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Is there a tiling?

How many?

About how many?

Is a tiling easy to find?

Is it easy to prove a tiling doesn’t exist?

Is it easy to convince someone that a tiling
doesn’t exist?

What is a “typical” tiling?
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Relations among different tilings

Special properties, such as symmetry

Infinite tilings
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Is there a tiling?

Tiles should be “mathematically interesting.”

12 pentominos:
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Number of tilings of a 6 × 10 rectangle: 2339
Found by “brute force” computer search
(uninteresting)
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Is there a tiling with 31 dominos (or dimers)?
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color the chessboard:
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Each domino covers one black and one white
square, so 31 dominos cover 31 white
squares and 31 black squares. There are 32
white squares and 30 black squares in all, so
a tiling does not exist.
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Each domino covers one black and one white
square, so 31 dominos cover 31 white
squares and 31 black squares. There are 32
white squares and 30 black squares in all, so
a tiling does not exist.
Example of a coloring argument.
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What if we remove one black square and one
white square?
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What if we remove two black squares and two
white squares?
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What if we remove two black squares and two
white squares?
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Another coloring argument

Can a 10 × 10 board be tiled with 1 × 4
rectangles (in any orientation)?
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Every tile covers each color an even number
(including 0) of times. But the board has 25
tiles of each color, so a tiling is impossible.
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Coloring doesn’t always work!

T(1)
T(2)

T(3)
T(4)

n hexagons on each side
n(n + 1)/2 hexagons in all

Can T (n) be covered by “tribones”?
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Yes for T (9):
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Conway: The triangular array T (n) can be
tiled by tribones if and only if
n = 12k, 12k + 2, 12k + 9, 12k + 11 for some
k ≥ 0.

Smallest values: 0, 2, 9, 11, 12, 14, 21, 23, 24,
26, 33, 35, . . . .

Cannot be proved by a coloring argument
(involves a nonabelian group)
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How many tilings?

There are 2339 ways (up to symmetry) to tile
a 6 × 10 rectangle with the 12 pentominos.

Found by computer search: not so
interesting.
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First significant result on the enumeration of
tilings due to Kasteleyn, Fisher–Temperley
(independently, 1961):

The number of tilings of a 2m × 2n rectangle
with 2mn dominos is:
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First significant result on the enumeration of
tilings due to Kasteleyn, Fisher–Temperley
(independently, 1961):

The number of tilings of a 2m × 2n rectangle
with 2mn dominos is:

4mn

m
∏

j=1

n
∏

k=1

(

cos2
jπ

2m + 1
+ cos2

kπ

2n + 1

)

.
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For instance, m = 2, n = 3:

46(cos2 36◦ + cos2 25.71◦)(cos2 72◦ + cos2 25.71◦)

×(cos2 36◦ + cos2 51.43◦)(cos2 72◦ + cos2 51.43◦)

×(cos2 36◦ + cos2 77.14◦)(cos2 72◦ + cos2 77.14◦)

= 46(1.4662)(.9072)(1.0432)(.4842) · · ·
= 281
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For instance, m = 2, n = 3:

46(cos2 36◦ + cos2 25.71◦)(cos2 72◦ + cos2 25.71◦)

×(cos2 36◦ + cos2 51.43◦)(cos2 72◦ + cos2 51.43◦)

×(cos2 36◦ + cos2 77.14◦)(cos2 72◦ + cos2 77.14◦)

= 46(1.4662)(.9072)(1.0432)(.4842) · · ·
= 281

8 × 8 board: 12988816 = 36042 tilings
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Aztec diamonds

AZ(7)

AZ(1)

AZ(2)

AZ(3)
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Eight domino tilings of AZ(2), the Aztec
diamond of order 2:

Plane Tilings – p. 26



Elkies-Kuperberg-Larsen-Propp (1992): The
number of domino tilings of AZ(n) is

2n(n+1)/2.

(four proofs originally, now around 12)

1 2 3 4 5 6 7

2 8 64 1024 32768 2097152 268435456
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Since 2(n+2)(n+1)/2/2(n+1)n/2 = 2n+1, we

would like to associate 2n+1 AZ-tilings of
order n + 1 with each AZ-tiling of order n, so
that each AZ-tiling of order n + 1 occurs
exactly once.

This is done by domino shuffling.
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Domino shuffling
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1

2

3

5 7

4

6

8 9

10

1

2 3 4

6

7

8 9

10

5

Four new “holes”: 24 = 16 ways to tile each.
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About how many tilings?

AZ(n) is a “skewed” n × n square. How do
the number of domino tilings of AZ(n) and an
n × n square (n even) compare?

If a region with N squares has T tilings, then

it has (loosely speaking)
N
√
T degrees of

freedom per square.
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Number of tilings of AZ(n): T = 2n(n+1)/2

Number of squares of AZ(n):

N = 2n(n + 1)

Number of degrees of freedom per square:

N
√
T = 4

√
2 =1.189207115 · · ·

Plane Tilings – p. 32



Number of tilings of 2n × 2n square:

4n2 ∏n
j=1

∏n
k=1

(

cos2 jπ
2n+1

+ cos2 kπ
2n+1

)

.

Let

G = 1 −
1

32
+

1

52
−

1

72
+ · · ·

= 0.9159655941 · · ·

(Catalan’s constant).
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Theorem (Kasteleyn, et al.) The number of
domino tilings of a 2n × 2n square is about

C4n2

, where

C = eG/π

= 1.338515152 · · ·.
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Thus the square board is “easier” to tile than
the Aztec diamond: 1.3385 · · · degrees of
freedom per square vs. 1.189207115 · · · .
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Thus the square board is “easier” to tile than
the Aztec diamond: 1.3385 · · · degrees of
freedom per square vs. 1.189207115 · · · .
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Proving tilings don’t exist

What if a tiling doesn’t exist? Is it easy to
demonstrate that this is the case?
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Proving tilings don’t exist

What if a tiling doesn’t exist? Is it easy to
demonstrate that this is the case?

In general, almost certainly no (even for 1 × 3
rectangular tiles). But yes (!) for domino
tilings.
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16 white squares and 16 black squares
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*
* *

* *

The six black squares with • are adjacent to a
total of five white squares marked ∗. No tiling
can cover all six black square marked with •.
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The Marriage Theorem

Philip Hall (1935): If a region cannot be tiled
with dominos, then one can always find such
a demonstration of impossibility.
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Tilings rectangles with rectangles

Can a 7 × 10 rectangle be tiled with 2 × 3
rectangles (in any orientation)?
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Tilings rectangles with rectangles

Can a 7 × 10 rectangle be tiled with 2 × 3
rectangles (in any orientation)?

Clearly no: a 2 × 3 rectangle has 6 squares,
while a 7 × 10 rectangle has 70 squares (not
divisible by 6).
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Can a 17 × 28 rectangle be tiled with 4 × 7
rectangles?
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No: there is no way to cover the first column.

?

17 6= 4a + 7b

Plane Tilings – p. 42



Can a 10 × 15 rectangle be tiled with 1 × 6
rectangles?
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deBruijn-Klarner Theorem

de Bruijn-Klarner: an m × n rectangle can be
tiled with a × b rectangles if and only if:

The first row and first column can be
covered.

m or n is divisible by a, and m or n is
divisible by b.

Since neither 10 nor 15 are divisible by 6, the
10 × 15 rectangle cannot be tiled with 1 × 6
rectangles.
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Similar rectangles

Let x > 0, such as x =
√
2. Can a square be

tiled with finitely many rectangles similar to a
1 × x rectangle (in any orientation)? In other
words, can a square be tiled with finitely
many rectangles all of the form a × ax
(where a may vary)?
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1.5

1

2

4

π2

3π

3

6
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1 1

x = 2/3

2/3

2/3

x = 2/3

3x − 2 = 0
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x

x

1/5

1/5

.2764

.7236

1

x +
1

5x
= 1
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x + 1
5x

= 1

5x2 − 5x + 1 = 0

x =
5 +

√
5

10
= 0.7236067977 · · ·

Other root:
5 −

√
5

10
= 0.2763932023 · · ·
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1

x = .5698

.4302

.2451 .7549
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x = 0.5698402910 · · ·
x3 − x2 + 2x − 1 = 0

Other roots:

0.215 + 1.307
√
−1

0.215 − 1.307
√
−1
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Freiling-Rinne (1994), Laczkovich-
Szekeres (1995): A square can be tiled with
finitely many rectangles similar to a 1 × x
rectangle if and only if:

x is the root of a polynomial with integer
coefficients.

If a + b
√
−1 is another root of the

polynomial of least degree satisfied by x,
then a > 0.
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Proof is based on encoding a tiling by a
continued fraction and using the theory of
continued fractions.
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Examples

x =
√
2. Then x2 − 2 = 0. Other root is

−
√
2 < 0. Thus a square cannot be tiled with

finitely many rectangles similar to a 1 ×
√
2

rectangle.
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x =
√
2 + 17

12
. Then

144x2 − 408x + 1 = 0.

Other root is

−
√
2 + 17

12
= 0.002453 · · · > 0,

so a square can be tiled with finitely many

rectangles similar to a 1 × (
√
2 + 17

12
)

rectangle.
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Squaring the square

Can a square be tiled with finitely many
squares of different sizes?
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Squaring the square

Can a square be tiled with finitely many
squares of different sizes?

First example: Roland Sprague, 1939

General theory based on electrical networks:
Brooks, Smith, Stone, Tutte

Smallest example has 20 squares:
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62

25
16

9 7

33

29

19
8

27
35

50

37 42

18

1115

4

24
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What is a “typical” tiling?

A random domino tiling of a 12 × 12 square:

No obvious structure.

Plane Tilings – p. 58



A random tiling of the Aztec diamond of order
50:

“Regular” at the corners, chaotic in the middle.
What is the region of regularity?
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Arctic Circle Theorem (Jockusch-Propp-Shor,
1995). For very large n, and for “most”
domino tilings of the Aztec diamond AZ(n),
the region of regularity “approaches” the
outside of a circle tangent to the four limiting
sides of AZn.
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The tangent circle is the Arctic circle. Outside
this circle the tiling is “frozen.”
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Relations among tilings

Two domino tilings of a region in the plane:

A flip consists of reversing the orientation of
two dominos forming a 2 × 2 square.
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Domino flipping theorem (Thurston, et al.). If
R has no holes (simply-connected), then any
domino tiling of R can be reached from any
other by a sequence of flips.
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Flipping theorem is false if holes are allowed.
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Confronting infinity
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Confronting infinity
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(1) A finite (bounded) region, infinitely many
tiles.

Can a square of side 1 be tiled with

rectangles of sizes 1 × 1
2
, 1
2
× 1

3
, 1
3
× 1

4
, 1
4
× 1

5
,

· · · ?

Total area: 1
1·2 + 1

2·3 + 1
3·4 + · · · = 1
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1

1/2 1/3
1/2 1/3

1/4
1/4

1/5
1/5

1/6 ...

1

1
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1

1/2

1/3

1/2

1/3

1/4

1/5

1/4

1/5
1/6

Plane Tilings – p. 69



Unsolved, but Paulhus (1998) showed that the

tiles will fit into a square of side 1 + 10−9 (not
a tiling, since there is leftover space).
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Confronting infinity II

Finitely many tiles, but an indeterminately
large region.

Which polyominos can tile rectangles?

order 4

order 2
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The order of a polyomino is the least number
of copies of it needed to tile some rectangle.

No polyomino has order 3.
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order 10
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Known orders: 4, 8, 12, 16, . . . , 4n, . . .

1, 2, 10, 18, 50, 138, 246, 270
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Known orders: 4, 8, 12, 16, . . . , 4n, . . .

1, 2, 10, 18, 50, 138, 246, 270

Unknown: order 6? odd order?

Plane Tilings – p. 74



order 270

order 468

order 246
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no order

Cannot tile a rectangle (order does not exist).
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Undecidability

Conjecture. There does not exist an
algorithm to decide whether a polyomino P
tiles some rectangle.
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Confronting infinity III

Tiling the plane:
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