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Basic definitions

(1) A sequence ag, ..., a, of real numbers is unimodal
if ag<a;<--<aj2aj1 2 2a, for some .

(2) log-concave if a? >aj_1aj41, 1<i<n-1.

2
(3) strongly log-concave if (a_,)) > di-1 di+1

(0] (4G
(4) no internal zeros if a; =0 = either a3 =---=23;.1 =0 or
aiy1==ap=0.

Log-concave, NIZ, a; > 0 = unimodal.

(8): (1) (7) (strongly log-concave)



I. REAL ZEROS



Newton’s theorem

Theorem (. Newton). Let

Yi,---,Yn €R
and
P(x) = H(X +9i) = Za,-(,;)xi = Z bix'.
Then ag, a1, ..., an is log-concave. Same as by, ..., b, strongly
log-concave.



Newton’s theorem
(I. Newton). Let

Yi,---,Yn €R
and
n . .
P(x)=]](x+v)= Za,-(l_)x' = bix'.
Then ag, a1, ..., an is log-concave. Same as by, ..., b, strongly
log-concave.

Proof. P("""1)(x) has real zeros
= Q(x) = x""1P"=1)(1/x) has real zeros

= QU™ (x) has real zeros.

But QU "V (x) = "7' (ai-1+2aix + aj.1x%)

= a,2 >aj_1aj41. O



Basic linear algebra

Theorem. If A is a (real) symmetric matrix, then every zero of
det(l + xA) is real.



Basic linear algebra

Theorem. If A is a (real) symmetric matrix, then every zero of
det(l + xA) is real.

Example. G: finite graph with vertex set V and p,, edges
between vertices u and v

L: Laplacian matrix of G. Rows and columns indexed by V/, with

{ deg(v), ifu=v
Ly, = .
—yy, if u#v.



The Matrix-Tree theorem

Matrix-Tree Theorem (slightly expanded). det(/ +xL) = ¥ a;x’,
where a; is the number of rooted spanning forests of G with i
edges. Thus )" aix' has only real zeros, so ag, a1, ...,axyv is

strongly log-concave.
(:)—E




What about unrooted spanning forests?

b;: number of (unrooted) spanning forests of G with i edges.

More generally, let X be a finite subset of a vector space of
dimension n, and let b; be the number of i-element linearly
independent subsets of X.
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What about unrooted spanning forests?

b;: number of (unrooted) spanning forests of G with i edges.

More generally, let X be a finite subset of a vector space of
dimension n, and let b; be the number of i-element linearly
independent subsets of X.

(Lenz, 2013, based on Huh, 2012) by, by,...,b, is
log-concave (with no external zeros).

Proof of Huh based on Hodge-Riemann relations for the
cohomology of certain varieties. Later generalized by Adiprasito,
Huh, and Katz to any finite matroid (an abstract generalization of
a finite subset of a vector space).

What about strongly log-concave? To be discussed.
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minors (determinants of square submatrices) are nonnegative.



Total positivity

An m x n real matrix is totally nonnegative if all
minors (determinants of square submatrices) are nonnegative.

Let A be an n x n totally nonnegative matrix. Then all
eigenvalues of A are real and nonnegative. Hence the characteristic
polynomial det(xI — A) has only real zeros.



An application

Let P be a finite poset (partially ordered set) with no induced 3 +1
or 2+2, i.e., there do not exist elements s < t < u, v with no other
relations among them, nor elements s < t, u < v with no other
relationas among them. Let ¢; be the number of i-element chains
of P.

bad Co=1

> cix' has only real zeros.



Proof

> cix' has only real zeros.

Proof. Let A be the matrix with rows and columns indexed by P,

with
A - 0, ifs<t
S£7 1 1, otherwise.

Then A is totally nonnegative, and det(/ + xA) = Y ¢;x'. O



Two further remarks

e Can be shown that the (2 + 2)-avoiding hypothesis is unnecessary
(using symmetric functions).



Two further remarks

e Can be shown that the (2 + 2)-avoiding hypothesis is unnecessary
(using symmetric functions).

e Multivariate generalizations of real-rooted polynomials: stable
polynomials (P. Brandén) and Lorentzian polynomials (P.
Brandén and J. Huh). Sample application:

If I is the number of k-element independent sets of a
matroid, then the sequence Iy, I1,... is strongly log-concave.
Conjectured by Mason in 1972. Also proved in a similar way by
Anari-Liu-Gharan-Vinzant. (We mentioned earlier the proof by
Lenz of log-concavity.)



Il. ANALYTIC METHODS



Partitions

Let p(n, k) be the number of partitions of n into k parts. E.g.,
p(7,3) =4

5+1+1, 4+2+1, 3+3+1, 3+2+2.

xk

Z p(n, k)x” = (1 —X)(]_ - X2)...(]_ —Xk)

n>0

Sk—n—ldS

1
= p(n. k) = i 5’5 (1-5)(1-s2)(1-sk)




Theorem of Szekeres

Theorem (G. Szekeres, 1954) For n> Ny, the sequence

p(n,1),p(n,2),....p(n,n)

is unimodal, with maximum at

3 3 1 1
k=C\/EL+C2(§+§L—ZL2)—§

+O(|Oj;n)
c =6/, L =log c+/n.




I1l. ALEXANDROV-FENCHEL INEQUALITIES



Let K, L be convex bodies (nonempty compact convex sets) in R”,
and let x,y > 0. Define the Minkowski sum

xK+yl={xa+yB:aeckK, fel}.

Then there exist Vi(K, L) >0, the (Minkowski) mixed volumes
of K and L, satisfying

Vol(xK +yL) = % ('_’)v,-(K, L)x™ Ty,
i=o M

Note Vo = Vol(K), V,, = Vol(L).



Let K, L be convex bodies (nonempty compact convex sets) in R”,
and let x,y > 0. Define the Minkowski sum

xK+yl={xa+yB:aeckK, fel}.

Then there exist Vi(K, L) >0, the (Minkowski) mixed volumes
of K and L, satisfying

Vol(xK +yL) = % (”) Vi(K, L)x" Ty,
i=o M

Note Vo = Vol(K), V,, = Vol(L).

(Alexandrov-Fenchel, 1936-38) V2> Vi1 Vi



Let P be an n-element poset. Fix x € P. Let N; denote
the number of order-preserving bijections (linear extensions)

f:P-{12,...,n}
such that f(x) =i. Then
N? > Ni_1 N1

Proof. Find K,L c R™! such that V;(K,L) = N;y;. O



An example

[2]

.....

12345
12354
12435
21345
21354
21435
24135

N5) = (Oa 1a 2a 2? 2)

WO LWOID™



Generalizations

There are algebraic and algebraic-geometric generalizations of the
Alexandrov-Fenchel inequalities with many applications.



IV. REPRESENTATIONS OF SL(2,C) AND s((2,C)



Representations of SL(2,C)

Let
G =SL(2,C) = {2 x 2 complex
matrices with determinant 1}.

Let A e G, with eigenvalues 9,9‘1. For all n> 0, there is a unique
irreducible (polynomial) representation

on: G~ GL(Vn+1)
of dimension n+ 1, and ¢,(A) has eigenvalues
g 0—n+2 9—n+4 e

Every (continuous) representation is a direct sum of irreducibles.



Unimodal weight multiplicities

If ¢: G - GL(V) is any (finite-dimensional) representation, then

trp(A) = Za;@i, aj=a_;
i€Z

—ap++ar(A+071)+ > (ai—ai-2) (9_i +O72 Hi)

i>2

= aj2aj-2
= {ay;},{azi+1} are unimodal
(and symmetric)

(Completely analogous construction for the Lie algebra sl(2,C).)



g-binomial coefficient

For k,n >0 define

[n+ k] _ (1 _ qn+k)(1 _ q”+k—1)---(1 _ qn+1)
k (1-¢)(1-gt)(1-q)

a polynomial in g with nonnegative integer coefficients.




kth symmetric power
S*(pp), eigenvalues
(e—n)fo (9—n+2)t1 (en)tn 7
to+t1+--+th=k, t;>0

=trp(A) =
Qto(—n)+t1(—n+2)+“-+tnn

to++ta=k

k
_ 9_"k[n+ ]
k lg2

0= > Pi(n, k)%,

>0

where P;(n, k) is the number of partitions of / with < k parts,
largest part < n.



Sylvester’s theorem

= Po(n, k), ey Pnk(n, k)
is unimodal (Sylvester, 1878).
Combinatorial proof by K. O’Hara, 1990.

0 1 2 2 3
L B B B B
O L B B B
3 4 4 5 6
EP;(3,2)qi = 1+q+2q2+2q3+2q4+q5+q6
i

[5] _ (1-¢°)(1-4%
2 (1-4¢°)(1-q)



Principal sI(2,C)

Let g be a finite-dimensional complex semisimple Lie
algebra. Then there exists a principal s[(2,C) cg. A
representation ¢ : g — gl( V) restricts to

p:51(2,C) — gi(V).
. g=s50(2n+1,C), ¢ = spin representation:
= (1+q)(1+g%)(1+q")

has unimodal coefficients (Dynkin 1950, Hughes 1977). (No
combinatorial proof known.)



Higher dimensional partitions

Recall: P;(n,k): number of partitions of i/ with < k parts, largest
part < n, i.e, number of 1-dimensional integer arrays (sequences)
ai,ar,...,ag such that

n>ay>ay>-->a,=0, ZaJ-:i.



Higher dimensional partitions
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part < n, i.e, number of 1-dimensional integer arrays (sequences)
ai,ar,...,ag such that

n>ay>ay>-->a,=0, ZQJ':/.

Generalize to P;(ny,n,...,ng,1): number of d-dimensional

arrays (aleQ,...,ajd 1<jr<n
SJr=llr

in each coordinate, maximum entry < ng,1, sum of entries = /.

of nonnegative integers, weakly decreasing
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Higher dimensional partitions

P;(n, k): number of partitions of i with < k parts, largest
part < n, i.e, number of 1-dimensional integer arrays (sequences)
ai,ar,...,ag such that

n>ay>ay>-->a,=0, ZQJ':/.

Generalize to P;(ny,n,...,ng,1): number of d-dimensional

arrays (aleQ,...,ajd 1<jr<n
SJr=llr

in each coordinate, maximum entry < ng,1, sum of entries = /.

of nonnegative integers, weakly decreasing

Pi(n1,ny,...,Nngr1) is symmetric in ny, ..., Ng41.

The case d = 2: plane partitions (MacMahon)
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Example: ni=n,=n3=2

00|10|11 10 20|11 21 20)... |22
00|00|00 10 00|10 00 10 22

(Po,...,Pg)=1(1,1,3,3,4,3,3,1,1)
(symmetric, unimodal, not log-concave)

For fixed (n1, ny, n3), the sequence Py, Py, ... is
symmetric (easy) and unimodal.

Proof follows from principal s((2,C) c sl(N,C), N =1+ maxnj,
and choosing a certain irrep of sl(N,C).



A conjecture

Conjecture. For fixed ny,...,nq4.1, the sequence Py, P1,... is
unimodal.



A conjecture

For fixed ni,...,ng41, the sequence Py, Py, ... is
unimodal.

Open for d = 3. Also open for ny = ny =--- = ngy1 = 2. In these
cases, no nice way to compute P; or Y P;.

For ni =ny=---=nyy1 =2, 3 P; is the order of the free
distributive lattice on d + 1 generators (Dedekind's problem).



Projective varieties

Let X be an irreducible n-dimensional complex projective variety
with finite quotient singularities (e.g., smooth).

Bi = dim¢ H'(X;C)

5[(2,C) acts on H*(X;C), and H'(X;C) is a weight space with
weight i — N
= {f2i},{P2i+1} are unimodal.



Projective varieties

Let X be an irreducible n-dimensional complex projective variety
with finite quotient singularities (e.g., smooth).

Bi = dim¢ H'(X;C)

5[(2,C) acts on H*(X;C), and H'(X;C) is a weight space with
weight i — N
= {f2i},{P2i+1} are unimodal.

Follows from hard Lefschetz theorem.



Two examples

Example. X = G,(C"*k) (Grassmannian). Then

i n+k
Y. Biq = P ]qz'



Two examples

Example. X = G,(C"*k) (Grassmannian). Then
i n+k
> Big —[ . Lz'

Example. (Hessenberg varieties.) Fix 1< p<n-1. For
w=wiw, €6, let

dp(w) =#{(i,j) : wi>w;, 1<j—i<p}.

di(w) = +descents of w
dp-1(w) = #inversions of w.

Let Ap(n, k) = #{w e S, : dp(w) = k}.



de Mari-Shayman theorem



de Mari-Shayman theorem

Theorem (de Mari-Shayman, 1987). The sequence

Ap(n,0),Ap(n,1),...,Ap(n,p(2n - p-1)/2)

is unimodal.



de Mari-Shayman theorem

Theorem (de Mari-Shayman, 1987). The sequence

Ap(n,0),Ap(n,1),...,Ap(n,p(2n - p-1)/2)

is unimodal.

Proof. Construct a “generalized Hessenberg variety” X,
satisfying ok (Xnp) = Ap(n, k). O



Polytope definitions

(convex) polytope: the convex hull P of a finite set S c R”
dim P: dimension of affine span of P (so P is homeomorphic to a
d-dimensional ball)

face of P: the intersection of P with a supporting hyperplane H
(so P lies on one side of H)



Polytope definitions

(convex) polytope: the convex hull P of a finite set S c R”
dim P: dimension of affine span of P (so P is homeomorphic to a
d-dimensional ball)

face of P: the intersection of P with a supporting hyperplane H
(so P lies on one side of H)




Simplicial polytopes and f-vectors

i-dimensional simplex: convex hull of i + 1 affinely indepedent
points in R"

simplicial polytope: every proper face is a simplex

E.g, the tetrahedron, octahedron, and icosahedron are simplicial,
but not the cube or dodecahedron

Let P be a simplicial polytope, with f; i-dimensional faces (with
f-1=0). E.g., for the octahedron,

=6, fi=12, f=8.



The h-vector

P: a simplicial polytope of dimension d

Define the h-vector h(P) = (ho, h1,...,hy) of P by

d . d .
Z fiii(x - l)d_' = Z hix?"
i=0 i=0
E.g., for the octahedron O,,
(x=1)3+6(x-1)2+12(x-1) +8=x>+3x> +3x + 1,

so h(0) =(1,3,3,1).



Conditions on h;

Dehn-Sommerville equations (1905,1927): h; = hg_;
GLBC (McMullen-Walkup, 1971):

ho < hy <+ < hygpo),
so the sequence hg, h1, ..., hy is unimodal.

(Generalized Lower Bound Conjecture)



Conditions on h;

Dehn-Sommerville equations (1905,1927): h; = hy_;
GLBC (McMullen-Walkup, 1971):

ho < hy <+ < hygpo),
so the sequence hg, h1, ..., hy is unimodal.
(Generalized Lower Bound Conjecture)

Even stronger condition (the g-conjecture for simplicial
polytopes) conjectured by McMullen in 1971. Gave a conjectured
of f-vectors of simplicial polytopes.



Toric varieties

Every simplicial polytope in R” can be slightly perturbed to
have rational vertices without affecting the combinatorial type.

Let X (P) be the toric variety corresponding to a rational
simplicial polytope P. Then P is an irreducible complex projective
variety with finite quotient singularities. Let

HP)=H e H* o H*® - @& H*?

be its cohomology ring (over C), so 8% = dim¢ H? < co.
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Toric varieties

Every simplicial polytope in R” can be slightly perturbed to
have rational vertices without affecting the combinatorial type.

Let X (P) be the toric variety corresponding to a rational
simplicial polytope P. Then P is an irreducible complex projective
variety with finite quotient singularities. Let

HP)=H e H* o H*® - @& H*?

be its cohomology ring (over C), so 8% = dim¢ H? < co.

= GLBC.

Also, H(P) is generated as a C-algebra by H?. This and hard
Lefschetz imply the g-conjecture for simplicial polytopes.
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geometric realization is a (d — 1)-sphere.
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Triangulated spheres

A triangulated sphere is an abstract simplicial complex A whose
geometric realization is a (d — 1)-sphere.

The boundary of a simplicial polytope defines a
triangulated sphere.

Every triangulated 2-sphere is polytopal (Steinitz’ theorem).
There exist nonpolytopal triangulated 3-spheres.

In fact (Kalai, Goodman-Pollack), the number of triangulated
22619000

spheres on 10° vertices exceeds . The number which are

. 2
polytope is at most 22"

If A triangulates a (d — 1)-sphere, then (hg, hy, ..., hy) is defined
as before, and h; = hy_;.



g-conjecture for spheres

Theorem (K. Adiprasito, 2018). The g-conjecture for spheres is
true. In particular, if A triangulates a (d —1)-sphere then
hp < hy << h[d/2J (and h; = hd_,').



g-conjecture for spheres

Theorem (K. Adiprasito, 2018). The g-conjecture for spheres is
true. In particular, if A triangulates a (d —1)-sphere then
hp < hy << h[d/2J (and h; = hd_,').

Idea of proof. There is a ring H(A) (the face ring modulo a linear
system of parameters) which for a certain |.s.0.p is isomorphic to
H(P) when A is the boundary complex of a rational simplicial
polytope. Then prove a hard Lefschetz theorem for H(A).



V. SOME OPEN PROBLEMS



Fences

P: a p-element fence, i.e., a poset such as

order ideal: / € Psuchthattel,s<t=se¢l

c;: number of j-element order ideals of P



Conjecture of Morier-Genoud and Ovsienko

C d

a b

@,a,b,ab, bc,abc,abd, abcd
(Co, sy C4) = (1,2,2,2, ].)



Conjecture of Morier-Genoud and Ovsienko

C d

a b

@,a,b,ab, bc,abc,abd, abcd
(Co, sy C4) = (1,2,2,2, ].)

Conjecture. For any p-element fence, the sequence ¢, ¢y, ...

is unimodal.



Knots

K: a knot in R3
Ak (t) e Z[t, t71]: the Alexander polynomial of K (a famous
knot invariant).

A polynomial T(t) € Z[t, t '] is the Alexander polynomial of
some knot if and only if (1) =1 and '(1/t) =T (t).
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Knots

K: a knot in R3

Ak (t) e Z[t, t71]: the Alexander polynomial of K (a famous
knot invariant).

A polynomial T(t) € Z[t, t '] is the Alexander polynomial of
some knot if and only if (1) =1 and '(1/t) =T (t).

alternating knot: can be projected to R? so that crossings
alternate between over and under.

(A. Stoimenow, 2014) If K is alternating, then
Ak(t) has log-concave coefficients. (Unimodality for Ax(-t)
conjectured by R. H. Fox in 1962)



Genus distribution of graphs

G: finite connected graph

gi(G): number of combinatorially distinct cellular embeddings
(i.e., every face is homeomorphic to an open disk) of G in an
orientable surface of genus i

The sequence go(G),g1(G),g(G),... (the genus
distribution of G) has finitely many positive terms and no internal
zeros.

(Gross-Robbins-Tucker, 1989) The genus
distribution of G is log-concave. (Known that Y g;(G)t' need not
have only real zeros.)



The last slide
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