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The arithmetic triangle or Pascal’s triangle



The arithmetic triangle or Pascal’s triangle

Apparently known to Pingala in or before 2nd century BC (and
hence also known as Pingal's Meruprastar), and definitely by
Varahamihira (~ 505), Al-Karaji (953-1029), Jia Xian
(1010-1070), et al.
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Sums of cubes

If £(n) = Lioo ()’ then

(n+2)2f(n+2) = (7Tn*+21n+16)f(n+1)-8(n+1)*f(n) =0, n>0



Sums of cubes

If £(n) = Lioo ()’ then

(n+2)2f(n+2) = (7Tn*+21n+16)f(n+1)-8(n+1)*f(n) =0, n>0

Etc.



A second triangle

Similar to Pascal’s triangle, but we also “bring down” (copy) each
number from one row to the next.
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A second triangle

Similar to Pascal’s triangle, but we also “bring down” (copy) each
number from one row to the next.
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Stern’'s triangle



Some properties

@ Number of entries in row n (beginning with row 0): 21 -1
(so not really a triangle)
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Some properties

@ Number of entries in row n (beginning with row 0): 21 -1
(so not really a triangle)

@ Sum of entries in row n: 3"
@ Largest entry in row n: F,.1 (Fibonacci number)

o Let (Z) be the kth entry (beginning with k = 0) in row n.

Write N
P(x) = ,Z%(k)xk'

Then [ Ppia(x) = (1 + x + x%)Py(x?) , since x P,(x?)
corresponds to bringing down the previous row, and
(1+x?)P,(x?) to summing two consecutive entries.
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Stern’s diatomic sequence

n-1 . .
e Corollary. [RaC=] (1 +x% 4+ X2-2’)
i=0

@ As n — oo, the nth row has the limiting generating function

[ee]

H (1 + xzi + X2’2i)

i=0

Z b,x".

n>0

P(x)



Stern’s diatomic sequence

n-1 ; .
° Po(x) =T] (1 +x% +x2'2’)
i-0

@ As n — oo, the nth row has the limiting generating function

[ee]

P(x) = ]] (1 x? x2’2i)
i=0
= Z b,x".
n>0
@ The sequence by, b1, by, ... is Stern’s diatomic sequence:

1,1,2,1,3,2 3,1,4,3,525,3,4,1, ...

(often prefixed with 0)



Partition interpretation

Yobax"=]] (1 +x2 +x2'2i)

n>0 i>0

= b, is the number of partitions of n into powers of 2, where each
power of 2 can appear at most twice.



Partition interpretation

Yobax"=]] (1 +x? +x2'2i)

n>0 i>0

= b, is the number of partitions of n into powers of 2, where each
power of 2 can appear at most twice.

Note. If each power of 2 can appear at most once, then we obtain
the (unique) binary expansion of n:

i:]‘[(uxf).

>0



Historical note

An essentially equivalent array is due to Moritz Abraham Stern
around 1858 and is known as Stern’s diatomic array:
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Comparison

11213 2313231211

1547 3857 275837451



Precise statement

R;: ith row of Stern's diatomic array, beginnning with row 0



Precise statement

R;: ith row of Stern's diatomic array, beginnning with row 0
Form the concatenation
RoR1-+-Rn-2Rn-1Rn-1Rp-2--R1 Ro

and then merge together the last 1 in each row with the first 1 in
the next row.

We obtain row n of Stern’s triangle. From this observation almost
any property of Stern's triangle can be carried over
straightforwardly to Stern’s diatomic array and vice versa.



Amazing property

(Stern, 1858). Let by, by,... be Stern’s diatomic
sequence. Then every positive rational number occurs exactly once
among the ratios b;/bj.1, and moreover this expression is in lowest
terms.



Amazing property

(Stern, 1858). Let by, by,... be Stern’s diatomic
sequence. Then every positive rational number occurs exactly once
among the ratios b;/bj.1, and moreover this expression is in lowest
terms.

Can be proved inductively from
b2n = bna b2n+1 = bn + bn+17

but better is to use , though following Stigler's
law of eponymy was earlier introduced by Jean Berstel and Aldo
de Luca as the Raney tree. Closely related tree by Stern, called

the Stern-Brocot tree, and a much earlier similar tree by Kepler
(1619).



Stigler’s law of eponymy

Stephen M. Stigler (1980): No scientific discovery is named after
its original discoverer.



Stigler’s law of eponymy

Stephen M. Stigler (1980): No scientific discovery is named after
its original discoverer.

Note. Stigler's law of eponymy implies that Stigler's law of
eponymy was not originally discovered by Stigler.
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The Calkin-Wilf tree definition

root: 1/1

a/b

7N

al(a+b) (a+b)/b



The Calkin-Wilf tree



The Calkin-Wilf tree
11
1/2/ \2/1
VARV
1/4/ \4/3 3/5/ \5/2 2/5/ \5/3 3/4/ \4/1

AN A AR ARARARA!

Numerators (reading order): 1,1,2,1,3,2,3,1,4,3,5, ...



The Calkin-Wilf tree
/ m\
/1/2\ /2/1\
3

AN

v4a 43 35 52 25 34 41

RARAARAN
Numerators (reading order): 1, 1, 2, 1,
2,1,

3, 2,3,
Denominators: 1, 3,2, 3,



Continued fraction property

Entries in row n—1 are those rational numbers whose regular
continued fraction terms sum to n.



Continued fraction property

Entries in row n—1 are those rational numbers whose regular
continued fraction terms sum to n.

row 2:
1 _ 1 - 1
3 3 2+%
3 _ 1 _ 1
5 = 1+ 3 = 1+ +%
2 _ 1 _ 1
3 1+3 1+



An enumerative property

b,y1 is the number of odd integers (";k), where 0 < k < |n/2].



New stuff!

PART II

o «F = = z ©ace
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Sums of squares
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[ T G T W W 'y
= =

2
up (n) :=Z<Z> -1, 3, 13, 59, 269, 1227, ...
k

up(n+1) =5ux(n) —2ur(n-1), n>1

1-2x
n___ +~74%
%;)”2(”)’( 1 5x + 2x2



Sums of cubes

3
us(n) :=Z<k> =1, 3, 21, 147, 1029, 7203, ...
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Sums of cubes

3
us(n) :=Z<k> =1, 3, 21, 147, 1029, 7203, ...

uz(n) =3-7"1 n>x1

n-1 . . .
Equivalently, if H (1 +x% +X2'2I) = Zajxf, then
i=0

Zaf =3.7"h



Proof for uy(n)

wln+l) = "’+<Z>2+(<Z>+<k21>)2+<k21>2+'”

= 3uz(n)+22< ><k+1>



Proof for up(n)

wln+l) = "’+<Z>2+(<Z>+<k21>)2+<k21>2+'”
o2,

Thus define uy,1(n) =X, (7)(,1,). so

up(n+1) =3ux(n) +2u11(n).



What about uy,1(n)?

atred) = (LN GG ()
+(<Z>+<k21>)<k21>+'"

= 2uQ(n) + 2u171(n)



What about u,1(n)?

atred) = (LN GG ()
+(<Z>+<k21>)<k21>+'"

= 2up(n) +2u11(n)

Recall also up(n+1) = 3ux(n) + 2uy 1(n).



Two recurrences in two unknowns

Let
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Two recurrences in two unknowns

Let

3 2
A:=[ 5 9 :|
w(n) | | w(n+1)
A[ ur,1(n) ]_[ up1(n+1) ]

n U2(1) _ u2(n)
=A [ u1,1(1) ]_[ u1,1(n) ]

Then



Two recurrences in two unknowns

Let

Then
A[ up(n) ]:[ up(n+1) ]
ur,1(n) ura(n+1) |

n U2(1) _ u2(n)
= A [ u1,1(1) ]_[ u1,1(n) ]

Characteristic (or minimum) polynomial of A: x? - 5x + 2



Two recurrences in two unknowns

Let

Then
A w(n) | | w(n+1)
U171(n) u1,1(n+ 1) '
n| u2(l) uz(n)
A -
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= up(n+1) =5up(n) —2up(n-1)



Two recurrences in two unknowns

Let

Then
A w(n) | | w(n+1)
U171(n) u1,1(n+ 1) '
n| u2(l) uz(n)
A -
- [ u1,1(1) ] [ u1,1(n)
Characteristic (or minimum) polynomial of A: x? - 5x + 2

= up(n+1) =5up(n) —2up(n-1)
Also u11(n+1) =5u11(n) —2u11(n-1).



What about u3(n)?

Now we need
up 1(n)

uy2(n)
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However, by symmetry about a vertical axis,

uy2(n)

U271 (n) = u172(n).



What about u3(n)?

Now we need

up 1(n)

S0
Zk:<:><kj-1>2

However, by symmetry about a vertical axis,

uy2(n)

U271 (n) = u172(n).

[3 6][ uz(n) ]:[ uz(n+1) ]
2 4 u271(n) u2,1(n+1) ’

We get



Unexpected eigenvalue

Characteristic polynomial of [ g 2 ]: x(x=T7)



Unexpected eigenvalue

Characteristic polynomial of [ g 2 ]: x(x=T7)

Thus uz(n+1) =7u3(n) and up1(n+1) =T7ur1(n) (n>1).



Unexpected eigenvalue

w

Characteristic polynomial of [ 5 2 ]: x(x=T7)

Thus uz(n+1) =7u3(n) and up1(n+1) =T7ur1(n) (n>1).
In fact,

3 . 7!7—1
2.7

uz(n)
up1(n)



What about u,(n) for general r > 17

Get a matrix of size [(r +1)/2], so expect a recurrence of this
order.



What about u,(n) for general r > 17

Get a matrix of size [(r +1)/2], so expect a recurrence of this
order.

Conjecture. The least order of a homogenous linear recurrence
with constant coeffcients satisfied by u,(n) is %r+ O(1).



A more accurate conjecture

Write [ag, ..., a@m-1]|m for the periodic function f:N - R
satisfying f(n) = a; if n= i (mod m).

A, : matrix arising from u,(n)

e;(r): # eigenvalues of A, equal to i
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Write [ag, ..., a@m-1]|m for the periodic function f:N - R
satisfying f(n) = a; if n= i (mod m).
A, : matrix arising from u,(n)
e;(r): # eigenvalues of A, equal to i

Conjecture. We have
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e(2k=1) =3 +[ 3 3]3

and all 0 eigenvalues are semisimple. There are no other multiple
eigenvalues.



A more accurate conjecture

Write [ag, ..., a@m-1]|m for the periodic function f:N - R
satisfying f(n) = a; if n= i (mod m).

A, : matrix arising from u,(n)

e;(r): # eigenvalues of A, equal to i
Conjecture. We have
1 11
2k-1)==k+ O,——,—] ,

w(k-1)=3 [ 3'3];
and all 0 eigenvalues are semisimple. There are no other multiple
eigenvalues.

T. Amdeberhan: ¢(2k-1)>0



Even d

We have
1 1 1 1 21
2k) = Zk+|-1,-2,-=,-=,-2.=
a(@k) = gh+|L-5-3.5-5.3).
e1(2k) = e(2k+6).

The eigenvalues 1 and —1 are semisimple, and there are no other
multiple eigenvalues.



Minimum order of recurrence

mo(r): minimum order of recurrence satisfied by u,(n)



Minimum order of recurrence

mo(r): minimum order of recurrence satisfied by u,(n)

Conjecture. We have mo(2) =2, mo(6) = 4, and otherwise

mo(2s) = 2[§J+3 (s+1,3)
mo(bs+1) = 2s+1, s>0
mo(6s+3) = 2s+1, s>0
mo(6s+5) = 2s+2, s>0.



Minimum order of recurrence

mo(r): minimum order of recurrence satisfied by u,(n)

Conjecture. We have mo(2) =2, mo(6) = 4, and otherwise

mo(2s) = 2[§J+3 (s+1,3)
mo(bs+1) = 2s+1, s>0
mo(6s+3) = 2s+1, s>0
mo(6s+5) = 2s+2, s>0.

True for r < 125.



General o

a = (g ,0m-1)

it = ZENL) Hna)



A closer look at o =(1,1,1,1)

u1,11(n) = Z< )<k+1><k22)<k23)



A closer look at o =(1,1,1,1)

u1,11(n) = Z< ><k+1><k22><k23>

ur111(n+1) =

Ze({e) + () Gl (Gl + (o)) (o)
+Ze () () + D 0D () + ()



A closer look at o =(1,1,1,1)

u1,11(n) = Z< ><k+1><k22><k23>

ur111(n+1) =

Ze () (D) Gl () + G k)
+Zic () () + Gl D) () () + ()

(3 8 6 0 0 0] 4
2 53 0 0 0 3,1
A |24 20 0 0 2,2
LD =11 4 2 1 0 0| 1,2,1
1 31210 211
022 2 2 0] 1,1,1,1



A closer look at o =(1,1,1,1)

u1,11(n) = Z< ><k+1><k22><k23>

ur111(n+1) =

Ze () (D) Gl () + G k)
+Zic () () + Gl D) () () + ()

3 8 6|0 0]0] 4
2 5 30 00 3,1
A |2 4 2|0 0fo0 2,2
QLD =171 4 21 00 | 1,2,1
1 3 1|2 1/0] 21,1
0 2 22 2]0] 1,1,1,1



Reduction to « = (r)

min. polynomial for oo = (4): (x+1)(2x? - 11x + 1)
min. polynomial for o = (1,1,1,1): (x-1)?(x+1)(2x*> - 11x + 1)
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min. polynomial for oo = (4): (x+1)(2x? - 11x + 1)
min. polynomial for o = (1,1,1,1): (x-1)?(x+1)(2x*> - 11x + 1)

mp(a): minimum polynomial of A,

Let « e N™ and Y. ovj = r. Then mp(«) has the form
x"e(x —1)**mp(r) for some wy,z, € N.



Reduction to « = (r)

min. polynomial for oo = (4): (x+1)(2x? - 11x + 1)
min. polynomial for o = (1,1,1,1): (x-1)?(x+1)(2x*> - 11x + 1)

mp(a): minimum polynomial of A,

Let « e N™ and Y. ovj = r. Then mp(«) has the form
x"e(x —1)**mp(r) for some wy,z, € N.

No conjecture for value of w,, z,.



Symmetric functions

Let
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i<j ! J



Symmetric functions

Let
= -2 (05)
Now
ea(n) = %(uz(n) +u1(n)?).
Since

up(n+1) = bBup(n)-2up(n-1)
up(n+1)>? 9uy(n)? (since uy(n) =3"),

we get ¥ ,s062(n)x" = P(x)/(1 - 5x +2x2)(1-9x). In fact,
P(x) = 3x - 8x2.



Symmetric functions

Let
= -2 (05)
Now
ea(n) = %(uz(n) +u1(n)?).
Since

up(n+1) = bBup(n)-2up(n-1)
up(n+1)>? 9uy(n)? (since uy(n) =3"),

we get ¥ ,s062(n)x" = P(x)/(1 - 5x +2x2)(1-9x). In fact,
P(x) = 3x - 8x2.

Works for symmetric function instead of e;.



A generalization

Let p(x),q(x) € C[x], @ = (ag,...,am-1) € N", and b >2. Set

a0 TTPG) =2 (2), o o= S (2"
i=0 k k

and

n\®/| n \™ n m
up,q,a,b(n)—zk:(k> <k+1> m<k+m—1> '



Main theorem

For fixed p, q, ., b, the function up g o p(n) satisfies a
linear recurrence with constant coefficients (n>>0). Equivalently,
> n Up,g.a,6(N)x" is a rational function of x.



Main theorem

For fixed p, q, ., b, the function up g o p(n) satisfies a
linear recurrence with constant coefficients (n>>0). Equivalently,
> n Up,g.a,6(N)x" is a rational function of x.

Note. 3 multivariate generalization.
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Some data

g(x)=1,b=2,a=(r)
EP(XT):;u)Xk, u(n)=zk:<z>r.

r=2 ‘ r:3‘ r=4

|
1+x+x° H x? —5x +2 ‘x—? ‘(x+1)(x2—11x+2)



Some data

g(x)=1,b=2,a=(r)

l.e.,
n-1 i r
Hp(le):z<z>xk, u(n):Z<Z>
i=0 K K
p(x) | r=2 ‘ r=3 ‘ r=4
1+x+x2 x? —5x +2 x=T7 (x +1)(x* - 11x +2)
T+2x+x% | (x=2)(x=8) | (x-4)(x-16) | (x - 2)(X 8)(x—32)
1+3x+x? || x2-17x+54 | x?—47x +450 X —----—30618

T+4x+x2 || x2-26x+128 | x2-94x + 1728 x3 — ... — 458752



Some data

g(x)=1,b=2,a=(r)

s =i wn-3{i)

p(x) | r=2 ‘ r=3 ‘ r=4
1+x+x2 x? —5x +2 x=T7 (x +1)(x* - 11x +2)
T+2x+x% | (x=2)(x=8) | (x-4)(x-16) | (x - 2)(X 8)(x—32)
1+3x+x? || x2-17x+54 | x?—47x +450 X —----—30618
1+4x+x? || x> —26x+128 | x> -94x +1728 |  x3 - ... - 458752

30618 =2-37.7, 458752 =1210.7



An example

Example. Let p(x) = (1 +x)2, g(x) =1. Then

1 n n
Up2)2(n) = 5(2-23 +2")
1
up7(3),2(n) = 5(24n+22n)
1
Up ay2(n) = 1—5(6-25”+10.23”—2”).
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1 n n
Up2)2(n) = 5(2-23 +2")
1
up7(3),2(n) = 5(24n+22n)
1
Up ay2(n) = 1—5(6-25”+10~23”—2”).

What's going on?



An example

Let p(x) = (1+x)2, g(x) =1. Then

1
upv(z),z(n) = 5 (2 .23n +2n)
1
up7(3),2(n) = 5(24n+22n)
up2(n) = i5 (6-2°"+10-2%" - 2").

What's going on?

2n—1
)

p(x)p(x®)p(x*)---p(x ((1 +x)(1+x7)(L+x)(1+ in—l))z

(1+X+x2 +x3+...+X2"—1)2'



The rest of the story
Example. Let

(1+x+x"+x° +~~+x2"‘1)3 = ax.
J

What is ¥; aj?



The rest of the story
Let

(1+x+x*+x° +~--+x2n‘1)3 = ax.

What is ¥; aJ'7

1—xm 3
(T+x+--+x"1)3 = ( X )
1-x

1—3x™ 4+ 3x2M _ x3m
(1-x)3

3

k=m

3m k+?2 k—m+?2 k-2m+?2
c 2 [(57) 37T
k=2m 2 2 2

HoM

BRI A

)|



The rest of the story (cont.)

S YR e |

k=0

LA



The rest of the story (cont.)

-2-5 ()15

J k=0 k=m

AT

= P(m)
for some polynomial P(m) € Q[ m].



The rest of the story (cont.)

-2-5 ()15

F k=0 k=m
I R A |
- P(m)

for some polynomial P(m) € Q[ m].

So P(2") is a Q-linear combination of terms 2", as desired.



Evenness and oddness

Fact. P(m) is either even (P(m) = P(-m)) or odd
(P(m) =—-P(-m)) (depending on degree).



Evenness and oddness

Fact. P(m) is either even (P(m) = P(-m)) or odd
(P(m) =—-P(-m)) (depending on degree).

Corollary. ¥ af has the form . ;22 or ¥ 22+ n,



Evenness and oddness

Fact. P(m) is either even (P(m) = P(-m)) or odd
(P(m) =—-P(-m)) (depending on degree).

Corollary. ¥ a} has the form ¥, ;22 or 3 ;22N

(2237 +2m)

U(14x)2,(2),2(1)

(24n 4 22n)

U(14x)2,(3),2(N)

NI = W[

(6-2°"+10-2%"-2").

Gl

U(14x)2,(4),2(1)



Evenness and oddness

P(m) is either even (P(m) = P(-m)) or odd
(P(m) =—-P(-m)) (depending on degree).

> aj has the form Y ;22" or 3 ¢;2(2+1)n,

1 n n
baep@2(n) = 3(2:27+2")

1 n n
U @a(n) = 5 (2% +2%)

]‘ n n n
Uex, 2y 2(n) = 1—5(6-25 +10-23"-2").

Generalizes t0 U(1xsx24...ixe1)d,a,5(N), C[b.



The final slide



The final slide




