
Affine Hecke Algebras via DAHA
Ivan Cherednik
Abstract. This is the lecture delivered at the con-

ference “Algebraic Analysis and Representation The-
ory” in honor of Professor Masaki Kashiwara’s 70th
birthday. Its main topic is the project aimed at obtain-

ing the Plancherel formula for the regular representa-
tion of Affine Hecke Algebras (AHA) as the limit q → 0
of the integral-type formulas for DAHA inner products
in the polynomial and related modules. The integrals

for the latter as ℜ(k) > 0 (in the DAHA parameters)
must be analytically continued to negative ℜ(k), which
is a q-generalization of “picking up the residues” due
to Arthur, Heckman, Opdam and others, which can

be traced back to Hermann Weyl. We arrive at finite
sums of integrals over double affine residual subtori.
This is not related to the DAHA irreducibility of the

polynomial and similar modules, though such formulas
can be used for their DAHA stratification when these
modules become reducible for singular (negative) k.

The decomposition of the regular AHA represen-

tation in terms of (unitary) irreducible modules is an
important part of algebraic harmonic analysis, involv-
ing highly non-trivial geometric methods (Kazhdan-
Lusztig and others). As a possible application, our
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approach would allow to interpret formal degrees of
AHA discrete series via DAHA. We mainly discuss the
spherical case and provide the analytic continuations

for A1. The key is that the uniqueness of the DAHA
inner product fixes the corresponding AHA decompo-
sition (and q-counterparts of formal degrees) uniquely.

Even in the spherical case, the procedure of ana-

lytic continuation to ℜ(k) < 0 is technically involved.
There are no significant theoretical challenges here,
but finding double affine residual subtori and their
contributions is performed (partially) only for An at

the moment. The passage to the whole regular rep-
resentation will presumably require the technique of
hyperspinors, which we outline a bit in the lecture. Im-
portantly, there is no canonical AHA-type trace in the

DAHA theory; instead, we analyze coinvariants serv-
ing DAHA anti-involutions. There are of course other
aspects of DAHA harmonic analysis (the unitary dual,
calculating Fourier transforms of DAHA modules and

so on); we touch them a bit but mostly focus on the
AHA aspects in the case of A1. Only few (basic) refer-
ences are provided; see there for further information.

Partially supported by NSF grant DMS–1363138
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Ivan Cherednik

Affine Hecke Algebras via DAHA
(Integral formulas for DAHA inner products)

A. On Fourier Analysis
B. AHA-decomposition
C. Shapovalov pairs

D. Rational DAHA (A1)
E. General DAHA (A1)
F. Inner products
G. Analytic continuation

H. P-adic limit
I. Jantzen filtrations etc.

Warmest congratulations to Kashiwara sensei (70!)
a great master of harmonic analysis !!

HARMONIC ANALYSIS, AHA vs. DAHA:

HA on AHA HA on DAHA

Unitary(sph) dual Polynomial/induced modules

Fourier transform HH- automorphism X→Y−1

Trace formulas, L2(H) Inner products as integrals

One aim: formal degrees of discrete series via DAHA?!

Kazhdan,Lusztig,Reeder,Shoji,Opdam,Ciubotaru,S.Kato
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A. ON FOURIER ANALYSIS

For A1, FT =
∫
e2λx{·} dx is associated with the

automorphism x↔ −y of “Heisenberg”. Its sphe-

rical generalization can be related to
(

0 1
−1 0

)
∈ SL2, though this interpretation seems a special

feature of A1. Similarly, Weyl algebras at q=e
2πı
N

can be used to study FN =
∑N−1

j=0 qλj{·}.
FAMOUS CHALLENGES HERE:

P1. Extending Lie theory from spherical to (any)
hypergeometric functions (Gelfand’s Program).
P2. Fourier Theory. Can FT be interpreted as a re-
flection in the Weyl group? Unlikely so. Say, there
are 3 candidates (reflections) for FT in SL3, but
FT must be unique: polynomials 7→ δ-functions.

P3. A counterpart of F (e−x2

)=
√
πe+λ2

at roots of

unity is FN (qj
2

)=ζ
√
Nq−λ2

for ζ ∈ {0, 1, ı, 1+ı}.
The Weyl algebra gives

√
N but doesn’t catch ζ,

i.e. it “fails” to calculate the Gauss sums.

DAHA APPROACH: P1,2: Global hypergeomet-
ric fncts are reproducing kernels of DAHA-FT (its
square is essentially id); any root systems were
managed. P3 can be settled too (DAHA-Gauss-
Selberg sums). What does this give for AHA?
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GLOBAL FUNCTIONS Φq,t(X,Λ), q < 1.[2]

Φ̃q,t(X,Λ)
def
== θR(X)θR(Λ)Φq,t(X,Λ) is a “glob-

ally” convergent series in terms of Pµ(X)Pµ(Λ),
W -invariant (X and Y ), and X ↔ Λ-symmetric.
Here θR is theta associated with a root system R, µ ∈
P . Letting X = qx,Λ = qλ and assuming that
λ = w(λ+) for λ+ such that ℜ(λ, αi) > 0 (i.e. λ is
generic) and that ℜ(x, αi) → +∞, asymptotically:

Cq,tΦq,t(X,Λ) ≍ Φas
q,t(X,Λ)

def
== q−(x,λ+)(1 + . . .),

where Cq,t is some explicit product via Λ, q, t.

Harish-Chandra theory (I.Ch[4, 6], J.Stokman[13]):
Φq,t(X,Λ) =

∑
w∈W σq,t(w(Λ))Φ

as
q,t(X,w(Λ))

for the q, t-extension σq,t(Λ) of the Harish-Chandra
c-function. Also, LpΦq,t(X,Λ) = p(Λ)Φq,t(X,Λ)
for p ∈ C[X]W and Macdonald-Ruijsenaars opera-
tors Lp (Ch. for non-A root systems); but this is
NOT used in the formula/theory of Φq,t. However
this eigenvalue problem is important for Φas

q,t and
the justification of the Harish-Chandra formula.

As a matter of fact Φ is an entirely algebraic object,

uniquely determined by its asymptotic behavior, includ-

ing the walls∼resonances (when ℜ(α, λ) = 0 for some

roots α). Φas generalizes the basic hypergeometric func-

tion (Heine, 1846), . . . , Givental-Lee’s q-Whittaker one.
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B. AHA-DECOMPOSITION
R ∈ Rn - a root system, Q ⊂ P , W =<sα>,

W̃ =WnQ⊂Ŵ =WnP =W̃nΠ, Π=P/Q,

H def
==< Π, Ti(0 ≤ i ≤ n) > /{homogeneous

Coxeter relations, (Ti − t
1
2 )(Ti + t−

1
2 ) = 0 },

Tŵ=πTil · · ·Ti1 , ŵ=πsil · · ·si1 ∈Ŵ , l= l(ŵ).

T ∗
ŵ

def
== Tŵ−1 , ⟨Tŵ⟩ = δid,ŵ,

⟨f, g⟩ def
== ⟨f∗g⟩ =

∑
ŵ∈Ŵ cŵdŵ, where

f=
∑
cŵTŵ, g=

∑
dŵTŵ∈L2(H)=L2(RŴ ).

Dixmier: ⟨f, g⟩ =
∫
π∈H∨ Tr(π(f∗g))dν(π).

SPH-case: f, g ∈ P+HP+, P+=
∑

w∈W t
l(w)
2 Tw.

Macdonald: νsph(π), t > 1. Its extension to
0 < t < 1 (due to ... Arthur, Heckman-Opdam ...):∫
{·} dνansph(π) =

∑
Cs,S ·

∫
s+iS

{·} dνs,S , [8, 15, 16]

summed over s + S =residual subtori. Residual
points ∼ square integrable irreps (as χπ extends to

L2(H)). Kazhdan-Lusztig[11, 12]: Deep Alg-Geom!

The q, t-generalization of AKLHO becomes DAHA-
invariant (the whole sum is necessary for this!) and
the C-coefficients are uniquely determined by this.
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C. SHAPOVALOV PAIRS [5]

DAHA INTEGRATIONS (plus Γq p-adic Γ):

imaginary (|q| ̸= 1) real (|q| ̸= 1)
⇓ ⇓

constant term (∀q) Jackson sums
⇑ ⇓

the case |q| = 1 ⇒ ⇒ roots of unity

R ∈ Rn a root system (reduced),
W =< si, 1 ≤ i ≤ n >, P = weight lattice.

HH =< Xb, Tw, Yb >q,t, b ∈ P,w ∈W.
Over R ∋ q, t, q = exp(−1/a), a > 0.

Shapovalov anti-involution κ of HH (for Y ):
such that Tκ

w = Tw−1 and ”PBW” holds:
HH ∋ H =

∑
cawbY

κ
a TwYb (∃ and unique!).

Example. κ : Xb↔Y−1
b , Tw→Tw−1(w∈W ).

Coinvariant: {H}ϱ
κ =

∑
cawb ϱ(Ya)ϱ(Tw)ϱ(Yb),

where ϱ : R[Y ±1] → R(or C[·] → C) is a character,
and ϱ(Tw)=ϱ(Tw−1). Then {κ(H)}ϱκ = {H}ϱκ by

construction and {A,B} def
== {Aκ B}ϱκ = {B,A}.

OUR PROBLEM: Integral formulas for {H}ϱκ?



8 Let ϱ be the 1d character of affine HY sending
Ti 7→ t1/2. Then {A,B} acts via X×X for the poly-

nomial representation X = R[X±1] = IndHHHY
(ϱ).

Level-one anti-involution κ: when dimHH/(J +
J κ) = 1 for X = HH/J (Shapovalov κ ⇒ level-
one). Let ∗ : g 7→ g−1 for g = X,Y, Tw, q, t (it
serves the Macdonald-type inner product in X ). It
is level-one for generic q, t but not Y -Shapovalov.

D. RATIONAL DAHA

For rational DAHA, ∗ is not level-one.

HH′′ def
== ⟨x, y, s⟩/relations :

[y, x]= 1
2
+ks, s2=1, sxs=−x, sys=−y.

Polynomial representation R[x]:
s(x) = −x, x = mult by x, y 7→ D/2,
D = d

dx
+ k

x
(1− s) (Dunkl).

The anti-involution x∗ = x, y∗ =−y, s∗ = s for-
mally serves

∫
f(x)g(x)|x|2k, but it diverges at ∞.

Algebraically, R[x] has NO ∗-form for k ̸∈ −1/2−
Z+: {1, y(xp+1)} = 0 = {1, cp+1x

p}, where c2p =
p, c2p+1 = p+ 1/2 + k (direct from the Dunkl op-
erator). Hence, {1, xp} = 0 (∀p) and { , } = 0.
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PBW THM. h =

∑
caδb((y + x)∗)asδ(y + x)b.

Letting now {f} def
==

∑
δ=0,1 coδo, {f, g}

def
== {f∗g}

acts through R[x]e−x2

×R[x]e−x2

: (y+x)e−x2

= 0;

therefore R[x]e−x2

=HH′′/(HH′′(y+x),HH′′(s−1)).

Explicitly, let p = a+b
2

for a, b ∈ Z+. Then

{xa, xb}=( 1
2
)p( 1

2
+k) · · · ( 1

2
+k+p−1); use PBW.

Integral formula for this form: {f , g} =
1
i

∫
−ϵ+iR(fge

−2x2

(x2)k)dx/(cos(πk)C),

C = Γ(k + 1/2) 2k+1/2, ∀k ∈ C, ϵ > 0.

For real k > −1/2, one can simplify this:

{f , g} = 1
iC

∫
iR fge

−2x2

|x|2kdx.

Let k=− 1
2
−m and

∫
−ϵ+iR  

1
2
(
∫
−ϵ+iR+

∫
ϵ+iR);

{f , g} becomes= const Res0 (fge
−2x2

x−2m−1dx).

Its Radical is (x2m+1e−x2

): a unitary HH′′-module

w.r.t. 1
i

∫
iR fge

−2x2

|x|−2m−1dx; the ∗-form of the

quotient R[x]/(x2m+1) is non-positive! See [5].
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E. GENERAL DAHA (A1)

[1]

ELLIPTIC BRAID GROUP AND DAHA:

Bq
def
== ⟨T,X, Y, q1/4⟩/ { TXT =X−1,

TY−1T =Y, Y−1X−1Y XT 2=q− 1
2 }.

B1 = πorb1 ({E \ 0}/S2) ∼=
π1({E × E \ diag}/S2), E =elliptic curve.

HH def
== R[Bq]/((T − t1/2)(T + t−1/2));

we use q = exp(−1/a), a > 0, t = qk, k ∈ R.

For t
1
2 = 1, HH=Weyl algebraoS2, T → s :

sXs=X−1, sY s=Y −1, Y −1X−1Y X=q−1/2.

We “coupled” Weyl algebra with Hecke one. Heisenberg

and Weyl algebras (non-commutative tori) are the main

tools in quantization of symplectic varieties. So DAHA is

“next”, a general tool for their “refined quantization”.

Rational DAHA HH′′ ([y, x] = 1/2 + ks, . . . ) :

X=e
√

~x, Y =e−
√

~y, q=e~, t=qk, ~ → 0, T→s.

Operator Fourier transform is the DAHA
automorphism sending: q1/2 7→ q1/2, t1/2 7→ t1/2,
Y 7→ X−1, X 7→ TY −1T−1, T 7→ T ;

topologically, the transposition of the periods of E!
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Generators and relation Y−1X−1Y XT 2=1
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The whole PSL2(Z) acts projectively :(
11

01

)
∼ τ+ : Y 7→ q−1/4XY, X 7→ X, T 7→ T,(

10

11

)
∼ τ− : X 7→ q1/4Y X, Y 7→ Y, T 7→ T.

They are directly from topology. The key for us
is a pure algebraic fact that τ+ is the conjugation

by qx
2

, where X = qx; use X below to see this.
DAHA FT is for τ−1

+ τ−τ
−1
+ = σ−1 = τ−τ

−1
+ τ−.

Polynomial representation = IndHHHY
(ϱ) is in

X = Laurent polynomials of X = qx,

T 7→ t1/2s +
t1/2 − t−1/2

q2x − 1
(s − 1),

Y 7→ πT, π = sp, sf(x) = f(−x),

pf(x) = f(x + 1/2), t = qk.

Y is the difference Dunkl Operator.

Y + Y −1 preserves Xsym
def
==

sym (even) Laurent polynomials.
Y + Y −1 |sym is the q, t-radial part.
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F. INNER PRODUCTS[1]

Macdonald Truncated θ-function: µ(x) =

=
∏∞

i=0
(1−qi+2x)(1−qi+1−2x)

(1−qi+k+2x)(1−qi+k+1−2x)
, X = qx,

⟨f, g⟩
1/4

def
== 1

2πai

∫
1/4+P

f(x)T (g)(x)µ(x)dx,

P = [−πia, πia], q = exp(−1/a).

THM. For k>− 1
2
(generally, ℜk>− 1

2
), ⟨f, g⟩

1/4
=

(fT (g)µ)ct; the later serves the anti-involution ⋄:
T ⋄ = T, Y ⋄ = Y, X⋄ = T−1XT ; the former is
symmetric for any k and positive on X = R[X±1].

Proof. The coincidence and the relation ⋄ to
(fT (g)µ)ct are standard. The positivity is straight-
forward via the norm-formulas for E-polynomials;
let us see this directly using π(µ) = µ(1/2−x) = µ.

a) Y (En) = q−n♯En, En = Xn + (l.t.),X = qx,

n♯ =
n− k

2
as n ≤ 0, =

n+ k

2
as n > 0.

b) ⟨En, Em⟩
1/4

= Cnδnm due to Y ⋄ = Y .

c) Cn = q−n♯ 1
i

∫
1/4+P

EnEnµ(x)dx > 0, since

π(x) = x (bar=c.c.) and µ(x) > 0 at 1/4 + P ; use

T (En) = πY (En) = q−n♯π(En) = q−n♯En.2
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Imaginary Integration. k>− 1
2
, f, g∈X :

⟨f, g⟩γ,∞
1/4

def
== 1

i

∫
1
4
+iR fT (g)q

−x2

µ(x)dx =

1
2i

√
πa

∫
1
4
+P

fT (g)
∑∞

j=−∞ qj
2/4+jxµ(x)dx

is a symmetric and positive form, serving
Tκ = T, Xκ = T−1XT, Y κ = q−1/4XY.

G. ANALYTIC CONTINUATION
Ingredients: The Shapovalov κ above and

ϱ(
∑ϵ=0,1

a,b∈Z caϵb(Y
κ)a T ϵ Y b)

def
==

∑
caϵbt

a+ϵ+b
2 ,

{A,B}ϱ
κ

def
== ϱ(AκB) = {B,A}ϱ

κ on HH.

It ”acts” via X×X , X =R[X±1], and {1, 1}=1.
This form is (obviously) analytic for all k ∈ C.

THM. G(k){f, g}ϱκ = ⟨f, g⟩γ,∞
1/4

, where

G(k) =
√
πa
∏∞

j=1
1−qk+j

1−q2k+j , ℜk > −1/2.

Proof. For C def
== {ϵ+ iR}, we set Φk

ϵ (f, g)
def
==

1
i

∫
ϵ+iR fT (g)q−x2

µ(x)dx. For this path, bad

k are { 2C − 1 − Z+, −2C − Z+ } (when poles of
µ belong to C); so {ℜk > −1/2} are all good as
ϵ = 1/4 (and ℜk>> 0 provide the required). �
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Case ϵ = 0. Φk

0(f, g) is G(k){f, g}ϱκ only for
ℜk > 0! For any k, it is symmetric and “sends”
T 7→T, X 7→Xκ=T−1XT (not for Y if ℜk < 0).

Comparing ϵ=0, 1
4
for 0>ℜk>− 1

2
(the key step):

Φk
1
4
=Φk

0+A(− k
2
)µ•(− k

2
)F (− k

2
)

def
== Φ̂k, where

A(k̃) =
√
πa
∑∞

m=−∞ qm
2+2mk̃ (from q−x2

),

F (− k
2
)=fT (g)(x 7→− k

2
), here F ∈ R[X±2],

µ•(− k
2
) =

∏∞
j=0

(1−qk+j)(1−q−k+j+1)

(1−q1+j)(1−q−2k+j+1)
.

Since Φ̂k is meromophic for 0 > ℜk > −1 (i.e.
beyond−1/2!), it coincides withG(k){f, g}ϱκ there.
And it is also symmetric for ANY k; justification:
fT (g)(− k

2
) = t1/2fg(− k

2
) = T (f)g(− k

2
)

due to T = q2x+k/2−q−k/2

q2x−1
s− qk/2−q−k/2

q2x−1
,

where (q2x+k/2 − q−k/2)(x 7→ −k/2) = 0.

MAIN THM. For ℜk < 0, G(k){f, g}ϱκ = Φk
0+

µ•(− k
2
)
∑

k̃∈K̃
A(k̃) t

−j±∏j±
i=1

1−t2qi

1−qi
F (k̃), j+=j−1, j−=j,

K̃ = {−k/2} ∪ {± k+j
2
, 1≤j ≤ m},m def

== [ℜ(−k)],
K̃ = {n♯, |n| ≤ m}, [·] =integer part. [If F ∈
R[X±1], the poles of µ are q−

1
2 X∈ ±qZ+/2t

1
2 ∋X−1].

Only the total sum is an HH-form (cf. “AKLHO”)!



16 COR. {f, g}ϱκ is degenerate exactly at the poles
of G(k) : k = − 1

2
− m,m ∈ Z+. For such k,

X/Radical{ , } is a sum of 2 irreps of dim= 2m+1
(“perfectHH-modules”,X 7→−X transposes them).

The radical is unitary(!) with respect to Φk
0 .

Rational Limit: q = e~, t = qk, ~ → 0,

Y = e−
√

~y, X = e
√
~x, qx

2

= ex
2

, µ x2k,

Funct(K̃) R[x]/(x2m+1), HH′′ = limHH .

GENERAL THEOREM. For Shapovalov or level-
one κ, the corresponding DAHA form is a finite
sum of integrals over q, t-residual subtori.

H. P-ADIC LIMIT[1]

In AHA H of type A1 (s = s1, ω = ω1, π = sω),

let ψn
def
== t−

|n|
2 TnωP+, P+ = (1 + t1/2T )/(1+ t)

for n ∈ Z, considered as polynomials in Y
def
==

Tω = πT ; they are actually the Matsumoto spheri-
cal functions. Accordingly, the Satake-Macdonald
p-adic spherical functions become P+ψn(n ≥ 0).

THM. For n ∈ Z, En(X)/En(t
− 1

2 ) become ψn

as q→0 upon f(X)7→f ′(Y )
def
== f(X 7→Y, t 7→ 1

t
).
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Let µ0 =µ(q → 0)= 1−X
1−tX

, {f, g}0 =(fT (g)µ0)ct.

Then for ⟨Tŵ⟩ = δid,ŵ and ∗ : Tŵ 7→ Tŵ−1 in H,

{f, g}′0=(t1/2+t−1/2)⟨(f ′P+)(g
′P+)

∗⟩ for f, g∈X
(nonsym AHA Plancherel formula); t′= 1

t
, X′=Y .

THM. For q=e−
1
a ,M ∈N, F =fT (g)∈R[X±2],

(Fµ)ct =
1

2πMaı

∫ +πMaı

−πMaı
Fµdx +µ•(− k

2
)×(

F (− k
2
) +

∑[ℜ(−k)]
j=1,± F (± k+j

2
) t−j±

∏j±
i=1

1−t2qi
1−qi

)
,

the MAIN THM without Gaussians. The corre-
sponding Jantzen filtration is in terms of AHA sub-
modules of X (HH-modules for k=− 1

2
−m).

Making a = 1/M and sending M → ∞ (then

q = e−1/a → 0), we set k = −ca for c > 0. Then

t= e−
k
a → ec and the formula above for ℜk → 0−

becomes the AKLHO one; recall that DAHA t>1
is replaced by AHA 1/t < 1. Here and generally
only AHA residual subtori contribute for such k.

A generalization to the whole (non-spherical)
regular representation of H requires the induced
DAHA module corresponding to X and the tech-
nique ofW -spinors; “supermathematics” is for A1.
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Spinors[5, 7, 14]. The W -spinors (or hyperspinors)
are simply collections {fw, w ∈ W} of elements fw ∈
A with a natural action of W on the indices. If A (a

space or an algebra) has its own (inner) action of W and
fw = w−1(fid), they are called principle spinors (or
simply “functions”). The technigue of spinors is a direct
generalization of supermathematics, which is the case of

the root system A1. It allows to deal with spinors as
with usual functions (including any algebraic operations,
differentiation, integration and so on and so forth); do we
have “hypersymmetric theories” in physics?

They proved to be very useful. One of the first in-

stances was the Cherednik-Matsuo theorem (1991, a con-

nection of AKZ and QMBP; see [1] and also [14],[5]). The

theory of non-symmetric q-Whittaker functions is a con-

vincing example [5],[7]. By the way, x2k for complex k in

the rational theory above is a typical complex spinor , i.e.

a collection of two its (independent) branches in the up-

per and lower half-planes. To give another example, the

Dunkl eigenvalue problem always has |W | independent
spinor solutions; generally only one of them is a func-

tion. In the case of HH′′ for A1 (above), both fundamen-

tal spinor solutions for singular k = −1/2−m, m ∈ Z+

are functions. See [5] for these and further examples.
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I. JANTZEN FILTRATIONS etc.

To summarize, the ingredients are (a) Shapovalov
anti-involution κ of HH (w.r.t. Y = R[Yb]), i.e.
s.t. {κ(Ya)TwYb} form a (PBW) basis of HH;

(b) the corresponding Coinvariant : ϱ : HH →
R satisfying ϱ(κ(H)) = ϱ(H) (for any character of
Y and any ϱ on H s.t. ϱ(Tw − Tw−1)=0); and

(c) Shapovalov form , a combination of (a) and
(b), normalized by {1, 1} = 1 and analytic for any

k, which is {A,B} def
== ϱ(AκB) for A,B ∈ HH.

PROBLEMS: Express {f, g}ϱκ as a sum of integrals
over the DAHA residual subtori for any (nega-
tive) ℜk. Generalize to arbitrary DAHA anti-invo-
lutions (any “levels”) and any induced modules.

Analytic Jantzen filtration of X (AHA (!) but
not DAHA modules) for ℜk < 0. The top(first)
term is the sum over the smallest subtori, the bot-
tom(last) term is the pure integration over iRn.

Algebraic Jantzen filtration of X is in terms of

DAHA (!) modules at singular ko w.r.t. k̃ = k−ko.
The top form is then for k̃ = 0, the bottom one is
(in known examples) the pure integration over iRn.
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For the second, restrict the m-th form to the
radical of the (m−1)-th form and consider its rad-
ical, continue. The construction gives the so-called
Kasatani decomposition of X for An

[9, 10]. For
arbitrary root systems, this is not done; generally
the constituents can be DAHA reducible.

Rational case. Represent {f, g}ϱκ as an integral
over the boundary of the tube neighborhood of the
resolution of the cross

∏
xα = 0, e.g., ±iϵ + R

for A1. This resolution (presentation as a divisor
with normal crossings) is due to Ch (Publ. of RIMS,

1991), de Concini - Procesi, Beilinson - Ginzburg.
Conjecturally: singular ko are the k when this

integral can be reduced to integrations “over smaller
subtori” (a sum over certain points for A1).

Conjecturally: for singular ko = − s
di
, the bot-

tom module is “semi-simple” (à la Suzuki for An);

see [3] (a q, t-theory of the bottom module related
to the “wheel conditions”). It can be unitary for

s=1 (not for any s) w.r.t. the pure
∫
Rn {·}e−x2

dx

(as for A1); see Etingof et al. in the case of An
[10].

Note a relation to singularities à la Shokurov.
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