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Rolle’s theorem. If f is continu-
ous on |a, b] and differentiable on (a,b),
and f(a) = f(b) =0, then there exists
a < ¢ < b such that f'(c) = 0.

Corollary. If P(x) € Rlz| and ev-
ery zero of P(x) is real, then every
zero of P'(x) is real.



Let P(x) =
anx’'+- -+ (Z) a2x2+ (T) ajr+ag € Rlz].

Theorem (Newton). If all zeros of
P(x) are real, then

azz > a; 1041, 1<1<n-—1

Proof. P"~i=1)(z) has real zeros
= Q(z) == 2/ TP =1=1)(1 /1) has real zeros
= QU~V(2) has real zeros.
But QU—(z) = %’ (ajt1 + 2a;2 + ai_1x2)

= a; > a;_1a;11. O



Let P(z) = Y a;z* have only non-
positive real zeros. Let

i = mode(P) if a; = maxa;.
(If a; = a;+1 = maxaj, let mode(P) =
i+ 5.)
Theorem (J. N. Darroch, 1964):
P'(1)
P(1)

— mode(P)| < 1.



Example.
Hermite polynomials:

/2]

(—1)Fn! (22)n 2k
Hn(r)= ) Kl (n — 2Kk)
k=0

() =~ (7 Hy oy ()

By induction, H,,_1(x) has n — 1 real

zZeros. Since

2
e " Hy_1(x) = 0as z — Foo,

it follow that Hp(z) has n real zeros
interlaced by the zeros of H,,_i(x).









Example (Heilmann-Lieb, 1972). Let
(G be a graph with ¢; i-sets of edges
with no vertex in common (matching
of size i). Then > . ¢;x* has only real

XX
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Let
T(x) =ay+ax+---+apz” € Rlz].
Set ap. = 0 for K < 0 or kK > n. Define
Ar = (-] o1

an infinite Toeplitz matrix.

Theorem (Aissen-Schoenberg-Whitney,
1052) TFAE:

e Fvery minor of Ap s > 0, 1.e.,
A7 1is totally nonnegative.

o Fuvery zero of T'(x) is real and < 0.

Gives infinitely many conditions, even
for az? + bz + c.



Culture: Edrei-Thoma generaliza-
tion (conjectured by Schoenberg). Let
Tx) =1+ax+--- € Rl|z]]. As
before, let

Ar = [aj—i]z',j>1'

TFAE:

e Fvery minor of A7 is nonnegative.

o Tlr) — xHZ-(l—F?“Z':B)
T(x) ! Hj(l—sj:v)

Y, 7,85 = 0, ZriJFZSj < 00.

, where
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B Hz<1 + 7“2':6)
T(x)=c¢e" Hj(l o)

Note:

e A7 easily seen to be t.n. for

1
T(x):1+aaj,a20,orT(aj):1 b , b>0.
— bx

e A, Bt.n.= ABt.n. (by Binet-Cauchy)

o ATy = AT Ay

n
et = lim (1 + E)
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Connection with Sy, (Thoma, Ver-
shik, Kerov, et al). Let A" - n and

%" = normalized irred. character of &,
Then limy, o )2)‘” exists if and only if
r; = ngmw A /n
R T ny/
sj = lim (AT);/n

exist.
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An application of A-S-W:

Let P be a finite poset. Let ¢; be the
number of ¢-element chains of P.

C,=1
C,=5
C,=5
Cy=1

Chain polynomial: Cp(z) = 3" ¢z

13



Theorem (Gasharov (essentially), Skan-
dera) Let P have no induced 3 + 1.
Then Cp(z) has only real zeros.

A

good

Proof of Gasharov based on combina-
torial interpretation of minors of Aq.
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Special case: P isa unit interval
order or semiorder, i.e., a set of real

numbers with

P R
u<v Su<v—1.

2.6

1.2 {

0

1.7

RS

Same as no induced 3 +1 or 2 + 2.
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For any poset, define the antiadja-
cency matrix Np by

0,1 s<t
N = ’
(NP)st { 1, otherwise.

110000
111100
111101
111101
111111
111111 ]
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Facts.

o det(/ + xNp) = Cp(x)

e P can be ordered so that Np is to-
tally nonnegative < P is a semiorder.

e (Gantmacher-Krein) Eigenvalues of
t.n. matrices are real.

Corollary. If P is a semiorder, then
Cp(x) has only real zeros.

17



Conjecture (S.-Stembridge) (implies
Gasharov-Skandera theorem) Let P be
a (3 + 1)-avoiding poset. Define

Xp= ) |\l

f:P—P teP
sllt=f(s)# (1)

the “chromatic symmetric function” ot
the incomparability graph of P. Then
X p is an e-positive symmetric function.

Above conjecture, in the special case
of semiorders, follows from:

Conjecture (Stembridge) Monomial
immanants of Jacobi-Trudi matrices are
s-positive.
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Rephrasing of A-S-W theorem.
Let P(x) € Rlz], P(0) = 1. Define

Fp(x) = P(x1)P(x9) -,

a symmetric formal series in @ = (z1, 29, .. .).

TFAE:

e Fvery zero of P(xz) is real and < 0.

e F'p(x) is s-positive, i.e., a nonneg-
ative linear combination of Schur func-
tlons sy.

e F'p(x) is e-positive, i.e., a nonneg-
ative linear combination of elemen-
tary symmetric functions e).
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Eulerian polynomial:

An(a:) _ Z xdes(w)—l—l)
wes,,

where

des(w) = #{i : w(i) > w(i+1)}.
E.g., des(4175236) = 3.

Ap(x)

: N
Euler: Z] 1) = 1= )il

>0

Theorem (Harper). Ay,(x) has only
real zeros.
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Example.
_ As(x)

X

Fp = 1+ 265 + (6659 + 610s7)

P(z) = 1426246624262+

+ (2685 + 1690891 + 14170s711) + - - -

= 1+ 26e; + (544e5 + 66€71)

+ (12506€5 + 1638e91 + 26e111) + - - -

Problem. (a) Let P(z) = Ap(z)/x.
Find a combinatorial interpretation for
the coefficients of the expansion of F'p(x)
in terms of 5)’s or ey ’s, thereby showing
they are nonnegative.

(b) Generalize to other polynomials
P(x).
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Let P be a partial orderingof 1, ..., n.
Let

£p:{w:w1---wn€6n:

P
i< j=w (i) <w )

(i.e., @ precedes j in w)}.

Wp(z) = Y zi=W),

weLlp

Note. P = n-element antichain =
Lp=G6,and Wp(x) = Ap(z)/x.
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* N
w

w | des(w)
14231 1
4123 1
1432 2

2
1

4132
1243

Wp(x) =3z +22° . all zeros reall
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Poset Conjecture (Neggers-S, c¢. 1970)

For any poset P on 1,...,n, all zeros
of Wp(x) are real. (True for |P| < 7
and naturally labelled P with |P| = 8.)

Let () be a finite poset.

chain polynomial: C(7) Z 270

where o ranges over all chains of Q.

Special case (open). Let L be a
finite distributive lattice (a collection of
sets closed under U and N, ordered by
inclusion). Then all zeros of C(x) are
real.
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e abcd
abds  mabc
<
Cr(z) = (14 6z 4102 +52°)(1 4 z)?

Also open: All zeros of Cf(x) are
real if L is a finite modular lattice.
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Example. If A is a (real) symmetric
matrix, then every zero of det(I + zA)
1S real.

Corollary. Let G be a graph. Let
a;(G) be the number of rooted span-

ning forests with i edges. Then 'S a;(G)x"
has only real zeros.
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Proof. Define the Laplacian ma-
trix L(G), rows and columns indexed
by vertex set V(G), by:

L(G)yy = —#(edges between u and v), u # v

1@2 3

3 -3 0]
LG)=| -3 4-1
0—-1 1

det(I + zL(G)) = 1 + 8z + 92
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Matrix-Tree Theorem =
det(I + 2L(G)) = Y a;(G)a’. O

Note. For unrooted spanning forests,
corresponding result is false. Le, if f;
is the number of i-edge spanning forests
of G, then 3 f;z* need not have only
real zeros. Eg, G = K3, 3 fiz! =
322 + 3z + 1.
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A-S-W gives infinitely many inequal-
ities for real zeros. Are there finitely
many inequalities?

Example. z2 + bz + ¢: all zeros real
& b2 > e
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Sturm chains. Let f(z) € Rlz]
have positive leading coeflicient. Apply
Euclidean algorithm to f(z) and f'(z):

flz) = q@)f(x)+ri(z)
flx) = @e)r(z) +rox)

rp—o(r) = qp(x)rp_1(z) + (o)
re—1(z) = qpi1(2)rg(o)

Theorem. f(x) has only real zeros
& deg(r;) = deg(f) —i — 1 and the
leading coefficients of r1(x), ..., rp(x)
have sign sequence ———+—+——-++---.
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Theorem (source?). Let
Vgt --u) = | wi—v)
1<1<y<k

the Vandermonde product. Let

n

flz)=]]( ).

1=1
All zeros of f(x) are real if and only
of

Dp(f) =Y V(b,....0,)" >0,

i <-<i,
2 < k <n.
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Di(f)y= > V(b,....0;,)

i< <ip

e D.(f) is a polynomial in the coeffi-
cients of f

e n — 1 polynomial inequalities

o Dp(f) = disc(f)

e Condition clearly necessary
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Example. f(z) =23 +b2?+cx+d
has real zeros <

disc(f)
b’ > 3c.

|V
-
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Distribution of real zeros (M.
Kac, A. Edelman, et al.). Let the co-
efficients of apx™ + --- + a1x + ag be
independent standard normals.
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e Density of expected number of real
zeros at t € R:

1 1 n + 1)t2n
pu(t) = ;\/(tz —1)2 N <§2n:|—|_2 1 1)2

Hence zeros are concentrated near +1.

e Eixpected number of real zeros asn —

00:

B, =2 (n)+C + - +0(1/n?)
= —log(n — n
n T g N )

where

C =0.6257358072 - - - .

e Prob(all zeros real) = complicated integral
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Suppose the coeflicients a; are inde-

pendent normals with mean 0 and vari-
ance (n) Now

(4
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