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Definitions

318496725 (is)
318496725 (d.s)

is(w) = |longest i.s.| = 4

ds(w) = |longest d.s.| =3



Application: airplane boarding

Naive model: passengers board in order w = ajas - - - a, for seats
1,2,...,n. Each passenger takes one time unit to be seated after
arriving at his seat.
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Results

Total waiting time = is(w).

Bachmat, et al.: more sophisticated model.
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Results

Total waiting time = is(w).

Bachmat, et al.: more sophisticated model.

@ Usual system (back-to-front) not much better than random.

@ Better: first board window seats, then center, then aisle.

United Airlines recently switched to window-middle-aisle.



Partitions

partition AbEn A= ()\1, Ao, ..

)



Young diagrams

(Young) diagram of A = (4,4,3,1):




Conjugate partitions

N = (4,3,3,2), the conjugate partition to A = (4,4, 3,2)




Standard Young tableau

standard Young tableau (SYT) of shape A+ n, e.g.,
A=(4,4,3,1):
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fA = # of SYT of shape A
Eg., f32 =5
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f)\

fA = # of SYT of shape A

Eg., f32 =5
123 124 125 134 135
45 35 34 25 24

3 simple formula for f* (Frame-Robinson-Thrall hook-length
formula)

fA = dim(irrep. of &,), where &, is the symmetric
group of all permutations of 1,2...,n.
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where w € &, and P, @ are SYT of the same shape A F n.
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RSK algorithm

RSK algorithm: a bijection

w = (P,Q),

where w € &, and P, @ are SYT of the same shape A F n.
Write A = sh(w), the shape of w.

R = Gilbert de Beauregard Robinson
S = Craige Schensted (= Ea Ea)
K = Donald Ervin Knuth

Wikipedia: Ea Ea
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Example of RSK: w = 4132

insert 4, record 1: 4 1

. o1 1

insert 1, record 2: a 5

. .13 13

insert 3, record 3: 2 5
12 13

insert 2, record 4: 3 2
4 4
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Schensted’s theorem

Theorem. Let w5 (P, @), where sh(P) =sh(Q) = \. Then

is(w) = longest row length = \;

ds(w) = longest column length = \].



Schensted’s theorem

Theorem. Let w5 (P, @), where sh(P) =sh(Q) = \. Then

is(w) = longest row length = \;

ds(w) = longest column length = \].

)

is(w) =2, ds(w)=3.

AN

12
Example. 4132 =% ( 131 ,



Erdos-Szekeres theorem

Corollary (Erdés-Szekeres, Seidenberg). Let w € Gpgy1. Then
either is(w) > p or ds(w) > q.



Erdos-Szekeres theorem

Corollary (Erdés-Szekeres, Seidenberg). Let w € Gpgy1. Then
either is(w) > p or ds(w) > q.

Proof. Let A =sh(w). If is(w) < p and ds(w) < g then \; <p
and M) <g,s0 > A\ <pg. O



An extremal case

Corollary. Say p < q. Then

#{w € Spq : is(w) = p, ds(w) = g}

- (f(Pq))2



An extremal case

Corollary. Say p < q. Then

#{w € Spq : is(w) = p, ds(w) = g}

- (f(P"))2

By hook-length formula, this is

(1122---pp(p+1)P---q"(q+1)"1---(p+q—1)1> '



Expectation of is(w)

E(n) = expectation of is(w), w € &,

1 .
= Z is(w)

" wes,

- SXn(P)

" Akn



Expectation of is(w)

E(n) = expectation of is(w), w € &,

Ulam: what is distribution of is(w)? rate of growth of E(n)?



Work of Hammersley

Hammersley (1972):

Jc= lim n~Y2E(n),
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Work of Hammersley

Hammersley (1972):

Jc= lim n~Y2E(n),

n—oo

and

NS

Conjectured ¢ = 2.



Logan-Shepp, Vershik-Kerov (1977): ¢ =2



Logan-Shepp, Vershik-Kerov (1977): ¢ =2

Idea of proof.

1 2
En) = —> x(F)
AFn
1 2
XA — max\ (f’\> .
n! Arn
Find “limiting shape” of A - n maximizing A as n — oo using
hook-length formula.



A big shape
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The limiting curve
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Equation of limiting curve

X = y+2cosf
2

y = —(sinf —0cos0)
T

0<o<nr



A limiting distribution

Flip a coin n times, with probability p of heads. Let h(n) be the
number of heads (a random variable). Then for all t € R,

_ 1 t
lim Prob [ A —np ) _ —/ e~ dx.
n—o0 np(1 — p) V21 J oo
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A limiting distribution

Flip a coin n times, with probability p of heads. Let h(n) be the
number of heads (a random variable). Then for all t € R,

_ h(n) — np 1 /t 1,0
lim Prob| ———=<t| = —— e 2% dx.
n—o0 (\/ np(1 — p) > V21 J oo

(Central Limit Theorem for the binomial distribution)

NI

We want to do something similar for the random variable is(w)
when we for choose a permutation w in &, at random (uniform
distribution).
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with certain initial conditions.



Painlevé |l equation

Define u(x) by

2
%u(x) = 2u(x)*® + xu(x),

with certain initial conditions.

This is the Painlevé Il equation (roughly, the branch points and
essential singularities are independent of the initial conditions).
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Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématiques

1908: first passenger of Wilbur Wright; set flight duration record
of one hour, 10 minutes.

1917, 1925: Prime Minister of France.
1933: died in Paris.



The Tracy-Widom distribution

F(£) = exp <— /t T lx = Du(x)? dx)

where u(x) is the Painlevé Il function.



The Baik-Deift-Johansson theorem

Theorem (B.-D.-J., 1999).
_ isp(w) — \/_ B
lim Prob < 16 ) = F(t),

n— o0

where is,(w) denotes is(w) for random w € &,,.



Expectation redux

Recall E(n) ~ 2+/n.
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Recall E(n) ~ 2+/n.

Corollary to BDJ theorem.

E(n)

2/n+ ( / tdF(t)) /8 4+ o(n'/)

= 2y/n— (17711 )n*/® 4 o(n'/®)



Expectation redux

Recall E(n) ~ 2+/n.

Corollary to BDJ theorem.

E(n) 2v/n+ ( / tdF(t)) nt/6 4 o(n'/5)

= 2y/n— (1L.7711---)n'/® 4 o(n'/®)

Is there a third term?



Origin of Tracy-Widom distribution

Where did the Tracy-Widom distribution F(t) come from?

F(t) = exp <— /t "l — t)u(x)? dx>

d?
mu(x) = 2u(x)* + xu(x)



Gaussian Unitary Ensemble (GUE)

Analogue of normal distribution for n x n hermitian matrices
M = (MIJ)



Gaussian Unitary Ensemble (GUE)

Analogue of normal distribution for n x n hermitian matrices
M = (MIJ)

Zn_le_tr(Mz)dM,
dM = H dM;; - H d(?R My)d(% M"J')v

i<j

where Z, is a normalization constant.



Tracy-Widom theorem

Tracy-Widom (1994): let 1 denote the largest eigenvalue of M.

Then
lim Prob ((al - \/Z) V2nt/® < t) = F(t).

n—o0



Random topologies

Is the connection between is(w) and GUE a coincidence?



Random topologies

Is the connection between is(w) and GUE a coincidence?

Okounkov provides a connection, via the theory of random
topologies on surfaces. Very briefly, a surface can be described in
two ways:
@ Gluing polygons along their edges, connected to random
matrices via quantum gravity.
@ Ramified covering of a sphere, which can be formulated in
terms of permutations.



A variation
Alternating sequence of length k:
b1>b2<b3>b4<"' bk

E,: number of alternating w € &, (Euler number)

E, = 5: 2134, 3142, 3241, 4132, 4231
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A variation

Alternating sequence of length k:

b1 > by < by > by < -+ by

E,: number of alternating w € &, (Euler number)
E, =5: 2134, 3142, 3241, 4132, 4231

Désiré André (1840-1917): showed in 1879 that

n
X
E E,,—| = secx + tanx
n!
n>0

basis for combinatorial trigonometry.
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Alternating subsequences?

as(w) = length of longest alternating subseq. of w

w = 56218347 = as(w) =5

Main Lemma. Yw € &, 3 alternating subsequence of maximal
length that contains n.

ar(n) = #{w € &, : as(w) = k}



The case n =3

w
123
132
213
231
312
321
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The case n =3

w  as(w)
123 1
132
213
231
312
321

N W N WN

81(3) = 1, 32(3) = 3, 33(3) =2



Recurrence for ax(n)

Main lemma implies:

= () = j; (7))

Z (a2:(j — 1)+ a2r+1(j — 1)) as(n — )

2r+s=k—1



Recurrence for ax(n)

Main lemma implies:

= () = j; (7))

Z (a2:(j — 1)+ a2r+1(j — 1)) as(n — )

2r+s=k—1
Define n
A(x,t) = Z ak(n)tk%

k,n>0



The main generating function

Theorem.

A, t) = (1— x) (1 2/p

where p = /1 — t2.

_ 1=p px
te



Formulas for by(n)

Corollary.
= al(n) =1
a(n) = n-—1
as(n) = z(3"—6n+3)
as(n) = L(4"—2-3"—(2n—4)2"+4n—6)



Formulas for by(n)

Corollary.
= al(n) =1
a(n) = n-—1
as(n) = z(3"—6n+3)
as(n) = L(4"—2-3"—(2n—4)2"+4n—6)

no such formulas for longest increasing subsequences



Mean (expectation) of as(w)

D(n) = %Z as(w)
" weG,

= % > ka(n),

T k=1

the expectation of as(w) for w € &,



A formula for D(n)

A(x, t) = Z ak(n)tk);—r!7 =(1-x) (1i 1

e



A formula for D(n)

A(x, t) = Z ak(n)tk);—r!7 =(1-x) <1L — 1)

. 0
> D(n)x" = EA(X,l)

6x — 3x2 4+ x3
6(1 — x)?

4n+1 ,
= X—I-Z 6 x".

n>2




A formula for D(n)

k,n>0 p

. 0
> D(n)x" = EA(X,l)

n>1
6x — 3x2 4+ x3
6(1 — x)?

4n+1 ,
= X—I-Z 6 x".




Comparison of E(n) and D(n)




Why such a simple formula for D(n)?

Let w = a1a>--- ap.
peak: 2<i<n—-1,a;_1<a;>ajt1

valley: 2 </ <n—1,a_1>a <aju



Why such a simple formula for D(n)?

Let w = a1a>--- ap.
peak: 2<i<n—-1,a;_1<a;>ajt1
valley: 2 </ <n—1,a_1>a <aju

A longest alternating subsequence is obtained by taking all peaks
and valleys, together with a,, and also with a; if a; > a».



Completion of simple proof
Llet2<i/<n-—1.

P(a,-_1 < a; > a,-+1)
P(a,-_1 > a; < a,-+1)

P(al > 32)

= NIk, Wk W



Completion of simple proof
Llet2<i/<n-—1.

P(a,-_1 < a; > a,-+1)
P(a,-_1 > a; < a,-+1)

P(al > 32)

= D(n) = %(n—Q)

= NIk, Wk W



Variance of as(w)

1 4n+1)2
V(n):m Z (as(w)— n;— > , h>2
’ WGGn

the variance of as(n) for w € &,

Corollary.

8 13
VvV = —n— — > 4
(M) =25"" 15 "2



Variance of as(w)

Vi ==Y (as(w)_4”6+1>2, n>2

n!
WGGn
the variance of as(n) for w € &,

Corollary.
8 13
>4

“5" o "
similar results for higher moments

V(n)



A new distribution?

—2n/3
P(t) = nirgoPrObWEG" <HS,7(VI/)—I7/ < t)

\/n



A new distribution?

-2
P(t) = nirgoPrObWEG" <asn(vv)—n/3 < t)

o/

Stanley distribution?



Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).
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lim Probwegn <M\/7n/3 S t)
n

n—o0
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(Gaussian distribution)



Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

-2
lim Probwegn <M\/7n/3 S t)
n

n—o0
B i tv45/4 e—52 e
VT

(Gaussian distribution)

(¥3)

LT



k-alternating sequences

Given k > 1, define a sequence aia» - - - a, of integers to be
k-alternating if

aj < ajy+1 < i = 0(mod k).



k-alternating sequences

Given k > 1, define a sequence aia» - - - a, of integers to be
k-alternating if

aj < ajy+1 < i = 0(mod k).

Example. 75264183 is 3-alternating



ak(w) and Ex(n)

ai(w) : length of longest k-alt. subsequence of w



ak(w) and Ex(n)

ak(w) : length of longest k-alt. subsequence of w

an—1(w) = ds(w)

a(w) = as(w)



ak(w) and Ex(n)

ak(w) : length of longest k-alt. subsequence of w

an—1(w) = ds(w)

a(w) = as(w)

Ex(n) = expectation of ax(w)

= % Z ag(w)

’ WGGn



A problem

Ei(n) interpolates between E(n) ~ 2y/n and D(n) ~ 2n/3. Is
there a sharp cutoff between cy/n and cn behavior, or do we get
intermediate values like cn®, 1 < o <1, say for k = /n?



A problem

Ei(n) interpolates between E(n) ~ 2y/n and D(n) ~ 2n/3. Is
there a sharp cutoff between cy/n and cn behavior, or do we get
intermediate values like cn®, 1 < o <1, say for k = /n?

Similar questions for the limiting distribution: do we interpolate
between Tracy-Widom and Gaussian?



A variant

Same questions if we replace k-alternating with k — 1 increases
(ascents), then k — 1 decreases (descents), then k — 1 ascents, etc.
Eg., k=3

Al > a>az<ags<ag>ag>ayr<<---



The final slide
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THE END




