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The Descent Set of a Permutation

w=aiay---a, €6,

descent set of w: Des(w) ={1<i<n-—1: a3 > aj+1}
Want a generating function for

Bn(s) = #{W €6, : D(W) = 5}7

Z YDes(w): Z /BH(S)YS’

weS, SCln—1]

for some (linearly independent) algebraic entities Ys, for
SCn—1]:={1,2,...,n—1}.



Best choice here of Ys

Fix n. For S C [n — 1], define

FS = E Xi1Xi2 c o Xins

1<ii<ir<-+<ip
ii<ijy1 if jeS

known as (Gessel’s) fundamental quasisymmetric function.



Best choice here of Ys

Fix n. For S C [n — 1], define

FS — E Xi1Xi2 o ‘Xl'n7

1<ii<ir<-+<ip
I:,‘<I'j+1 if je$S

known as (Gessel’s) fundamental quasisymmetric function.

Theorem. Z FDeS(W) =01 +x+-- ) =p!
weG,



The case n = 3

w FDes(W)
123 Z X3XpXc
1<a<b<c
132 Z XaXpXc
1<a<b<c
213 Z XaXpXc
1<a<b<c
231 Z XaXpXc
1<a<b<c
312 Z XaXpXc
1<a<b<c
321 Z XaXpXc
1<a<b<c

(X1+X2+"')3
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X-descent sets

XC&={(ij) :1<i<n 1<j<n i#j}

X-descent of w = a1---a, € G, anindex 1 < k < n—1 for
which (ak, ak+1) e X

X-descent set XDes(w): set of X-descents

(@) X ={(i,j) : n—=1>i>j>1}: XDes = Des (the
ordinary descent set)

(b) X ={(i,j) € [n] x [n] : i # j}: XDes(w) = [n—1]



Symmetric functions

Symmetric function: f = f(xq,x2,...), a power series of
bounded degree with rational coefficients, invariant under any
permutation of the x;'s.

partition of n: A= (A, A2,...), M1 > > >0, > \i=n,
denoted An
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Symmetric functions

Symmetric function: f = f(xq,x2,...), a power series of
bounded degree with rational coefficients, invariant under any
permutation of the x;'s.

partition of n: A= (A, A2,...), M1 > > >0, > \i=n,
denoted An

Power sums: py = >, x¥ (with py = 1),
Px = PxiPxz s
a Q-basis for the space of symmetric functions

Schur functions sy: another Q-basis, not defined here
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A generating function for the XDescent set

Define Ux = > Fxpes(w)-
WGGn

Example. n=3, X = {(1,3),(2,1),(3,1), (3,2)}

w | XDes(w)
123 0
132 | {1,2}
213 | {1,2}
231 | {2}
312 | {1}
321 | {1,2}

Ux = Fy+ Fi+ Fa+3F12 = pi — pap1 + p3 = 53+ 521 + 25111
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Ux =), capx, where ¢ € Z.
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First easy theorem

(a) Ux is a p-integral symmetric function, i.e.,
Ux =), capx, where ¢ € Z.

Proof. Consider the coefficient of a monomial, say m = xZx3x2

(where n = 7). Recall

Ux = Z FxDes(w)
WGGn

F5 = E X,'IX,'2 ~~~X,'n.

1<ii<ir<-++<ip
ii<ijy1 if jeS

Let w = a1az---a7. Thus m appears in Fxpeg(w) if and only if
(31, 32)) (337 34)) (347 35)’ (367 37) ¢ X.
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Proof continued

Let w = a1ay---a7. Thus m appears in Fxpeg(w) if and only if
(317 32)7 (337 34)7 (347 35)7 (367 37) ¢ X.

Write w = aja, - azasas - agay = ujupus (juxtaposition of words).
Then x?x3xZ appears in Fxpes(w), Where w' = wpuyus.
Generalizing shows that Ux is a symmetric function.

Also x2x3x2 = m appears in Fxpes(w), where w” = usupuy.
Generalizing shows that the coefficient of x{"x52 - -+ in Ux is an
integer multiple of my! my!---, where mj = #{j : oj = i}.

Well-known and easy that this implies Ux is p-integral (given that
Ux is a symmetric function). O



Second easy theorem

w: linear transformation on symmetric functions given by
w(py) = (=1)"~“PMp, for A+ n, where £(\) = #{i : \; > 0}.



Second easy theorem

w: linear transformation on symmetric functions given by
w(py) = (=1)"~“PMp, for A+ n, where £(\) = #{i : \; > 0}.

Note. w? =1



Second easy theorem

w: linear transformation on symmetric functions given by
w(py) = (=1)"~“PMp, for A+ n, where £(\) = #{i : \; > 0}.

Note. w? =1

Theorem. Let X =&, — X. Then wlUx = Ux.



Second easy theorem

w: linear transformation on symmetric functions given by
w(py) = (=1)"~“PMp, for A+ n, where £(\) = #{i : \; > 0}.

Note. w? =1
Theorem. Let X =&, — X. Then wlUx = Ux.

Proof.



Second easy theorem

w: linear transformation on symmetric functions given by
w(py) = (=1)"~“PMp, for A+ n, where £(\) = #{i : \; > 0}.

Note. w? =1
Theorem. Let X =&, — X. Then wlUx = Ux.

Proof. Exercise.



Special case

record set rec(w) for w =a;---a, € G

rec(w) ={0<i<n—1:a; > aforall j <i}. Thus always

0 € rec(w).

record partition rp(w): if rec(w) = {r, ..., rj}<, then rp(w) is
the numbers r; —rg,r, —r1,...,n—rj arranged in decreasing order.



Special case

record set rec(w) for w =a;---a, € G

rec(w) ={0<i<n—1:a; > aforall j <i}. Thus always

0 € rec(w).

record partition rp(w): if rec(w) = {r, ..., rj}<, then rp(w) is
the numbers r; —rg,r, —r1,...,n—rj arranged in decreasing order.

(conjectured by RS, proved by I. Gessel). Let X have
the property that if (i,j) € X then i > j. Then

Ux = Z Prp(w)-

WGGn
XDes(w)=0

In particular, Ux is p-positive.



An example

n=4 X= {(2’ 1)’ (3’2)’ (4’ 3)}

w_ | rp(w)
1234 | 1111
1342 | 211
1423 | 31
2314 | 211
2341 | 211
2413 | 31
3124 | 31
3142 | 22
3412 | 31
4123 | 4
4231 | 4




An example

n=4 X= {(2’ 1)’ (3’2)’ (4’ 3)}

w_ | rp(w)
1234 | 1111
1342 | 211
1423 | 31
2314 | 211
2341 | 211
2413 | 31
3124 | 31
3142 | 22
3412 | 31
4123 | 4
4231 | 4

= Ux = pi + 3p2pi + 4psp1 + p3 + 2ps



A generalization

Theorem (D. Grinberg) Suppose that (i,j) € X = (j,i) & X.
Then Uyx is p-positive.



A generalization

Theorem (D. Grinberg) Suppose that (i,j) € X = (j,i) € X.
Then Uyx is p-positive.

In fact, Grinberg has a combinatorial interpretation of the
coefficients (not given here).



Connection with chromatic symmetric functions

P: partial ordering of [n]
Yo =1{(ij) : i >p j}

inc(P): incomparability graph of P, i.e., vertex set [n], edges ij if
il]ljinP

Xg: chromatic symmetric function of the graph G (generalizes the
chromatic polynomial)



Connection with chromatic symmetric functions

P: partial ordering of [n]

Yo ={(ij) : i >p j}

inc(P): incomparability graph of P, i.e., vertex set [n], edges ij if
il]ljinP

Xg: chromatic symmetric function of the graph G (generalizes the
chromatic polynomial)

Theorem. Uy, = wXiy(p)
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Succession-free permutations

Let X ={(1,2),(2,3),...,(n—1,n)} (successions).

fo =#{w € &, : XDes(w) = (0} (succession-free permutations)

x" e X

Known result. an+1 ' ﬁ
n! — X

n>0

n
Theorem. Ux = E fi Si gn—i
i=1

(generating function for w € &, by positions of successions, i.e,
the succession set of w)

Example. n=4: Ux = 11s4 + 3s31 + S»11 + S1111
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Sketch of proof

n
Theorem. Ux = g fi Si gn—i
i=1

Proof. For S C [n — 1], take coefficient of Fs on both sides.
#{w € &, : XDes(w) = S}
Use

Sjn—i = Z Fs.

se(in—1)

n—i

To show: fi = #{w € &, : XDes(w) =S} if #S=n—1.
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Conclusion of proof

To show: fi = #{w € &, : XDes(w) =S} if #S=n— 1.
Will define a bijection (for fixed n and /)
{we &, : XDes(w) =S, #5=n—i} = {u € S, : XDes(u) = 0}.
w = 5641237, so S = {1,4,5}, n=17, i = 4. Factor w:
w=256-4-123-7.
Let 123 — 1,4 — 2,56 — 3, 7 — 4: get

w— 3214 = u. O



A g-analogue for X = {(1,2),(2,3),...,(n—1,n)}

Let Ux(q) = Z qasc(w_l)FXDeS(W), where asc denotes the

WGGn
number of (ordinary) ascents.

Thus Ux(q) is the generating function for w € &, by succession
set and by asc(w™1). Define

folg) = > g

weG,
XDes(w)=0



A g-analogue for X = {(1,2),(2,3),...,(n—1,n)}

Let Ux(q) = Z qasc(w_l)FXDeS(W), where asc denotes the
wes,

number of (ordinary) ascents.

Thus Ux(q) is the generating function for w € &, by succession

set and by asc(w™1). Define

folg) = > g

Ween
XDes(w)=0

n

Theorem. Ux(q) = Z q"_"ﬁ-(q)s,-’ln_,-
i=1



Digraph interpretation

We can also regard X as a digraph, with edges i — j if (i,j) € X.

A Hamiltonian path in X is a permutation a;a---a, € &, such
that (a;,ai4+1) € X for 1 <i < n—1. Define

ham(X) = # Hamiltonian paths in X
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Digraph interpretation

We can also regard X as a digraph, with edges i — j if (i,j) € X.
A Hamiltonian path in X is a permutation a;a---a, € &, such
that (a;,ai4+1) € X for 1 <i < n—1. Define

ham(X) = # Hamiltonian paths in X

NOTE.

» w € S, is a Hamiltonian path in X if and only
XDes(w) = [n—1].
» w is a Hamiltonian path in X if and only if XDes(w) = 0.
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Connection with Ux

Let Ux = >, capx. Then ham(X) =3, cy.

Proof. Recall Ux = Z FXDes(w)- Since w € &, is a
WGGn
Hamiltonian path in X if and only if XDes(w) =

ham(X) = #{w € &, : XDes(w) = 0}.
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DrlFs = { 0, otherwise.

Also for A n, [x{]px = 1.



Connection with Ux
Let Ux = >, capx. Then ham(X) =3, cy.

Proof. Recall Ux = Z FXDes(w)- Since w € &, is a
WGGn
Hamiltonian path in X if and only if XDes(w) =

ham(X) = #{w € &, : XDes(w) = 0}.

Note ’
1, §=
DrlFs = { 0, otherwise.

Also for A n, [x{]px = 1.

Take coefficient of x{" on both sides of

Ux= Y Fxpesw) =D &pr O
y

WGGn
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Simple corollary

Corollary. Let Ux = ), capy as before. Then

ham(X) = ) (-1)"""W¢

A

Proof. Recall wpy = (—1)"*Mp, and wUx = Ux. Now apply w
to Ux = >, capx and use previous theorem:

ham(X Z Cx. O



Berge’'s theorem

Theorem (C. Berge). ham(X) = ham(X) (mod2)

Proof (D. Grinberg). Let Ux = )", cxpx. To prove:

Z(—l)"‘z()‘)q = Z ¢\ (mod 2).



Berge’'s theorem

Theorem (C. Berge). ham(X) = ham(X) (mod2)

Proof (D. Grinberg). Let Ux = )", cxpx. To prove:

Z(—l)"‘z()‘)q = Z ¢\ (mod 2).

Obvious since (—1)"*M =+1. O
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Tournaments

tournament: a digraph X with vertex set [n] (say), such that for
all 1 </ < j < n, exactly one of (i,j) € X or (j,i) € X.

(D. Grinberg). Let X be a tournament. Then
Ux = Z 2nSC(W)pp(W)7

where w ranges over all permutations in &, of odd order such that
every nonsingleton cycle of w is a (directed) cycle of X, and where
nsc(w) denotes the number of nonsingleton cycles of w.

Special case of a result for any X.



A corollary

(repeated). Let X be a tournament. Then

Ux = Z 2nSC(W)pp(W)7

w

where w ranges over all permutations in &, of odd order such that
every nonsingleton cycle of w is a (directed) cycle of X, and where
nsc(w) denotes the number of nonsingleton cycles of w.

If X is a tournament, then

Ux € Z[p1,2p3,2ps, 2p7, . . . ].



A corollary

(repeated). Let X be a tournament. Then
Ux = Z 2nSC(W)pp(W)7

where w ranges over all permutations in &, of odd order such that
every nonsingleton cycle of w is a (directed) cycle of X, and where
nsc(w) denotes the number of nonsingleton cycles of w.

If X is a tournament, then

Ux € Z[p1,2p3,2ps, 2p7, . . . ].

Thus Ux can be written uniquely as a linear combination of
Schur's “shifted Schur functions” Py, where X\ has distinct parts.
Can anything worthwhile be said about the coefficients?



.~~~ o~~~

~— N N N S

An example




An example

1 2 (1,2)

4 (1,3)

(2,3)

(2,4)

(3,4)

3 (4,1)

w 2nsc(w)p (w)
(1)(2)(3)(4) pi

(17274)(3) 2P3P1
(173)4)(2) 2P3P1

= Ux = pi + 4p3p1 = 5Ps — 2P3



An application to Hamiltonian paths

Observation (repeated). Let Uy =), capx. Then

ham(X) =) (=1)"""We,.

A

Theorem (repeated). Let X be a tournament. Then

Ux = 32" by,
w
where w ranges over all permutations in &, of odd order such that
every nonsingleton cycle of w is a (directed) cycle of X, and where
nsc(w) denotes the number of nonsingleton cycles of w.



An application to Hamiltonian paths

Observation (repeated). Let Uy =), capx. Then
ham(X) =) (=1)"""We,.
A
Theorem (repeated). Let X be a tournament. Then

Ux = Z 2nSC(W)pp(W)7

w

where w ranges over all permutations in &, of odd order such that
every nonsingleton cycle of w is a (directed) cycle of X, and where
nsc(w) denotes the number of nonsingleton cycles of w.

Corollary. Let X be a tournament. Then

ham(X) = ham(X) = Z onse(w),

w
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ham(X) =)~ 2ms(w),
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Rédei’s theorem

Corollary (repeated). Let X be a tournament. Then

ham(X) =)~ 2ms(w),

Since ¢1n = 1 for all X (immediate from Ux = >, cs, FxDes(w)):
we conclude:

Theorem (L. Rédei, 1934) Every tournament has an odd number
of Hamiltionian paths.
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Conjecture (L. Lovasz, 1969) Every finite connected
vertex-transitive (undirected) graph contains a Hamiltonian path.



Further applications to Hamiltonian paths?

Conjecture (L. Lovasz, 1969) Every finite connected
vertex-transitive (undirected) graph contains a Hamiltonian path.

We can convert an undirected graph to a directed graph by
replacing each edge with two directed edges, one in each direction.
But how to deal with vertex-transitivity?



slide

The final




