GENERALIZED RIFFLE SHUFFLES AND QUASISYMMETRIC FUNCTIONS

Richard P. Stanley
Department of Mathematics
M.I.T. 2-375
Cambridge, MA 02139
rstan@math.mit.edu
http://www-math.mit.edu/~rstan

Transparencies available at:

http://www-math.mit.edu/~rstan/trans.html

Let $\mathbf{x_i} = \text{probability of } i \in \mathbb{P} = \{1, 2 \dots\}.$

Fix $n \in \mathbb{P}$. Define a random $w \in \mathfrak{S}_n$ as follows:

For $1 \leq j \leq n$, choose independently an integer i_j from the distribution x_i . Then **standardize** the sequence $\mathbf{i} = i_1 \cdots i_n$, i.e., replace the 1's with $1, 2, \ldots, a_1$ from left-to-right, then the 2's with $a_1 + 1, a_1 + 2, \ldots, a_1 + a_2$ from left-to-right, etc.

$$i = 311431$$
 $w = 412653$

Call this the \mathbf{QS} -distribution or $\mathbf{QS}(\boldsymbol{x})$ -distribution.

Previously studied by

- Diaconis-Fill-Pitman
- Fulman
- Its-Tracy-Widom
- Kuperberg,

at least when x_i has finite support.

Example. w = 213. The sequence $i_1 i_2 i_3$ has standardization 213 if and only if $i_2 < i_1 \le i_3$. Hence

$$Prob(213) = \sum_{a < b \le c} x_a x_b x_c = L_{(1,2)}(x).$$

Theorem. Let $w \in \mathfrak{S}_n$. The probability Prob(w) that a permutation in \mathfrak{S}_n chosen from the QS-permutation is equal to w is given by

$$Prob(w) = L_{co(w^{-1})}(x).$$

Example. w = 74513826

$$w^{-1} = 47 \cdot 5 \cdot 238 \cdot 16$$

$$co(w^{-1}) = (2, 1, 3, 2)$$

$$L_{(2,1,3,2)}(x) = \sum_{a \le b < c < d \le e \le f < g \le h} x_a \cdots x_h.$$

Special cases:

- $x_1 = x_2 = 1/2$: riffle or dovetail shuffle (Bayer-Diaconis), the $\mathbf{U_2}$ -distribution
- $x_1 = \cdots = x_q = 1/q$: q-shuffle (Bayer-Diaconis), the $\mathbf{U}_{\mathbf{q}}$ -distribution
- $\lim_{q\to\infty} U_q$: the **uniform** distribution U

Note. A q-shuffle followed by an r-shuffle is a qr-shuffle, i.e., $U_q*U_r=U_{qr}$.

Theorem. Let y have finite support. Then

$$QS(x) * QS(y) = QS(xy),$$

where xy denotes the variables x_iy_j in lexicographic order.

The QS-distribution defines a Markov chain (or random walk) on \mathfrak{S}_n by

$$Prob(u, uw) = L_{co(w^{-1})}(x).$$

Theorem. The eigenvalues of M_n are the power sum symmetric functions $p_{\lambda}(x)$ for $\lambda \vdash n$. The eigenvalue $p_{\lambda}(x)$ occurs with multiplicity $n!/z_{\lambda}$, the number of elements in \mathfrak{S}_n of cycle type λ .

(consequence of Bergeron-Garsia or Bidigare-Hanlon-Rockmore)

Sample enumerative results. For

 $w \in \mathfrak{S}_n$ let

$$\mathbf{inv}(\mathbf{w}) = \#\{(i,j) : i < j, \ w(i) > w(j)\}$$

$$\mathbf{maj}(\mathbf{w}) = \sum_{i:w(i)>w(i+1)} i$$

$$\mathbf{In}(\mathbf{j}) = \operatorname{Prob}(\operatorname{inv}(w) = j)$$

$$\mathbf{Mn}(\mathbf{j}) = \operatorname{Prob}(\operatorname{maj}(w) = j).$$

Theorem. We have

$$M_n(j) = I_n(j)$$

$$\sum_{n\geq 0} \sum_{j\geq 0} \frac{M_n(j)t^j z^n}{(1-t)(1-t^2)\cdots(1-t^n)}$$

$$= \prod_{i,j\geq 1} \left(1-t^{i-1}x_j z\right)^{-1}.$$

MacMahon (1913):

$$\#\{w \in \mathfrak{S}_n : \operatorname{maj}(w) = j\}$$

$$= \#\{w \in \mathfrak{S}_n : \operatorname{inv}(w) = j\}.$$

Since $U = \lim_{q \to \infty} U_q$, the result $M_n(j) = I_n(j)$ is a generalization.

In fact, if

$$F_{\lambda}(t) = \sum_{v} t^{\text{maj}(v)}$$
 $G_{\lambda}(t) = \sum_{v} t^{\text{inv}(v)},$

where v ranges over all permutations of the multiset $\{1^{\lambda_1}, 2^{\lambda_2}, \ldots\}$, then

$$\sum_{j} M_{n}(j)t^{j} = \sum_{\lambda \vdash n} F_{\lambda}(t)m_{\lambda}(x)$$
$$\sum_{j} I_{n}(j)t^{j} = \sum_{\lambda \vdash n} G_{\lambda}(t)m_{\lambda}(x).$$

Thus $M_n(j) = I_n(j)$ is equivalent to MacMahon's result for multisets.

Let

$$L_n(x) = \frac{1}{n} \sum_{d|n} \mu(d) p_d^{n/d}(x)$$
$$= \operatorname{ch} \operatorname{ind}_{C_n}^{\mathfrak{S}_n} e^{2\pi i/n}.$$

Theorem. Let w be a random permutation in \mathfrak{S}_n , chosen from the QS-distribution. The probability $\operatorname{Prob}(\rho(w) = \lambda)$ that w has cycle type $\lambda = \langle 1^{m_1} 2^{m_2} \cdots \rangle$ $\vdash n$ (i.e., m_i cycles of length i) is given by

$$\operatorname{Prob}(\rho(w) = \lambda) = \prod_{i \ge 1} h_{m_i}[L_i],$$

where brackets denote plethysm.

Connections with the RSK algorithm

Let $w \in \mathfrak{S}_n$, and let $w \xrightarrow{\text{RSK}} (P, Q)$ denote the RSK algorithm, so P and Q are SYT of the same shape $\lambda \vdash n$. Write

$$\mathbf{sh}(\mathbf{w}) = \lambda.$$

Theorem. Choose $w \in \mathfrak{S}_n$ from the QS-distribution, and let $w \xrightarrow{\text{RSK}} (P,Q)$. Let T be a SYT of shape $\lambda \vdash n$. Then

$$Prob(P = T) = s_{\lambda}(x),$$

where $s_{\lambda}(x)$ denotes a Schur function.

Corollary. Choose $w \in \mathfrak{S}_n$ from the QS-distribution, and let $\lambda \vdash n$. Then

$$Prob(sh(w) = \lambda) = f^{\lambda}s_{\lambda}(x),$$

where f^{λ} denotes the number of SYT of shape λ (given explicitly by the Frame-Robinson-Thrall hook-length formula).

Longest increasing subsequences

Let is(w) be the length of the longest increasing subsequence of $w = w_1 \cdots w_n$. **Theorem** (Schensted). If

$$\operatorname{sh}(w) = (\lambda_1, \lambda_2, \ldots),$$

then $\lambda_1 = is(w)$. Hence

$$E_U(\mathrm{is}(w)) = \frac{1}{n!} \sum_{\lambda \vdash n} \lambda_1 \left(f^{\lambda} \right)^2.$$

Theorem (Vershik-Kerov):

$$E_U(\mathrm{is}(w)) \sim 2\sqrt{n}$$
.

For the QS-distribution,

$$E(\mathrm{is}(w)) = \sum_{\lambda \vdash n} \lambda_1 f^{\lambda} s_{\lambda}(x).$$

$$E_{U_q}(is(w)) = \frac{1}{n!} \sum_{\lambda \vdash n} \lambda_1 \left(f^{\lambda} \right)^2 \prod_{u \in \lambda} \left(1 + q^{-1} c(u) \right)$$
$$= E_U(is(w))$$

$$+\frac{1}{n!}\sum_{\lambda\vdash n}\lambda_1\left(f^{\lambda}\right)^2\left(\sum_{u\in\lambda}c(u)\right)\frac{1}{q}+\cdots$$

Let

$$F_1(n) = \frac{1}{n!} \sum_{\lambda \vdash n} \lambda_1 \left(f^{\lambda} \right)^2 \left(\sum_{u \in \lambda} c(u) \right).$$

Numerical evidence suggests that $F_1(n)/n$ is slowly increasing, possibly to a finite limit. We computed $F_1(47)/47 \approx 0.6991$.

Logan-Shepp, Vershik-Kerov:

"asymptotic shape" of a "typical" $w \in \mathfrak{S}_n$ (uniform distribution) as $n \to \infty$.

Baik-Deift-Johansson: Asymptotic distribution of $\operatorname{sh}(w)$ for $w \in \mathfrak{S}_n$ (uniform distribution) as $n \to \infty$.

Theorem. For each $n \in \mathbb{P}$ let $w^{(n)} \in \mathfrak{S}_n$ be chosen from the QS-distribution. Let $\operatorname{sh}(w^{(n)}) = (\lambda_1^{(n)}, \lambda_2^{(n)}, \ldots)$, and let $y_1 \geq y_2 \geq \cdots$ be the decreasing rearrangement of x_1, x_2, \ldots Then almost surely (i.e., with probability 1) for all i there holds

$$\lim_{n \to \infty} \frac{\lambda_i^{(n)}}{n} = y_i.$$

Corollary. Fix $x = (x_1, x_2, ...)$, with $x_i \ge 0$ and $\sum x_i = 1$ as usual. Let $\mu^{(n)}$ be a partition $\nu \vdash n$ that maximizes $f^{\nu}s_{\nu}(x)$. Then

$$\lim_{n \to \infty} \frac{\mu_i^{(n)}}{n} = y_i.$$

Theorem (Its-Tracy-Widom) Let

$$x_1 > x_2 > \cdots$$

Then

$$E(is(w)) = x_1 n + \sum_{j>1} \frac{p_j}{p_1 - p_j} + O\left(\frac{1}{\sqrt{n}}\right).$$

Open: Find an asymptotic formula for the expected value of λ_1 (where $\operatorname{sh}(w)$ = λ under the QS(x)-distribution) that specializes to both the Vershik-Kerov result (uniform distribution) and the case x fixed, $n \to \infty$.