SPANNING TREES

Richard P. Stanley
Department of Mathematics
M.I.T. 2-375
Cambridge, MA 02139
rstan@math.mit.edu
http://www-math.mit.edu/~rstan

Transparencies available at:

http://www-math.mit.edu/~rstan/trans.html

G = loopless graph with vertices 1, 2, ..., n

spanning forest: subgraph with vertices $1, \ldots, n$ and no cycles

spanning tree: connected spanning forest

Let $\mathbf{c}(\mathbf{G})$ = number of spanning trees (or **complexity**) of G.

Origin (Kirchhoff). Suppose that each edge of G is a unit resistance. Let

 $\mathbf{u}, \mathbf{v} = \text{ distinct vertices of } G$

 $\mathbf{R_{uv}}(\mathbf{G}) = \text{total resistance of the network}$ between u and v

 $\mathbf{G}' = G$ with u and v identified.

Then

$$R_{uv}(G) = \frac{c(G')}{c(G)}.$$

Let $\mathbf{K_n}$ be the complete graph on $1, \ldots, n$. Thus $c(K_n)$ is the total number of trees on $1, \ldots, n$.

Theorem (Borchardt, Sylvester, Cayley) $c(K_n) = n^{n-2}$.

First proof (Joyal, 1981). The number of ways to choose a spanning tree T of K_n and two vertices u and v is $n^2c(K_n)$.

1 3 4 7 9 10 11 13 11 13 4 10 3 7 1 9

We get the graph of a function

$$f: \{1, \ldots, n\} \to \{1, \ldots, n\},\$$

i.e., $i \rightarrow f(i)$. There are n^n such functions, so

$$n^2c(K_n) = n^n.$$

Second proof (Pitman, 1997). Let \mathcal{R}_n be the set of all **rooted forests** on $1, \ldots, n$. Define F to **cover** F' in \mathcal{R}_n if F' can be obtained from F by removing one edge e and rooting the "detached" tree at the vertex incident to e.

 \mathcal{R}_n becomes a ranked poset. The elements of rank i are the rooted forests with i edges.

Let

 $\mathbf{M_n} = \#(\text{maximal chains of } \mathcal{R}_n).$

Choose a maximal element of \mathcal{R}_n in $n \cdot c(K_n)$ ways, then remove an edge in n-1 ways, then another edge in n-2 ways, etc. Hence

$$M_n = (n-1)! \cdot n \cdot c(K_n) = n! c(K_n).$$

Lemma. If F has i edges, then F is covered by n(n-i-1) elements of \mathcal{R}_n .

Proof.

Hence

$$M_n = n(n-1) \cdot n(n-2) \cdot \cdot \cdot n(1)$$
$$= n! \cdot n^{n-2}.$$

Since also $M_n = n! \cdot c(K_n)$, we get $c(K_n) = n^{n-2}$. \square

The Acyclotope

Let \mathfrak{o} be an **orientation** of G. Let $d_i = d_i(\mathfrak{o})$ be the **outdegree** of vertex i. Define the **outdegree** sequence

$$d(\mathfrak{o}) = (d_1, \dots, d_n) \in \mathbb{R}^n$$
.

Define the **acyclotope** \mathcal{A}_G by

$$\mathcal{A}_G = \operatorname{conv}\{d(\mathfrak{o}) : \mathfrak{o} \text{ is an}$$

orientation of $G\} \subset \mathbb{R}^n$.

$$\dim \mathcal{A}_G = n - 1$$

Theorem (Zaslavsky). The following are equivalent:

- (a) $d(\mathfrak{o})$ is a vertex of \mathcal{A}_G .
- (b) o is an acyclic orientation.
- (c) $d(\mathfrak{o})$ is uniquely realizable by \mathfrak{o} .

Theorem (Zaslavsky). $\mathcal{A}_G \cap \mathbb{Z}^n = \{d(\mathfrak{o}) : \mathfrak{o} \text{ is an orientation of } G\}$

Let

$$\mathbf{i}(\mathcal{A}_{\mathbf{G}}, \mathbf{r}) = \# (r\mathcal{A}_{G} \cap \mathbb{Z}^{n}) \in \mathbb{Q}[r],$$

the **Ehrhart polynomial** of \mathcal{A}_G . Easy:

$$i(\mathcal{P}, r) = V(\mathcal{P})r^{n-1} + O(r^{n-2}).$$

Let

 $\mathbf{f_i}(\mathbf{G}) = \# i$ -edge spanning forests of G.

Theorem.
$$i(\mathcal{A}_G, r) = \sum_{i=0}^{n-1} f_i(G)r^i$$
.

Theorem.

$$V(\mathcal{A}_G) = f_{n-1}(G) = c(G)$$

(with respect to the integer lattice in the affine span of \mathcal{A}_G).

Put r = 1 to get:

Corollary. The number of spanning forests of G equals the number of distinct outdegree sequences of orientations of G.

(no **simple** proof known)

The Matrix-Tree Theorem

G = (loopless) graph with vertices v_1, \ldots, v_n $e = \text{edge of } G, \quad x_e = \text{indeterminate}$ T = spanning tree with edge set E(T)

$$\mathbf{x}^{\mathbf{T}} = \prod_{e \in E(T)} x_e$$
$$\mathbf{Q}_{\mathbf{G}}(\mathbf{x}) = \sum_{T} x^{T},$$

summed over all spanning trees of G.

$$Q_G(x) = x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4$$

Define the generic Laplacian ma-

$$\operatorname{trix} L = (L_{ij})_1^n \text{ of } G \text{ by}$$

$$L_{ij} = \begin{cases} -\sum_{\substack{e \text{ incident} \\ \text{to } v_i, v_j \\ \\ e \text{ incident} \\ \text{to } v_i \end{cases}} x_e, i \neq j$$

 $\mathbf{L_0} = L$ with last row and last column removed

Note. $\det L = 0$

Theorem (Kirchhoff, ...).

$$\det L_0 = Q_G(x).$$

An equivalent form:

Theorem. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of L with $\lambda_n = 0$. Then

$$Q_G(x) = \frac{1}{n} (\lambda_1 \cdots \lambda_{n-1}).$$

Special case (all $x_e = 1$):

Corollary. Let $\mu(i,j)$ be the number of edges between v_i and v_j . Define

$$L(1)_{ij} = \begin{cases} -\mu(i,j), & i \neq j \\ \deg(v_i), & i = j. \end{cases}$$

Then $c(G) = \det L(1)_0$.

Example. $C_n = \text{graph of the } n$ cube.

Symmetry of $C_n \Rightarrow$ eigenvalues of L(1) are 2k with multiplicity $\binom{n}{k}$, where $0 \le k \le n$.

Corollary.
$$c(C_n) = 2^{2^n - n - 1} \prod_{k=1}^n k^{\binom{n}{k}}$$
.

Is there a combinatorial proof?

A Conjecture of Kontsevich

 $\mathbf{q} = \text{prime power}$

 $\mathbf{c}_{\mathbf{G}}(\mathbf{q}) = \# \text{ solutions to } Q_G(x) \neq 0 \text{ over } \mathbb{F}_q$

$$Q_G(x) = x_1 + x_2 + x_3 + x_4$$
$$c_G(q) = q^3(q-1) \in \mathbb{Z}[q]$$

$$c_G(q) = q(q-1)(q^2-2) \in \mathbb{Z}[q]$$

Conjecture (M. Kontsevich, 8 Dec. 1997). For any G,

$$c_G(q) \in \mathbb{Z}[q].$$

(still open)

Note.

- $\bullet \ c_G(q) = q^{|E|} + O\left(q^{|E|-1}\right)$
- $c_G(q) \in \mathbb{Q}[q] \Rightarrow c_G(q) \in \mathbb{Z}[q]$ (by rationality of the zeta function of a variety/ \mathbb{F}_q)

Note. Let L be the generic Laplacian of G. Matrix-Tree Theorem \Rightarrow

$$c_G(q)$$
 = number of solutions to $\det L_0 \neq 0$ over \mathbb{F}_q

Suppose v_n is an **apex**, i.e., is adjacent to v_1, \ldots, v_{n-1} .

$$L_0 = \begin{bmatrix} x_1 + x_3 & -x_1 & 0 \\ -x_1 & x_1 + x_2 + x_4 & -x_2 \\ 0 & -x_2 & x_2 + x_5 \end{bmatrix}$$

Can change signs of off-diagonal entries and kill non-red diagonal entries without affecting set of L_0 's over \mathbb{F}_q .

Corollary. Let G be simple (no multiple edges), and let v_n be an apex of G. Then

 $c_G(q) = \# (n-1) \times (n-1)$ nonsingular symmetric matrices M over \mathbb{F}_q such that

$$M_{ij} = 0 \text{ if } i \neq j, ij \notin E.$$

Example. $G = K_n$ (complete graph)

 \Rightarrow

 $c_{K_n}(q) = \# (n-1) \times (n-1)$ nonsingular symmetric matrices/ \mathbb{F}_q .

This number was computed by Carlitz (1954) and MacWilliams (1969).

Theorem. $c_{K_n}(q) =$

$$q^{m(m-1)}(q-1)(q^3-1)\cdots(q^{2m-1}-1), n=2m$$

$$q^{m(m+1)}(q-1)(q^3-1)\cdots(q^{2m-1}-1),$$

 $n=2m+1,$

so
$$c_{K_n}(q) \in \mathbb{Z}[q]$$
.

Note. Stembridge showed Kontsevich's conjecture holds for all graphs with ≤ 12 edges.

Related Problems

Let A be an $n \times n$ matrix over a field K. Define

$$supp(\mathbf{A}) = \{(i, j) : A_{ij} \neq 0\}.$$

1. Let $S \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ such that $(i, j) \in S \Leftrightarrow (j, i) \in S$. Let

 $e_S(q) = \# n \times n$ nonsingular symmetric matrices M over \mathbb{F}_q , supp $(M) \subseteq S$.

Is $e_S(q) \in \mathbb{Q}[q]$? (Kontsevich conjecture \Rightarrow yes if each $(i, i) \in S$.)

No: If n is odd with $A_{ii} = 0$, then $\det A = 0$ when $q = 2^j$. There are also examples for which $e_S(q)$ is a polynomial for **odd** q but not **all** q, and $e_S(2^j) \neq 0$.

- **2.** Is $e_S(q)$ a polynomial for **odd** q? (open)
- 3. Let $S \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$. Define
- $d_S(q) = \# n \times n$ nonsingular matrices Mover \mathbb{F}_q , supp $(M) \subseteq S$.

Is
$$d_S(q) \in \mathbb{Q}[q]$$
?

Kontsevich claimed \exists counterexample. One was found by Stembridge, with n = 7 and #S = 21.

4. Is $d_S(q)$ a polynomial for **odd** q? (Open — candidate for counterexample with n = 13, #S = 52.)

- 5. Are $c_(q)$, $d_S(q)$, $e_S(q)$ quasipolynomials, i.e., for some N are they polynomials on residue classes modulo N? (open)
- **6.** Is Kontsevich's conjecture true for bases of matroids? (False, even for regular matroids.)