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Definitions

3 1 84 96 7 2 5 (i.s)

3 18 4 9 6 72 5 (d.s)

is(w) = |longest i.s.| = 4

ds(w) = |longest d.s.| = 3



Application: airplane boarding

Naive model: passengers board in order w = a1a2 · · · an for seats
1, 2, . . . , n. Each passenger takes one time unit to be seated after
arriving at his seat.
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Results

Easy: Total waiting time = is(w).

Bachmat, et al.: more sophisticated model.
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Results

Easy: Total waiting time = is(w).

Bachmat, et al.: more sophisticated model.

Two conclusions:

Usual system (back-to-front) not much better than random.

Better: first board window seats, then center, then aisle.

United Airlines recently switched to window-middle-aisle.



Partitions

partition λ ⊢ n: λ = (λ1, λ2, . . . )

λ1 ≥ λ2 ≥ · · · ≥ 0

∑

λi = n



Young diagrams

(Young) diagram of λ = (4, 4, 3, 1):



Conjugate partitions

λ′ = (4, 3, 3, 2), the conjugate partition to λ = (4, 4, 3, 2)

λ’λ



Standard Young tableau

standard Young tableau (SYT) of shape λ ⊢ n, e.g.,
λ = (4, 4, 3, 1):

2

12

1 7 10

5 8

4 6 11

9

<

< 3



f λ

f λ = # of SYT of shape λ

E.g., f (3,2) = 5:

1 2 3 1 2 4 1 2 5 1 3 4 1 3 5
4 5 3 5 3 4 2 5 2 4
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f λ

f λ = # of SYT of shape λ

E.g., f (3,2) = 5:

1 2 3 1 2 4 1 2 5 1 3 4 1 3 5
4 5 3 5 3 4 2 5 2 4

∃ simple formula for f λ (Frame-Robinson-Thrall hook-length
formula)

Note. f λ = dim(irrep. of Sn), where Sn is the symmetric
group of all permutations of 1, 2 . . . , n.
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RSK algorithm

RSK algorithm: a bijection

w
rsk→ (P ,Q),

where w ∈ Sn and P ,Q are SYT of the same shape λ ⊢ n.

Write λ = sh(w), the shape of w .

R = Gilbert de Beauregard Robinson
S = Craige Schensted (= Ea Ea)
K = Donald Ervin Knuth

Wikipedia: Ea Ea
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insert 4, record 1: 4 1

insert 1, record 2: 1 1
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insert 3, record 3: 1 3 1 3
4 2

insert 2, record 4:
1 2 1 3
3 2
4 4



Example of RSK: w = 4132

insert 4, record 1: 4 1

insert 1, record 2: 1 1
4 2

insert 3, record 3: 1 3 1 3
4 2

insert 2, record 4:
1 2 1 3
3 2
4 4

(P ,Q) =

(

1 2
3
4

,
1 3
2
4

)



Schensted’s theorem

Theorem. Let w
rsk→ (P ,Q), where sh(P) = sh(Q) = λ. Then

is(w) = longest row length = λ1

ds(w) = longest column length = λ′
1.



Schensted’s theorem

Theorem. Let w
rsk→ (P ,Q), where sh(P) = sh(Q) = λ. Then

is(w) = longest row length = λ1

ds(w) = longest column length = λ′
1.

Example. 4132
rsk→
(

1 2
3
4

,
1 3
2
4

)

is(w) = 2, ds(w) = 3.



Erdős-Szekeres theorem

Corollary (Erdős-Szekeres, Seidenberg). Let w ∈ Spq+1. Then
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Erdős-Szekeres theorem

Corollary (Erdős-Szekeres, Seidenberg). Let w ∈ Spq+1. Then

either is(w) > p or ds(w) > q.

Proof. Let λ = sh(w). If is(w) ≤ p and ds(w) ≤ q then λ1 ≤ p

and λ′
1 ≤ q, so

∑

λi ≤ pq. �



An extremal case

Corollary. Say p ≤ q. Then

#{w ∈ Spq : is(w) = p, ds(w) = q}

=
(

f (p
q)
)2



An extremal case

Corollary. Say p ≤ q. Then

#{w ∈ Spq : is(w) = p, ds(w) = q}

=
(

f (p
q)
)2

By hook-length formula, this is

(

(pq)!

1122 · · · pp(p + 1)p · · · qp(q + 1)p−1 · · · (p + q − 1)1

)2

.



Expectation of is(w)

E(n) = expectation of is(w), w ∈ Sn

=
1

n!

∑

w∈Sn

is(w)

=
1

n!

∑

λ⊢n
λ1

(

f λ
)2



Expectation of is(w)

E(n) = expectation of is(w), w ∈ Sn

=
1

n!

∑

w∈Sn

is(w)

=
1

n!

∑

λ⊢n
λ1

(

f λ
)2

Ulam: what is distribution of is(w)? rate of growth of E (n)?



Work of Hammersley

Hammersley (1972):

∃ c = lim
n→∞

n−1/2E (n),

and
π

2
≤ c ≤ e.



Work of Hammersley

Hammersley (1972):

∃ c = lim
n→∞

n−1/2E (n),

and
π

2
≤ c ≤ e.

Conjectured c = 2.



c = 2

Logan-Shepp, Vershik-Kerov (1977): c = 2



c = 2

Logan-Shepp, Vershik-Kerov (1977): c = 2

Idea of proof.

E (n) =
1

n!

∑

λ⊢n
λ1

(

f λ
)2

≈ 1

n!
max
λ⊢n

λ1

(

f λ
)2

.

Find “limiting shape” of λ ⊢ n maximizing λ as n → ∞ using
hook-length formula.
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The limiting curve
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Equation of limiting curve

x = y + 2cos θ

y =
2

π
(sin θ − θ cos θ)

0 ≤ θ ≤ π



A limiting distribution

Flip a coin n times, with probability p of heads. Let h(n) be the
number of heads (a random variable). Then for all t ∈ R,

lim
n→∞

Prob

(

h(n)− np
√

np(1− p)
≤ t

)

=
1√
2π

∫ t

−∞
e−

1
2
x2dx .
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A limiting distribution

Flip a coin n times, with probability p of heads. Let h(n) be the
number of heads (a random variable). Then for all t ∈ R,

lim
n→∞

Prob

(

h(n)− np
√

np(1− p)
≤ t

)

=
1√
2π

∫ t

−∞
e−

1
2
x2dx .

(Central Limit Theorem for the binomial distribution)

We want to do something similar for the random variable is(w)
when we for choose a permutation w in Sn at random (uniform
distribution).
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with certain initial conditions.



Painlevé II equation

Define u(x) by

d2

dx2
u(x) = 2u(x)3 + xu(x),

with certain initial conditions.

This is the Painlevé II equation (roughly, the branch points and
essential singularities are independent of the initial conditions).
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Paul Painlevé

1863: born in Paris.

1890: Grand Prix des Sciences Mathématiques

1908: first passenger of Wilbur Wright; set flight duration record
of one hour, 10 minutes.

1917, 1925: Prime Minister of France.

1933: died in Paris.



The Tracy-Widom distribution

F (t) = exp

(

−
∫ ∞

t

(x − t)u(x)2 dx

)

where u(x) is the Painlevé II function.



The Baik-Deift-Johansson theorem

Theorem (B.-D.-J., 1999).

lim
n→∞

Prob

(

isn(w)− 2
√
n

n1/6
≤ t

)

= F (t),

where isn(w) denotes is(w) for random w ∈ Sn.



Expectation redux

Recall E (n) ∼ 2
√
n.



Expectation redux

Recall E (n) ∼ 2
√
n.

Corollary to BDJ theorem.

E (n) = 2
√
n+

(
∫

t dF (t)

)

n1/6 + o(n1/6)

= 2
√
n− (1.7711 · · · )n1/6 + o(n1/6)



Expectation redux

Recall E (n) ∼ 2
√
n.

Corollary to BDJ theorem.

E (n) = 2
√
n+

(
∫

t dF (t)

)

n1/6 + o(n1/6)

= 2
√
n− (1.7711 · · · )n1/6 + o(n1/6)

Is there a third term?



Origin of Tracy-Widom distribution

Where did the Tracy-Widom distribution F (t) come from?

F (t) = exp

(

−
∫ ∞

t

(x − t)u(x)2 dx

)

d2

dx2
u(x) = 2u(x)3 + xu(x)



Gaussian Unitary Ensemble (GUE)

Analogue of normal distribution for n× n hermitian matrices
M = (Mij):



Gaussian Unitary Ensemble (GUE)

Analogue of normal distribution for n× n hermitian matrices
M = (Mij):

Z−1
n e−tr(M2)dM,

dM =
∏

i

dMii ·
∏

i<j

d(ℜMij)d(ℑMij),

where Zn is a normalization constant.



Tracy-Widom theorem

Tracy-Widom (1994): let α1 denote the largest eigenvalue of M.
Then

lim
n→∞

Prob
((

α1 −
√
2n
)√

2n1/6 ≤ t
)

= F (t).



Random topologies

Is the connection between is(w) and GUE a coincidence?



Random topologies

Is the connection between is(w) and GUE a coincidence?

Okounkov provides a connection, via the theory of random
topologies on surfaces. Very briefly, a surface can be described in
two ways:

Gluing polygons along their edges, connected to random
matrices via quantum gravity.

Ramified covering of a sphere, which can be formulated in
terms of permutations.



A variation

Alternating sequence of length k :

b1 > b2 < b3 > b4 < · · · bk

En: number of alternating w ∈ Sn (Euler number)

E4 = 5: 2134, 3142, 3241, 4132, 4231



A variation

Alternating sequence of length k :

b1 > b2 < b3 > b4 < · · · bk

En: number of alternating w ∈ Sn (Euler number)

E4 = 5: 2134, 3142, 3241, 4132, 4231
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A variation

Alternating sequence of length k :

b1 > b2 < b3 > b4 < · · · bk

En: number of alternating w ∈ Sn (Euler number)

E4 = 5: 2134, 3142, 3241, 4132, 4231

Désiré André (1840–1917): showed in 1879 that

∑

n≥0

En

xn

n!
= sec x + tan x

Aside: basis for combinatorial trigonometry.
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Alternating subsequences?

as(w) = length of longest alternating subseq. of w

w = 56218347 ⇒ as(w) = 5

Main Lemma. ∀w ∈ Sn ∃ alternating subsequence of maximal

length that contains n.

ak(n) = #{w ∈ Sn : as(w) = k}



The case n = 3

w as(w)

123 1
132 2
213 3
231 2
312 3
321 2



The case n = 3

w as(w)

123 1
132 2
213 3
231 2
312 3
321 2

a1(3) = 1, a2(3) = 3, a3(3) = 2



Recurrence for ak(n)

Main lemma implies:

⇒ ak(n) =

n
∑

j=1

(

n− 1

j − 1

)

∑

2r+s=k−1

(a2r (j − 1) + a2r+1(j − 1)) as(n − j)



Recurrence for ak(n)

Main lemma implies:

⇒ ak(n) =

n
∑

j=1

(

n− 1

j − 1

)

∑

2r+s=k−1

(a2r (j − 1) + a2r+1(j − 1)) as(n − j)

Define

A(x, t) =
∑

k,n≥0

ak(n)t
k x

n

n!



The main generating function

Theorem.

A(x , t) = (1− x)

(

2/ρ

1− 1−ρ
t
eρx

− 1

ρ

)

,

where ρ =
√
1− t2.



Formulas for bk(n)

Corollary.

⇒ a1(n) = 1

a2(n) = n − 1

a3(n) = 1
4(3

n − 6n + 3)

a4(n) = 1
8(4

n − 2 · 3n − (2n − 4)2n + 4n − 6)

...



Formulas for bk(n)

Corollary.

⇒ a1(n) = 1

a2(n) = n − 1

a3(n) = 1
4(3

n − 6n + 3)

a4(n) = 1
8(4

n − 2 · 3n − (2n − 4)2n + 4n − 6)

...

no such formulas for longest increasing subsequences



Mean (expectation) of as(w)

D(n) =
1

n!

∑

w∈Sn

as(w)

=
1

n!

n
∑

k=1

k ak(n),

the expectation of as(w) for w ∈ Sn



A formula for D(n)

A(x , t) =
∑

k,n≥0

ak(n)t
k x

n

n!
= (1− x)

(

2/ρ

1− 1−ρ
t
eρx

− 1

ρ

)



A formula for D(n)

A(x , t) =
∑

k,n≥0

ak(n)t
k x

n

n!
= (1− x)

(

2/ρ

1− 1−ρ
t
eρx

− 1

ρ

)

∑

n≥1

D(n)xn =
∂

∂t
A(x , 1)

=
6x − 3x2 + x3

6(1− x)2

= x +
∑

n≥2

4n + 1

6
xn.



A formula for D(n)

A(x , t) =
∑

k,n≥0

ak(n)t
k x

n

n!
= (1− x)

(

2/ρ

1− 1−ρ
t
eρx

− 1

ρ

)

∑

n≥1

D(n)xn =
∂

∂t
A(x , 1)

=
6x − 3x2 + x3

6(1− x)2

= x +
∑

n≥2

4n + 1

6
xn.

⇒ D(n) =
4n + 1

6
, n ≥ 2



Comparison of E(n) and D(n)

D(n) =
4n + 1

6
, n ≥ 2

E (n) ∼ 2
√
n



Why such a simple formula for D(n)?

Let w = a1a2 · · · an.
peak: 2 ≤ i ≤ n− 1, ai−1 < ai > ai+1

valley: 2 ≤ i ≤ n − 1, ai−1 > ai < ai+1



Why such a simple formula for D(n)?

Let w = a1a2 · · · an.
peak: 2 ≤ i ≤ n− 1, ai−1 < ai > ai+1

valley: 2 ≤ i ≤ n − 1, ai−1 > ai < ai+1

A longest alternating subsequence is obtained by taking all peaks
and valleys, together with an, and also with a1 if a1 > a2.



Completion of simple proof

Let 2 ≤ i ≤ n − 1.

P(ai−1 < ai > ai+1) =
1

3

P(ai−1 > ai < ai+1) =
1

3

P(a1 > a2) =
1

2

P(an = an) = 1



Completion of simple proof

Let 2 ≤ i ≤ n − 1.

P(ai−1 < ai > ai+1) =
1

3

P(ai−1 > ai < ai+1) =
1

3

P(a1 > a2) =
1

2

P(an = an) = 1

⇒ D(n) =
2

3
(n − 2) +

1

2
+ 1

=
4n + 1

6



Variance of as(w)

V (n) =
1

n!

∑

w∈Sn

(

as(w)− 4n + 1

6

)2

, n ≥ 2

the variance of as(n) for w ∈ Sn

Corollary.

V (n) =
8

45
n − 13

180
, n ≥ 4



Variance of as(w)

V (n) =
1

n!

∑

w∈Sn

(

as(w)− 4n + 1

6

)2

, n ≥ 2

the variance of as(n) for w ∈ Sn

Corollary.

V (n) =
8

45
n − 13

180
, n ≥ 4

similar results for higher moments
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A new distribution?

P(t) = lim
n→∞

Probw∈Sn

(

asn(w)− 2n/3√
n

≤ t

)

Stanley distribution?



Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

lim
n→∞

Probw∈Sn

(

as(w)− 2n/3√
n

≤ t

)

=
1√
π

∫ t
√
45/4

−∞
e−s2 ds

(Gaussian distribution)



Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

lim
n→∞

Probw∈Sn

(

as(w)− 2n/3√
n

≤ t

)

=
1√
π

∫ t
√
45/4

−∞
e−s2 ds

(Gaussian distribution)



k-alternating sequences

Given k ≥ 1, define a sequence a1a2 · · · an of integers to be
k-alternating if

ai < ai+1 ⇔ i ≡ 0 (mod k).



k-alternating sequences

Given k ≥ 1, define a sequence a1a2 · · · an of integers to be
k-alternating if

ai < ai+1 ⇔ i ≡ 0 (mod k).

Example. 75264183 is 3-alternating
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ak(w) and Ek(n)

ak(w) : length of longest k-alt. subsequence of w

an−1(w) = ds(w)

a2(w) = as(w)

Ek(n) = expectation of ak(w)

=
1

n!

∑

w∈Sn

ak(w)



A problem

Ek(n) interpolates between E (n) ∼ 2
√
n and D(n) ∼ 2n/3. Is

there a sharp cutoff between c
√
n and cn behavior, or do we get

intermediate values like cnα, 1
2 < α < 1, say for k =

√
n?



A problem

Ek(n) interpolates between E (n) ∼ 2
√
n and D(n) ∼ 2n/3. Is

there a sharp cutoff between c
√
n and cn behavior, or do we get

intermediate values like cnα, 1
2 < α < 1, say for k =

√
n?

Similar questions for the limiting distribution: do we interpolate
between Tracy-Widom and Gaussian?



A variant

Same questions if we replace k-alternating with k − 1 increases
(ascents), then k − 1 decreases (descents), then k − 1 ascents, etc.
E.g., k = 3:

a1 > a2 > a3 < a4 < a5 > a6 > a7 < · · ·



The final slide



The final slide


