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Intended audience

Talk aimed at those with a general knowledge of
symmetric functions but no specialized
knowledge of plethysm and Kronecker product.



Introduction

» plethysm and Kronecker product: the two
most important operations in the theory of
symmetric functions that are not understood
combinatorially

» Plethysm due to D. E. Littlewood

» Internal product of symmetric functions: the
symmetric function operation corresponding
to Kronecker product, due to J. H. Redfield
and D. E. Littlewood

» We will give a survey of their history and
basic properties. I



Dudley Ernest Littlewood

» 7 September 1903 — 6 October 1979

» tutor at Trinity College: J. E. Littlewood (no
relation)

» 1948-1970: chair of mathematics at
University College of North Wales, Bangor

B






Plethysm

» introduced by D. E. Littlewood in 1936
» name suggested by M. L. Clark in 1944

o after Greek plethysmos ( ) for
“multiplication”
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Polynomial representations

V, W finite-dimensional vector spaces/C

polynomial representation

@: GL(V) = GL(W)(example) :

a
C

.
d

a? 2ab b?
ac ad -+ bc bd
c? 2cd  d?
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Definition of plethysm

V, W, X : vector spaces/C of dimensions m, n, p

¢: GL(V) — GL(W): polynomial representation
with character f € A,,, sotro(A) = f(x1,..., )
If A has eigenvalues z1,...,z,,

: GL(W) — GL(X): polynomial representation
with character g € A,,
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= pp: GL(V) — GL(X) is a polynomial
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character, the plethysm of / and g.



Definition of plethysm

V, W, X : vector spaces/C of dimensions m, n, p

¢: GL(V) — GL(W): polynomial representation
with character f € A,,, sotro(A) = f(x1,..., )
If A has eigenvalues z1,...,z,,

: GL(W) — GL(X): polynomial representation
with character g € A,,

= pp: GL(V) — GL(X) is a polynomial
representation. Let g|[f] (or g o f) denote its
character, the plethysm of / and g.

= if f =), v (I = set of monomials) then
Cglf] = glusue ). —I



Extension of defintions

Can extend definition of g| f| to any symmetric
functions f, g using

(af + bg)
(f9)

where p,, = 2

fl o= flat, g, )

hl = aflh] +bglhl, a,bcQ
hl = flhl - glhl,

+ ozl 4
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Examples

Note. Can let m,n — oo and define g[f] in
infinitely many variables x¢, o, . ..
(stabilization).

ho = Zz'gj rixj, SO flhe] = f(af, x129, 1123, .. . ).
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Examples

Note. Can let m,n — oo and define g[f] in
infinitely many variables x¢, o, . ..
(stabilization).

ho = Zig;‘ rixj, SO flhe] = f(af, x129, 1123, .. . ).

By RSK, | [(1 — ziz;)™' =) sa. Since
1<J A
[Ja—a) " =1+hi+hy+---, weget

| hn[hQ] — Z S\

A-n

i.e., the character of S"(S5*V). I



Schur positivity

¢: GL(V) — GL(W): polynomial representation
with character f € A,

: GL(W) — GL(X): polynomial representation
with character g € A,,

gl f]: character of 1) o ¢

B



Schur positivity

¢: GL(V) — GL(W): polynomial representation
with character f € A,

: GL(W) — GL(X): polynomial representation
with character g € A,,

gl f]: character of 1) o ¢

Theorem. If f, g are any Schur-positive
symmetric functions, then g|f| is Schur-positive.
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Schur positivity

¢: GL(V) — GL(W): polynomial representation
with character f € A,

: GL(W) — GL(X): polynomial representation
with character g € A,,

gl f]: character of 1) o ¢

Theorem. If f, g are any Schur-positive
symmetric functions, then g|f| is Schur-positive.

No combinatorial proof known, even for f = h,,,

g = h,,. I



Schur-Weyl duality for plethysm

N (&7"): normalizer of &)" In Gy, the wreath
product G, S,,, or order £I"" - m)!

ch(v): the Frobenius characteristic of the class
function ¢ of G,,, I.e.,

ch() = Y (1, x")sx.

A\n

B



Schur-Weyl duality for plethysm

N (&7"): normalizer of &)" In Gy, the wreath
product G, S,,, or order £I"" - m)!

ch(v): the Frobenius characteristic of the class
function ¢ of G,,, I.e.,

ch() = Y (1, x")sx.

A\n

Theorem (Specht). Special case:

ch (157 = ol I



Main open problem

Find a combinatorial interpretation of (sy|s,], s.),
especially the case (h,,|h,], s.).

[n/2]
E.Q., holhy| = Z S2(n—Fk),2k-

k=0

hs|h,| known, but quickly gets more complicated.

B



Plethystic inverses

Note p; = s1 = ) x; and g[s;] = s1]g| = g. We
say that f and ¢ are plethystic inverses,

denoted f = gl=1, if
flgl = glf] = s1.
Note. f[g] = s1 & g[f] = s1.




Lyndon symmetric function L,,

C,,: cyclic subgroup of &,, generated by
(1,2,...,n)

¢: character of C,, defined by
C(]-) 2, C ,n) - 627Ti/n

Lyndon symmetric function:

1 n/d
Lo = —> uldp)
dn

ch indg”e%i/ " I



Cadogan’s theorem

f=e1—exteg—e +---
g=11+ Lo+ L3+ -
Theorem (Cadogan, 1971). g = {1



Lyndon basis

Extend L, to a basis {L,} for the ring A of
symmetric functions:

Letm,k > 1,and (k™) = (k, k,..., k) (m times).
Define

Lymigma,..y = Loy Lgms) -

Equivalently, for fixed m,

1 .
E / k __ E _ . N4 I
L(k’m>t — €Xp nLn(pz — pmz)t :
k>0 n>1



Cycle type

Fixn>1.LetS C[n—1].
Fs : Gessel fundamental quasisymmetric function

Example. n =6,5 = {1, 3,4}:

FSI E QZ’Z'1°°°£U¢6.

1<11 <19<13<14 <15 <14

Theorem (Gessel-Reutenauer, 1993). We have

> Fpw) = L
wes,,
type(w)=A\ 4



An example

w  D(w)
2143 1,3
3412 2
4321 1,2,3

Example. \ = (2, 2):



An example

w  D(w)
2143 1,3
3412 2
4321 1,2,3

Example. \ = (2, 2):

L9y = sp22) +51.11,1) = (F13+ F) + Fia3
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Free Lie algebras

A: the alphabet x4, ..., 2,

C(A): free associative algebra over C generated
by A

L[A]: smallest subalgebra of C{A) containing
r1,....x, and closed under the Lie bracket
u,v| =uv —vu (free Lie algebra)

B



Lie,,

Lie,,: multilinear subspace of C(A) (degree one
In each x;)

basis: [z1, [Ty@), [Twa), -] ], w € Gy

= dim Lie, = (n — 1)!
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Lie,

Lie,,: multilinear subspace of C(A) (degree one
In each x;)

basis: [z1, [Ty@), [Twa), -] ], w € Gy
= dim Lie, = (n — 1)

Theorem (Brandt, 1944). Action of &,, on Lie,
has Frobenius characteristic L,,.
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Lie,

Lie,,: multilinear subspace of C(A) (degree one
In each x;)

basis: [x1, [Ty@), [TweE), ] ]|, w € Gy
= dim Lie, = (n — 1)

Theorem (Brandt, 1944). Action of &,, on Lie,
has Frobenius characteristic L,,.

Note. Can be extended to L), (decomposition of

C(A)) I



Partition lattices

IT,,: poset (lattice) of partitions of {1,...,n},
ordered by refinement

I1,,: 11, — {0,1}
A(IL,): set of chains of II,, (a simplicial complex)

P

H;(11,): «th reduced homology group of A(II,,),

say over C



Homeology and &,,-action

~

Theorem. (a) H;(Il,,) = 0 unless i = n — 3, and
dim H,,_3(I1,) = (n — 1)!.

(b) Action of &,, on H,_5(I1,) has Frobenius
characteristic wlL,,.

B



Lower truncations of 11,

I1,,(r): top r levels of II,,



Lower truncations of 11,

I1,,(r): top r levels of II,,

123 124 12-34 13-24 14-23 134 234

12 13 23 14 24 34

123 124 12-34 13-24 14-23 134 2347 (1)
® L 4
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&, -action on lower truncations

Theorem (Sundaram, 1994) The Frobenius
characteristic of the action of &,, on the top

homology of I1,,(r) is the degree n term in the
plethysm

(W(Lpy1 — Ly 4+ (=1)"Ly))h1 + - -+ hyl.

B






Tensor product of characters

X, ¥ characters (or any class functions) of G,

X Q@ 1 (or x1): tensor (or Kronecker) product
of v and v, I.e.,

(X ® )(w) = x(w)ib(w).



Tensor product of characters

X > Y. characters (or any class functions) of G,

x & 1 (or x): tensor (or Kronecker) product
of v and v, I.e.,

(X ® ) (w) = x(w)v(w).
f: G, — GL(V): representation with character y

g: S, — GL(W): representation with character ¢
= Yy ® 1 1S the character of the representation

f®g: 6, — GL(V ® W) given by
(f ® g)(w) = f(w) @ g(w). _I



Kronecker coefficients

Let A\, u, v = n.

gxpv — <X XM>XV>

= = xXMw)x"(w)x"(w)



Kronecker coefficients

Let A\, u, v = n.

gxpv — <X XM7XV>

= = ) xMw)xH(w)x" (w)

Consequences:
9 g)\MVEN:{O,l,...}
® g\ IS Symmetricin A, p, v.



Internal product

Recall for A\, u, v F n,

D = OO XY,

Define the internal product sy * s, by

(Sx * Sy, S0) = G-

Extend to any symmetric functions by bilinearity.

B



Tidbits

(@) 5) * 8, = 5), S\ * Sy = WS),



Tidbits

(@) 5) * 8, = 5), S\ * Sy = WS),

(b) Conjecture (Saxl, 2012). Let
O0p=(n—1,n—2,...,1)and A - (g) Then
<S5n * S5 S)\> > ().

B



Tidbits

(@) 5) * 8, = 5), S\ * Sy = WS),

(b) Conjecture (Saxl, 2012). Let
O0p=(n—1,n—2,...,1)and A - (g) Then
<S5n * S5 S)\> > ().

(

2
d) Z)\,,u,ul—n g)\,ul/ o Z,ul—n < Hence

1 i
max log gy, ~ — logn.
A, b, vEn 5 I 2 5

What A, i, v achieve the maximum? I



Generating function

Theorem (Schur)

H(l T ZCzijk Z g)\,uus)\ ( )

Zajk )\,LLV



Generating function

Theorem (Schur)

H(l _ szy]Zk Z g)\,uus)\ ( )

iaj k A NN
Equivalent formulation:

Write ry for the alphabet {x’iyj}i,jZL Thus
flay) = flsi(z)s1(y)]. Then

(frg*h) = (f(zy),g9(x)h(y))

B



Generating function

Theorem (Schur)

H(l _ szyjzk Z g)\,uus)\ ( )

iaj k A NN
Equivalent formulation:

Write ry for the alphabet {xiyj}i,jZL Thus
flay) = flsi(z)s1(y)]. Then

(frg*h) = (f(zy),g9(x)h(y))

What if we replace s; by s,,, for instance? I



Vanishing

Vanishing of g,,,, not well-understood. Sample
result:

Theorem (Dvir, 1993). Fix i, v = n. Then

max{{(A) : gyw # 0} = |[p NV

(intersection of diagrams).

B



Example of Dvir’s theorem

SA1 k S39 = Sa1 + S39 + S311 T S221- Intersection of
(4,1) and (3,2) = (2,2.1);




Combinatorial interpretation

A central open problem: find a combinatorial
interpretation of g,,,, .



Combinatorial interpretation

A central open problem: find a combinatorial
interpretation of g,,,, .

Example. Let A = n. Then (s;1n-i * s 10—k, 5)) IS
the number of (u,v, w) € &2 such that uvw = 1,
D(u) ={y}, D(v) = {k}, and if w is inserted into
A from right to left and from bottom to top, then a
standard Young tableau results.

B



Conjugation action

S,, acts on itself by conjugation, i.e.,
w - uw = w tuw. The Frobenius characteristic of
this action is

Kn::ZS)\*S)\ Zpﬂ

AFn pEn



Conjugation action

S,, acts on itself by conjugation, i.e.,
w - uw = w tuw. The Frobenius characteristic of
this action is

Kn::ZS)\*S)\ Zpu

AFn pEn

Combinatorial interpretation of (K, s,,) not
known. All known proofs that K, Is
Schur-positive use representation theory.

B



Stability

Example. Forn > §,

Sp—22%Sp—29 = Sp+Sp—31111t28,-22+Sn-11+tSp—21.1
+28,-321+ Sp—422+ Sp-33 + Sp—431 + Sp—a.4.

B



Stability

Example. Forn > §,

Sp—22%Sp—29 = Sp+Sp—31111t28,-22+Sn-11+tSp—21.1
+28,-321+ Sp—422+ Sp-33 + Sp—431 + Sp—a.4.
)\[n] = (TL — ‘)\‘, )\1, )\27 Ce )

Theorem (Murnaghan, 1937). For any partitions
a, 3,7, the Kronecker coefficient g, sin] ~n

stabilizes.

Vast generalization proved by Steven Sam and

Andrew Snowden, 2016. I



Reduced Kronecker coefficient

gos~- the stable value
Jap~ 1s called a reduced Kronecker coefficient.

Combinatorial interpretation is not known.

B



Reduced Kronecker coefficient

gos~- the stable value

Jap~ 1s called a reduced Kronecker coefficient.
Combinatorial interpretation is not known.
Example. Recall that for n > §,

Sn—-22%Sp—22 = Sp+Sp-3111128,-22+S—11+Sp—21.1
+28,-321+ Sp—422+ Sp-33 + Sp—431 + Sp—a.4.

Hence gQ,Q,@ = 1, §2’2,111 — 1, 2929 = 2, etc.

B



VP,s:=VNP?




Algebraic complexity

Flagship problem: VP,, # VINP.

Determinantal complexity of f € Clzy, ..., 2,
smallest n € N such that f is the determinant of
an n x n matrix whose entries are affine linear

forms in the z;.

Theorem (Valiant 1979, Toda 1992). TFAE:

» Determinantal complexity of ann x n
permanant is superpolynomial in n.

s VP,, VNP I



Mulmuley and Sohoni 2001

2

(1,.: closure of the orbit of GL,,2 - det,, In Sym"C"".

2

padded permanent: »|, "'per, € Sym"C".

Conjecture. For all ¢ > 0 and infinitely many m,
there exists a partition A (i.e., an irreducible
polynomial representation of GL,,2) occurring in
the coordinate ring C|Z,,,- ,,,] but not in C[2,,,.].

B



Burgisser, Ikenmeyer, and Panova

Theorem (BIP 2016) The conjecture of
Mulmuley and Sohoni is false.



Burgisser, Ikenmeyer, and Panova

Theorem (BIP 2016) The conjecture of
Mulmuley and Sohoni is false.

Proof involves Kronecker product coefficients
g IN an essential way.

B
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The last slide ~
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