3
. It is not hard to see that this is a formal identity,

unlike the asymptotic identity (19).
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Note. We can put Theorems 5.4(a) into a form more similar to
Theorem 5.5(a) by noting the identity

exp(tan−1 t) =

(

1 − it

1 + it

)i/2

.

Hence when m is odd and m ≥ 3 we have

Fm(t) = F ∗
m(t) =

(

1 − it

1 + it

)
i

2m

P

d|m µ(d)(−1)(d−1)/2Em/d

.

The multiplicativity property (13) of Lλ allows us write down a
generating function for the number b(λ) (respectively, b∗(λ)) of alter-
nating (respectively, reverse alternating) permutations of any cycle
type λ. For this purpose, let t1, t2, . . . and t be indeterminates and set
deg(ti) = i, deg(t) = 1. If F (t1, t2, . . . ) is a power series in t1, t2, . . .
or F (t) is a power series in t, then write OF (respectively, EF ) for
those terms of F whose total degree is odd (respectively, even). For
instance,

OF (t1, t2, . . . ) =
1

2
(F (t1, t2, t3, t4 . . . ) − F (−t1, t2,−t3, t4, . . . )) .

Define the “cycle indicators”

Z(t1, t2, . . . ) =
∑

λ=〈1m12m2 ··· 〉

b(λ)tm1
1 tm2

2 · · ·

Z∗(t1, t2, . . . ) =
∑

λ=〈1m12m2 ··· 〉

b∗(λ)tm1
1 tm2

2 · · · ,

where both sums range over all partitions λ of all integers n ≥ 0.

Theorem 5.6. We have
OZ(t1, t2, . . . ) = OZ∗(t1, t2, . . . )

= O exp(E tan−1 t1) ·
(

1 + t2
1 − t2

)E2/4

F3(t3)F4(t4) · · · (20)
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EZ(t1, t2, . . . ) = E exp(E tan−1 t1)
√

1 + t21

(

1 + t2
1 − t2

)(E2+1)/4

F3(t3)F4(t4) · · ·

EZ∗(t1, t2, . . . ) = E
√

1 + t21 exp(E tan−1 t1) ·
1

1 + t2

(

1 + t2
1 − t2

)(E2+1)/4

·F3(t3)F4(t4) · · · .

It is understood that in these formulas Fj(tj) is to be written in the
umbral form given by Theorems 5.4 and 5.5.

Proof. Let

Gm(t) = exp
∑

r≥1

1

r
Lm(xr)tr. (21)

It follows from equations (12) and (13) that

OZ(t1, t2, . . . ) = O
∏

m≥1

Gm(tm)[E, 0,−E, 0, . . . ].

The proofs of Theorems 5.4(a) and 5.5(a,b) show that for m ≥ 3,

Gm(t)[E, 0,−E, 0, . . . ] = Gm(t)[E,−1,−E, 1, . . . ].

Hence we obtain the factors F3(t3)F4(t4) · · · in equation (20). It is
straightforward to compute Gm(tm)[E, 0,−E, 0, . . . ] (and is implicit
in the proofs of Theorems 5.4(b) and 5.5(c)) for m = 1, 2. For in-
stance,

G1(t1)[E, 0,−E, 0 . . . ] = exp

(

∑

r≥1

1

r
prt

r
1

)

[E, 0,−E, 0, . . . ]

= exp
∑

r odd

1

r
(t1 −

1

3
t31 + · · · )

= exp(tan−1 t1). (22)

Thus we obtain the remaining factors in equation (20). The remain-
ing formulas are proved analogously.

We mentioned in Section 1 that Ehrenborg and Readdy raised the
question of counting alternating involutions w ∈ Sn. An answer to
this question is a simple consequence of Theorem 5.6.
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Corollary 5.7. Let c(n) (repectively, c∗(n)) denote the number of
alternating (respectively, reverse alternating) involutions w ∈ Sn.
Then

∑

n≥0

c(2n + 1)t2n+1 = sinh(E tan−1 t) ·
(

1 + t2

1 − t2

)E2/4

∑

n≥0

c(2n)t2n =
1

4
√

1 − t4
cosh(E tan−1 t) ·

(

1 + t2

1 − t2

)E2/4

c∗(n) = c(n).

Equivalently,

∑

n≥0

c(2n + 1)t2n+1 =
∑

i,j≥0

E2i+2j+1

(2i + 1)! j! 4j
tan−1(t)2i+1

(

log
1 + t2

1 − t2

)j

∑

n≥0

c(2n)t2n =
1

4
√

1 − t4

∑

i,j≥0

E2i+2j

(2i)! j! 4j
tan−1(t)2i

(

log
1 + t2

1 − t2

)j

.

Proof. We have

∑

n≥0

c(2n + 1)t2n+1 = OZ(t, t2, 0, 0, . . . )

∑

n≥0

c(2n)t2n = EZ(t, t2, 0, 0, . . . ),

and similarly for c∗(n). The result is thus a special case of Theo-
rem 5.6.

The identity c(n) = c∗(n) does not seem obvious. It can also
be obtained using properties of the RSK algorithm, analogous to
the argument after the proof of Theorem 3.1 Namely, w ∈ Sn is
an alternating (respectively, reverse alternating) involution if and

only if w
rsk→ (P, P ), where P is an alternating (respectively, reverse

alternating) SYT. Hence if w′ rsk→ (P t, P t), then the map w 7→ w′

interchanges alternating involutions w ∈ Sn with reverse alternating
involutions w′ ∈ Sn.
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6 Fixed points.

P. Diaconis (private communication) raised the question of enumer-
ating alternating permutations by their number of fixed points. It is
easy to answer this question using Theorem 5.6. Write dk(n) (re-
spectively, d∗

k(n)) for the number of alternating (respectively, re-
verse alternating) permutations in Sn with k fixed points. Write
Ot and Et for the odd and even part of a power series with respect
to t (ignoring other variables), i.e., OtF (t) = 1

2
(F (t) − F (−t)) and

EtF (t) = 1
2
(F (t) + F (−t)).

Proposition 6.1. We have

∑

k,n≥0

dk(2n + 1)qkt2n+1 = Ot
exp(E(tan−1 qt − tan−1 t))

1 − Et
(23)

d∗
k(2n + 1) = dk(2n + 1) (24)

∑

k,n≥0

dk(2n)qkt2n = Et

√

1 + t2

1 + q2t2
exp(E(tan−1 qt − tan−1 t))

1 − Et

∑

k,n≥0

d∗
k(2n)qkt2n = Et

√

1 + q2t2

1 + t2
exp(E(tan−1 qt − tan−1 t))

1 − Et
.

Equivalently, we have the nonumbral formulas

∑

k,n≥0

dk(2n + 1)qkt2n+1 =
∑

i,j≥0
i6≡j (mod 2)

Ei+j

j!
ti(tan−1 qt − tan−1 t)j

∑

k,n≥0

dk(2n)qkt2n =

√

1 + t2

1 + q2t2

∑

i,j≥0
i≡j (mod 2)

Ei+j

j!
ti(tan−1 qt − tan−1 t)j

∑

k,n≥0

d∗
k(2n)qkt2n =

√

1 + q2t2

1 + t2

∑

i,j≥0
i≡j (mod 2)

Ei+j

j!
ti(tan−1 qt − tan−1 t)j .

Proof. It is not hard to see (e.g., [16, (1)]) that
∑

λ⊢n

Lλ = pn
1 ,
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where p1 = x1 + x2 + · · · . It follows from equations (12), (13) and
(21) that

G1(t)G2(t) · · · =
∑

n≥0

pn
1 t

n =
1

1 − p1t
.

Hence by equation (20) we have

∑

k,n≥0

dk(2n + 1)qkt2n+1 =
∑

k,n≥0

d∗
k(2n + 1)qkt2n+1

= Ot exp(E tan−1 qt)

(

1 + t

1 − t

)E2/4

F3(t)F4(t) · · ·

= Ot
exp(E tan−1 qt)

exp(E tan−1 t) · (1 − Et)
,

proving (23) and (24). The proof for n even is analogous.

Corollary 6.2. For n > 1 we have d0(n) = d1(n) and d∗
0(n) = d∗

1(n).

Proof. Let

M(q, t) = Ot
exp E(tan−1 qt − tan−1 t)

1 − Et
.

By equation (24) it follows that

∑

n odd

d0(n)tn = M(0, t)

∑

n odd

d1(n)tn =
∂

∂q
M(q, t)

∣

∣

∣

∣

q=0

.

It is straightforward to compute that

∂

∂q
M(q, t)

∣

∣

∣

∣

q=0

− M(0, t) = sinh(E tan−1 t).

By equation (17) we have sinh(E tan−1 t) = t, and the proof follows
for n odd. The proof for n even is completely analogous.
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We have a conjecture about certain values of dk(n) and d∗
k(n). It

is not hard to see that

max{k : dk(n) 6= 0} = ⌈n/2⌉, n ≥ 4

max{k : d∗
k(n) 6= 0} = ⌈(n + 1)/2⌉, n ≥ 5.

Conjecture 6.3. Let Dn denote the number of derangements (per-
mutations without fixed points) in Sn. Then

d⌈n/2⌉(n) = D⌊n/2⌋, n ≥ 4

d∗
⌈(n+1)/2⌉(n) = D⌊(n−1)/2⌋, n ≥ 5.

It is also possible to obtain asymptotic information from Proposi-
tion 6.1. The next result considers alternating or reverse alternating
derangements (permutations without fixed points).

Corollary 6.4. (a) We have for n odd the asymptotic expansion

d0(n) ∼ 1

e
(En + a1En−2 + a2En−4 + · · · ) (25)

=
1

e

(

En +
1

3
En−2 −

13

90
En−4 +

467

5760
En−6 + · · ·

)

,

where
∑

k≥0

akx
2k = exp

(

1 − 1

x
tan−1 x

)

.

(b) We have for n even the asymptotic expansion

d0(n) ∼ 1

e
(En + b1En−2 + b2En−4 + · · · ) (26)

=
1

e

(

En +
5

6
En−2 −

37

360
En−4 +

281

9072
En−6 + · · ·

)

,

where
∑

k≥0

bkx
2k =

√
1 + x2 exp

(

1 − 1

x
tan−1 x

)

.
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(c) We have for n even the asymptotic expansion

d∗
0(n) ∼ 1

e
(En + c1En−2 + c2En−4 + · · · ) (27)

=
1

e

(

En − 1

6
En−2 +

23

360
En−4 −

1493

45360
En−6 + · · ·

)

,

where
∑

k≥0

ckx
2k+1 =

1√
1 + x2

exp

(

1 − 1

x
tan−1 x

)

.

Note. Equations (25), (26), and (27) are genuine asymptotic
expansions since Em ∼ 2(2/π)m+1m!, so for fixed k,

En−k ∼ 2
(π

2

)k 1

nk
En

as n → ∞. In fact, since

Em = 2

(

2

π

)m+1

m!(1 + O(3−m)),

we can rewrite (25) (and similarly (26) and (27)) as

d0(n) ∼ En

e

(

1 + a1

(π

2

)2 1

(n)2
+ a2

(π

2

)4 1

(n)4
+ · · ·

)

,

where (n)j = n(n − 1) · · · (n − j + 1).
Proof of Corollary 6.4. (a) It follows from equation (23) that

∑

n odd

d0(n)tn = Ot
exp(−E tan−1 t)

1 − Et
.

This series has the form
∑

n odd

tn(an0E
n + an1E

n−2 + an2E
n−4 + · · · ).

If we replace t with Et and E with 1/E we therefore obtain

Ot
exp(−E−1 tan−1 tE))

1 − t
=
∑

n odd

tn(an0 + an1E
2 + an2E

4 + · · · ). (28)
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We claim that for fixed j the coefficients anj rapidly approach (finite)
limits as n → ∞. If we expand the left-hand side of (28) as a power
series in E, it is not hard to see that the coefficient of E2j has the
form Qj(t)/(1 − t2), where Qj(t) is a polynomial in t, et and e−t.
Hence the coefficient of t2n+1 in Qj(t) has the form pj(n)/(2n + 1)!
for some polynomial pj(n). It follows that

anj = Qj(1) + o(n−r)

for all r > 0. Now

Ot
exp(−E−1 tan−1 tE))

1 − t
=

(1 + t)e−
1
E

tan−1 tE − (1 − t)e
1
E

tan−1 tE

2(1 − t2)
.

Multiplying by 1 − t2 and setting t = 1 gives e−
1
E

tan−1 E, and the
proof follows. The argument for (b) and (c) is analogous.

7 Multisets.

In this section we give simple umbral formulas for the number of alter-
nating and reverse alternating permutations of a multiset of positive
integers, with various interpretations of the meaning of “alternat-
ing.” There has been some previous work on alternating multiset
permutations. Goulden and Jackson [11, Exer. 4.2.2(b); solution,
pp. 459–460] obtain a formula for the number of alternating permu-
tations of the multiset with one occurrence of i for 1 ≤ i ≤ m and two
occurrences of i for m + 1 ≤ i ≤ m + n. Gessel [8, pp. 265–266] ex-
tends this result to multisets with one, two, or three multiplicities of
each part, or with one or four multiplicities of each part. Upon being
told about the results in this section, Gessel (private communication)
was able to extend his argument to arbitrary multisets, obtaining a
result equivalent to the case A = ∅ of Theorem 7.3. Zeng [19] obtains
an even more general result concerning the case A = ∅.

Our basic tool, in addition to Theorem 2.3, is the following ex-
tension of Theorem 4.1 to skew shapes λ/µ. We define the de-
scent composition of an SYT T of shape λ/µ exactly as for ordi-
nary shapes, viz., T has descent composition α = (α1, . . . , αk) if
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{α1, α1 + α2, . . . , α1 + · · ·+ αk−1} is the set of those i for which i + 1
appears in T in a lower row than i.

Lemma 7.1. Let λ/µ be a skew partition of size n, with correspond-
ing skew Schur function sλ/µ [17, Def. 7.10.1], and let α ∈ Comp(n).
Then 〈sλ/µ, sBα〉 is equal to the number of SYT of shape λ/µ and
descent composition α.

Proof. Let sλ/µ =
∑

ν cλ
µνsν . Let T be an SYT of shape λ/µ, and

apply jeu de taquin [17, §A1.2] to T to obtain an SYT T ′ of some
ordinary shape ν. Two fundamental properties of jeu de taquin assert
the following:

• As T runs over all SYT of shape λ/µ, we obtain by jeu de
taquin each SYT T ′ of shape ν exactly cλ

µν times.

• We have co(T ) = co(T ′).

The first item above appears e.g. in [17, Thm. A1.3.1], while the
second item is easily proved by showing that the descent composition
is preserved by a single jeu de taquin slide. The proof of the lemma
follows immediately from the two items above.

We can define alt(λ/µ) and ralt(λ/µ) for skew shapes λ/µ exactly
as we did for ordinary shapes λ. The following corollary is then
immediate from Theorem 2.3 and Lemma 7.1.

Corollary 7.2. Let λ/µ be a skew shape of odd size |λ/µ|. Then

alt(λ/µ) = ralt(λ/µ) = sλ/µ[E, 0,−E, 0, E, 0,−E, 0, . . . ].

If |λ/µ| is even then

alt(λ/µ) = sλ/µ[E,−1,−E, 1, E,−1,−E, 1, . . . ]

ralt(λ/µ) = sλ/µ[E, 1,−E,−1, E, 1,−E,−1, . . . ].

We are now ready to enumerate alternating permutations of a
multiset. If two equal elements i in a permutation appear consec-
utively, then we need to decide whether they form an ascent or a
descent. We can make this decision separately for each i. Let k ≥ 1,
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and let A, B be complementary subsets of [k], i.e., A ∪ B = [k],
A∩B = ∅. Let α = (α1, . . . , αk) be a composition of some n ≥ 1 into
k parts. An α-permutation of [k] is a permutation of the multiset
M = {1α1 , . . . , kαk}, i.e., a sequence a1a2 · · ·an with αi occurrences
of i, for 1 ≤ i ≤ k. An α-permutation is said to be (A, B)-alternating
if

a1 > a2 < a3 > a4 < · · ·an,

where we define j > j if j ∈ A and j < j if j ∈ B. For instance, if
A = {1, 3}, B = {2, 4}, and α = (3, 2, 2, 3), then the α-permutation
w = 1142214343 is (A, B)-alternating since

1 > 1 < 4 > 2 < 2 > 1 < 4 > 3 < 4 > 3

according to our definition. Similarly we define reverse (A, B)-alternating.
For example, 2213341414 is a reverse (A, B) α-permutation (with
α, A, B as before), since

2 < 2 > 1 < 3 > 3 < 4 > 1 < 4 > 1 < 4.

Let N(α, A, B) (respectively, N∗(α, A, B)) denote the number of (A, B)-
alternating (respectively, reverse (A, B)-alternating) α-permutations.
Write ei and hi for the elementary and complete symmetric functions
of degree i.

Theorem 7.3. Let α = (α1, . . . , αk) ∈ Comp(n), and let A, B be
complementary subsets of [k].

(a) If n is odd, then

N(α, A, B) = N∗(α, A, B)

=
∏

i∈A

eαi
·
∏

j∈B

hαj
[E, 0,−E, 0, E, 0,−E, 0, . . . ].

(b) If n is even, then

N(α, A, B) =
∏

i∈A

eαi
·
∏

j∈B

hαj
[E,−1,−E, 1, E,−1,−E, 1, . . . ]

N∗(α, A, B) =
∏

i∈A

eαi
·
∏

j∈B

hαj
[E, 1,−E,−1, E, 1,−E,−1, . . . ]
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Proof. Let σ = σ(α, A, B) be the skew shape consisting of a disjoint
union of single rows and columns, as follows. There are k connected
components, of sizes α1, . . . , αk from top to bottom. If i ∈ A then the
ith component is a single row, and otherwise a single column. For
instance, σ((3, 1, 2, 2), {2, 4}, {1, 3}) and σ((3, 1, 2, 2), {4}, {1, 2, 3})
both have the following diagram:

Suppose that n is odd. By Corollary 7.2 we have

alt(σ) = ralt(σ) = sσ[E, 0,−E, 0, . . . ].

Given an alternating or reverse alternationg SYT T of shape σ, define
an α-permutation w = a1 · · ·an by the condition that ai = j if ai

appears in the jth component of σ. For instance, if

σ =

4 8 10 12
2
3

11
5 6 9

1
7

,

then w = 422133413121. This construction sets up a bijection be-
tween alternating (respectively, reverse alternating) SYT of shape σ
and (A, B)-alternating (respectively, reverse alternating) α-permutations,
so the proof follows for n odd. Exactly the same argument works for
n even.

Some values of the relevant specializations of ei and hi are as fol-
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lows:

e1[E, 0,−E, 0, . . . ] = h1[E, 0,−E, 0, . . . ] = E

e2[E, 0,−E, 0, . . . ] = h2[E, 0,−E, 0, . . . ] = 1
2
E2

e3[E, 0,−E, 0, . . . ] = h3[E, 0,−E, 0, . . . ] = 1
6
(E3 − 2E)

e4[E, 0,−E, 0, . . . ] = h4[E, 0,−E, 0, . . . ] = 1
24

(E4 − 8E2)

e5[E, 0,−E, 0, . . . ] = h5[E, 0,−E, 0, . . . ] = 1
120

(E5 − 20E3 + 24E)

e1[E,−1,−E, 1, . . . ] = e1[E, 1,−E,−1, . . . ]

= h1[E,−1,−E, 1, . . . ] = h1[E, 1,−E,−1, . . . ] = E

e2[E,−1,−E, 1, . . . ] = h2[E, 1,−E,−1, . . . ] = 1
2
(E2 + 1)

e2[E, 1,−E,−1, . . . ] = h2[E,−1,−E, 1, . . . ] = 1
2
(E2 − 1)

e3[E,−1,−E, 1, . . . ] = h3[E, 1,−E,−1, . . . ] = 1
6
(E3 + E)

e3[E, 1,−E,−1, . . . ] = h3[E,−1,−E, 1, . . . ] = 1
6
(E3 − 5E)

e4[E,−1,−E, 1, . . . ] = h4[E, 1,−E,−1, . . . ] = 1
24

(E4 − 2E2 − 3)

e4[E, 1,−E,−1, . . . ] = h4[E,−1,−E,−1, . . . ] = 1
24

(E4 − 7E2 + 9)

e5[E,−1,−E, 1, . . . ] = h5[E, 1,−E,−1, . . . ] = 1
120

(E5 − 10E3 − 11E)

e5[E, 1,−E,−1, . . . ] = h5[E,−1,−E, 1, . . . ] = 1
120

(E5 − 30E3 + 89E).

It is easy to see (see equations (29), (30), (31) below) that for all
i we have

ei[E, 0,−E, 0, . . . ] = hi[E, 0,−E, 0, . . . ]

ei[E,−1,−E, 1, . . . ] = hi[E, 1,−E,−1, . . . ]

ei[E, 1,−E,−1, . . . ] = hi[E,−1,−E, 1, . . . ]

These formulas, together with Theorem 7.3 and the commutativity of
the ring of symmetric functions, yield some results about the equal-
ity of certain values of N(α, A, B). For instance, if n is odd, then
N(α, A, B) depends only on the multiset of parts of α, not on their
order, and also not on A and B. If n is even, then N(α, A, B) de-
pends only on the multiset of parts of α and on which submultiset of
these parts index the elements of A and B.
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The specialization of ei and hi for small i lead to some nonumbral
formulas for certain values of N(α, A, B). For instance, let k be odd,
α = (3k) (i.e., k parts equal to 3), A = ∅, so that N((3k), ∅, [k]) is
the number of alternating permutations a1 > a2 ≤ a3 > a4 ≤ a5 >
· · · ≤ a3k (where > and ≤ have their usual meaning) of the multiset
{13, 23, . . . , k3}. Then

N((3k), ∅, [k]) = hk
3[E, 0,−E, 0, . . . ]

=
1

6k
Ek(E2 − 2)k

=
1

6k

k
∑

j=0

(

k

j

)

(−2)k−jE2j+k.

In the same way we obtain the formulas in [8, pp. 265–266].
It is easy to find generating functions for the specializations of en

and hn that we are considering, using the identities
∑

n≥0

entn = exp
∑

j≥1

(−1)j−1pj

j
∑

n≥0

hntn = exp
∑

j≥1

pj

j
.

Namely,
∑

n≥0

en[E, 0,−E, 0, . . . ]tn =
∑

n≥0

hn[E, 0,−E, 0, . . . ]tn

= exp E tan−1 t (29)

∑

n≥0

en[E, 1,−E,−1, . . . ]tn =
∑

n≥0

hn[E,−1,−E, 1, . . . ]tn

=
1√

1 + t2
exp E tan−1 t (30)

∑

n≥0

en[E,−1,−E, 1, . . . ]tn =
∑

n≥0

hn[E, 1,−E,−1, . . . ]tn

=
√

1 + t2 exp E tan−1 t (31)

Equation (29) in fact is a restatement of (22).
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